mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
Merge branch 'master' into compilade/refactor-kv-cache
This commit is contained in:
commit
3b57b55c6f
@ -214,7 +214,6 @@ effectiveStdenv.mkDerivation (
|
|||||||
(cmakeBool "LLAMA_CUDA" useCuda)
|
(cmakeBool "LLAMA_CUDA" useCuda)
|
||||||
(cmakeBool "LLAMA_HIPBLAS" useRocm)
|
(cmakeBool "LLAMA_HIPBLAS" useRocm)
|
||||||
(cmakeBool "LLAMA_METAL" useMetalKit)
|
(cmakeBool "LLAMA_METAL" useMetalKit)
|
||||||
(cmakeBool "LLAMA_MPI" useMpi)
|
|
||||||
(cmakeBool "LLAMA_VULKAN" useVulkan)
|
(cmakeBool "LLAMA_VULKAN" useVulkan)
|
||||||
(cmakeBool "LLAMA_STATIC" enableStatic)
|
(cmakeBool "LLAMA_STATIC" enableStatic)
|
||||||
]
|
]
|
||||||
@ -227,20 +226,20 @@ effectiveStdenv.mkDerivation (
|
|||||||
)
|
)
|
||||||
]
|
]
|
||||||
++ optionals useRocm [
|
++ optionals useRocm [
|
||||||
(cmakeFeature "CMAKE_C_COMPILER" "hipcc")
|
(cmakeFeature "CMAKE_HIP_COMPILER" "${rocmPackages.llvm.clang}/bin/clang")
|
||||||
(cmakeFeature "CMAKE_CXX_COMPILER" "hipcc")
|
(cmakeFeature "CMAKE_HIP_ARCHITECTURES" (builtins.concatStringsSep ";" rocmPackages.clr.gpuTargets))
|
||||||
|
|
||||||
# Build all targets supported by rocBLAS. When updating search for TARGET_LIST_ROCM
|
|
||||||
# in https://github.com/ROCmSoftwarePlatform/rocBLAS/blob/develop/CMakeLists.txt
|
|
||||||
# and select the line that matches the current nixpkgs version of rocBLAS.
|
|
||||||
# Should likely use `rocmPackages.clr.gpuTargets`.
|
|
||||||
"-DAMDGPU_TARGETS=gfx803;gfx900;gfx906:xnack-;gfx908:xnack-;gfx90a:xnack+;gfx90a:xnack-;gfx940;gfx941;gfx942;gfx1010;gfx1012;gfx1030;gfx1100;gfx1101;gfx1102"
|
|
||||||
]
|
]
|
||||||
++ optionals useMetalKit [
|
++ optionals useMetalKit [
|
||||||
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
|
(lib.cmakeFeature "CMAKE_C_FLAGS" "-D__ARM_FEATURE_DOTPROD=1")
|
||||||
(cmakeBool "LLAMA_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
|
(cmakeBool "LLAMA_METAL_EMBED_LIBRARY" (!precompileMetalShaders))
|
||||||
];
|
];
|
||||||
|
|
||||||
|
# Environment variables needed for ROCm
|
||||||
|
env = optionals useRocm {
|
||||||
|
ROCM_PATH = "${rocmPackages.clr}";
|
||||||
|
HIP_DEVICE_LIB_PATH = "${rocmPackages.rocm-device-libs}/amdgcn/bitcode";
|
||||||
|
};
|
||||||
|
|
||||||
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
|
# TODO(SomeoneSerge): It's better to add proper install targets at the CMake level,
|
||||||
# if they haven't been added yet.
|
# if they haven't been added yet.
|
||||||
postInstall = ''
|
postInstall = ''
|
||||||
|
73
.github/labeler.yml
vendored
Normal file
73
.github/labeler.yml
vendored
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
# https://github.com/actions/labeler
|
||||||
|
|
||||||
|
SYCL:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- ggml-sycl.h
|
||||||
|
- ggml-sycl.cpp
|
||||||
|
- README-sycl.md
|
||||||
|
Nvidia GPU:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- ggml-cuda/**
|
||||||
|
Vulkan:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- ggml_vk_generate_shaders.py
|
||||||
|
- ggml-vulkan*
|
||||||
|
documentation:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- docs/**
|
||||||
|
- media/**
|
||||||
|
testing:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- tests/**
|
||||||
|
build:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- cmake/**
|
||||||
|
- CMakeLists.txt
|
||||||
|
- CMakePresets.json
|
||||||
|
- codecov.yml
|
||||||
|
examples:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file: examples/**
|
||||||
|
devops:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- .devops/**
|
||||||
|
- .github/**
|
||||||
|
- ci/**
|
||||||
|
python:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- "**/*.py"
|
||||||
|
- requirements/**
|
||||||
|
- gguf-py/**
|
||||||
|
- .flake8
|
||||||
|
script:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- scripts/**
|
||||||
|
android:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- examples/llama.android/**
|
||||||
|
server:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- examples/server/**
|
||||||
|
ggml:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- ggml-*.c
|
||||||
|
- ggml-*.h
|
||||||
|
- ggml-cuda/**
|
||||||
|
nix:
|
||||||
|
- changed-files:
|
||||||
|
- any-glob-to-any-file:
|
||||||
|
- "**/*.nix"
|
||||||
|
- .github/workflows/nix-*.yml
|
||||||
|
- .devops/nix/nixpkgs-instances.nix
|
208
.github/workflows/build.yml
vendored
208
.github/workflows/build.