diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu index 8476ee1bc..1dac397c4 100644 --- a/ggml/src/ggml-cuda/ggml-cuda.cu +++ b/ggml/src/ggml-cuda/ggml-cuda.cu @@ -2289,6 +2289,66 @@ static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { } #ifdef USE_CUDA_GRAPH +static bool check_node_graph_compatibility_and_refresh_copy_ops(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, + std::vector & ggml_cuda_cpy_fn_ptrs, bool use_cuda_graph) { + + // Loop over nodes in GGML graph to obtain info needed for CUDA graph + cuda_ctx->cuda_graph->updated_kernel_arg.clear(); + for (int i = 0; i < cgraph->n_nodes; i++) { + ggml_tensor * node = cgraph->nodes[i]; + + if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { + continue; + } + + if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) { + use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__); +#endif + } + + if (node->op == GGML_OP_MUL_MAT_ID) { + use_cuda_graph = false; // This node type is not supported by CUDA graph capture +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__); +#endif + } + + if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) { + // disable CUDA graphs for batch size > 1 for now. + // Changes in batch size or context size can cause changes to the grid size of some kernels. + use_cuda_graph = false; +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]); +#endif + } + + if (node->op == GGML_OP_CPY) { + // store the copy op parameter which changes with each token. + cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data)); + // store a pointer to each copy op CUDA kernel to identify it later + void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]); + if (!ptr) { + use_cuda_graph = false; +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__); +#endif + } else { + if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) { + ggml_cuda_cpy_fn_ptrs.push_back(ptr); + } + } + } + + if (!use_cuda_graph) { + break; + } + } + + return use_cuda_graph; +} + static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) { graph_node_properties->node_address = node->data; graph_node_properties->node_op = node->op; @@ -2339,149 +2399,105 @@ static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_gra return true; } -#endif -static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { - ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; +static void maintain_cuda_graph(ggml_backend_cuda_context * cuda_ctx, std::vector & ggml_cuda_cpy_fn_ptrs, bool cuda_graph_update_required) { - ggml_cuda_set_device(cuda_ctx->device); + if (cuda_graph_update_required) { + // Extract nodes from graph + // First call with null argument gets number of nodes in graph + CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes)); + // Subsequent call with non-null argument gets nodes + cuda_ctx->cuda_graph->nodes.clear(); + cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes); + cuda_ctx->cuda_graph->params.clear(); + cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes); + if (cuda_ctx->cuda_graph->num_nodes > 0) { + CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes)); -#ifdef USE_CUDA_GRAPH - static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr); - - // Objects required for CUDA Graph - if (cuda_ctx->cuda_graph == nullptr) { - cuda_ctx->cuda_graph.reset(new ggml_cuda_graph()); - } - - bool use_cuda_graph = true; - bool cuda_graph_update_required = false; - // vector of pointers to CUDA cpy kernels, which are required to identify - // kernel parameters which need updated in the graph for each token - std::vector ggml_cuda_cpy_fn_ptrs; - - if (cuda_ctx->cuda_graph->graph == nullptr) { - if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) { - cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true; -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__); -#endif - } - } - - // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly, - // or previous graph capture failure. - // Also disable for multi-gpu for now. TO DO investigate - if (disable_cuda_graphs_due_to_env - || cuda_ctx->cuda_graph->disable_due_to_gpu_arch - || cuda_ctx->cuda_graph->disable_due_to_too_many_updates - || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) { - use_cuda_graph = false; - } - - if (use_cuda_graph) { - if (cuda_ctx->cuda_graph->instance == nullptr) { - cuda_graph_update_required = true; - } - - // Check if the graph size has changed - if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) { - cuda_graph_update_required = true; - cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes); - } - - // Loop over nodes in GGML graph to determine if CUDA graph update is required - // and store properties to allow this comparison for the next token - for (int i = 0; i < cgraph->n_nodes; i++) { - bool has_matching_properties = true; - if (!cuda_graph_update_required) { - has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); - } - if (!has_matching_properties) { - cuda_graph_update_required = true; - } - set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); - } - - // Loop over nodes in GGML graph to obtain info needed for CUDA graph - cuda_ctx->cuda_graph->updated_kernel_arg.clear(); - for (int i = 0; i < cgraph->n_nodes; i++) { - ggml_tensor * node = cgraph->nodes[i]; - - if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { - continue; - } - - if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) { - use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__); -#endif - } - - if (node->op == GGML_OP_MUL_MAT_ID) { - use_cuda_graph = false; // This node type is not supported by CUDA graph capture -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__); -#endif - } - - if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) { - // disable CUDA graphs for batch size > 1 for now. - // Changes in batch size or context size can cause changes to the grid size of some kernels. - use_cuda_graph = false; -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]); -#endif - } - - if (node->op == GGML_OP_CPY) { - // store the copy op parameter which changes with each token. - cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data)); - // store a pointer to each copy op CUDA kernel to identify it later - void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]); - if (!ptr) { - use_cuda_graph = false; -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__); -#endif - } else { - if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) { - ggml_cuda_cpy_fn_ptrs.push_back(ptr); + // Loop over nodes, and extract kernel parameters from each node + for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { + cudaGraphNodeType node_type; + CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type)); + if (node_type == cudaGraphNodeTypeKernel) { + cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime + if (stat == cudaErrorInvalidDeviceFunction) { + // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node. + // We don't need to update blas nodes, so clear error and move on. + cudaGetLastError(); + } else { + GGML_ASSERT(stat == cudaSuccess); } } } - - if (!use_cuda_graph) { - break; + } + } else { + // One of the arguments to the copy kernel is updated for each token, hence we need to + // replace that argument with the updated value in the CUDA graph + // on update steps, the live parameters will already be captured + int k = 0; + for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { + if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) { + char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++); + cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr; + CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i])); } } - - // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates. - if (use_cuda_graph && cuda_graph_update_required) { - cuda_ctx->cuda_graph->number_consecutive_updates++; - } else { - cuda_ctx->cuda_graph->number_consecutive_updates = 0; - } - - if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) { - cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true; -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__); -#endif - } } +} - if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture - CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed)); - } +static bool is_cuda_graph_update_required(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph) { -#else - bool use_cuda_graph = false; bool cuda_graph_update_required = false; -#endif // USE_CUDA_GRAPH - bool graph_evaluated_or_captured = false; + if (cuda_ctx->cuda_graph->instance == nullptr) { + cuda_graph_update_required = true; + } + + // Check if the graph size has changed + if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) { + cuda_graph_update_required = true; + cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes); + } + + // Loop over nodes in GGML graph to determine if CUDA graph update is required + // and store properties to allow this comparison for the next token + for (int i = 0; i < cgraph->n_nodes; i++) { + bool has_matching_properties = true; + if (!cuda_graph_update_required) { + has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); + } + if (!has_matching_properties) { + cuda_graph_update_required = true; + } + set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]); + } + + return cuda_graph_update_required; +} + +static void update_cuda_graph_executable(ggml_backend_cuda_context * cuda_ctx) { + + cudaGraphExecUpdateResultInfo result_info; + cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info); + if (stat == cudaErrorGraphExecUpdateFailure) { +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__); +#endif + // The pre-existing graph exec cannot be updated due to violated constraints + // so instead clear error and re-instantiate + cudaGetLastError(); + CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance)); + cuda_ctx->cuda_graph->instance = nullptr; + CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0)); + } else { + GGML_ASSERT(stat == cudaSuccess); + } +} +#endif + +static void evaluate_and_capture_cuda_graph(ggml_backend_cuda_context * cuda_ctx, ggml_cgraph * cgraph, + [[maybe_unused]] std::vector & ggml_cuda_cpy_fn_ptrs, bool & graph_evaluated_or_captured, bool & use_cuda_graph, + bool & cuda_graph_update_required) { while (!graph_evaluated_or_captured) { // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph. @@ -2519,19 +2535,8 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph)); cuda_ctx->cuda_graph->graph = nullptr; } - CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph)); -#if 0 - if (disable_cuda_graphs_due_to_failed_capture) { - use_cuda_graph = false; - cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true; -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: disabling CUDA graphs due to failed graph capture\n", __func__); -#endif - } else { - graph_evaluated_or_captured = true; // CUDA graph has been captured - } -#endif + CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph)); graph_evaluated_or_captured = true; // CUDA graph has been captured } else { graph_evaluated_or_captured = true; // ggml graph has been directly evaluated @@ -2544,72 +2549,91 @@ static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, } // Perform update to graph (if required for this token), and change copy parameter (required for every token) - - if (cuda_graph_update_required) { - // Extract nodes from graph - // First call with null argument gets number of nodes in graph - CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes)); - // Subsequent call with non-null argument gets nodes - cuda_ctx->cuda_graph->nodes.clear(); - cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes); - cuda_ctx->cuda_graph->params.clear(); - cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes); - if (cuda_ctx->cuda_graph->num_nodes > 0) { - CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes)); - - // Loop over nodes, and extract kernel parameters from each node - for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { - cudaGraphNodeType node_type; - CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type)); - if (node_type == cudaGraphNodeTypeKernel) { - cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime - if (stat == cudaErrorInvalidDeviceFunction) { - // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node. - // We don't need to update blas nodes, so clear error and move on. - cudaGetLastError(); - } else { - GGML_ASSERT(stat == cudaSuccess); - } - } - } - } - } - - // One of the arguments to the copy kernel is updated for each token, hence we need to - // replace that argument with the updated value in the CUDA graph - if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured - int k = 0; - for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) { - if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) { - char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++); - cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr; - CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i])); - } - } - } + maintain_cuda_graph(cuda_ctx, ggml_cuda_cpy_fn_ptrs, cuda_graph_update_required); // Update graph executable - cudaGraphExecUpdateResultInfo result_info; - cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info); - if (stat == cudaErrorGraphExecUpdateFailure) { -#ifndef NDEBUG - GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__); -#endif - // The pre-existing graph exec cannot be updated due to violated constraints - // so instead clear error and re-instantiate - cudaGetLastError(); - CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance)); - cuda_ctx->cuda_graph->instance = nullptr; - CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0)); - } else { - GGML_ASSERT(stat == cudaSuccess); - } + update_cuda_graph_executable(cuda_ctx); + // Launch graph CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream())); #else graph_evaluated_or_captured = true; -#endif // USE_CUDA_GRAPH +#endif // USE_CUDA_GRAPH } +} + +static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + ggml_cuda_set_device(cuda_ctx->device); + + // vector of pointers to CUDA cpy kernels, which are required to identify + // kernel parameters which need updated in the graph for each token + std::vector ggml_cuda_cpy_fn_ptrs; + +#ifdef USE_CUDA_GRAPH + static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr); + + // Objects required for CUDA Graph + if (cuda_ctx->cuda_graph == nullptr) { + cuda_ctx->cuda_graph.reset(new ggml_cuda_graph()); + } + + bool use_cuda_graph = true; + bool cuda_graph_update_required = false; + + if (cuda_ctx->cuda_graph->graph == nullptr) { + if (ggml_cuda_info().devices[cuda_ctx->device].cc < GGML_CUDA_CC_AMPERE) { + cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true; +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__); +#endif + } + } + + // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly, + // or previous graph capture failure. + // Also disable for multi-gpu for now. TO DO investigate + if (disable_cuda_graphs_due_to_env + || cuda_ctx->cuda_graph->disable_due_to_gpu_arch + || cuda_ctx->cuda_graph->disable_due_to_too_many_updates + || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) { + use_cuda_graph = false; + } + + if (use_cuda_graph) { + cuda_graph_update_required = is_cuda_graph_update_required(cuda_ctx, cgraph); + + use_cuda_graph = check_node_graph_compatibility_and_refresh_copy_ops(cuda_ctx, cgraph, + ggml_cuda_cpy_fn_ptrs, use_cuda_graph); + + // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates. + if (use_cuda_graph && cuda_graph_update_required) { + cuda_ctx->cuda_graph->number_consecutive_updates++; + } else { + cuda_ctx->cuda_graph->number_consecutive_updates = 0; + } + + if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) { + cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true; +#ifndef NDEBUG + GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__); +#endif + } + } + + if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture + CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed)); + } + +#else + bool use_cuda_graph = false; + bool cuda_graph_update_required = false; +#endif // USE_CUDA_GRAPH + + bool graph_evaluated_or_captured = false; + + evaluate_and_capture_cuda_graph(cuda_ctx, cgraph, ggml_cuda_cpy_fn_ptrs, graph_evaluated_or_captured, use_cuda_graph, cuda_graph_update_required); return GGML_STATUS_SUCCESS; }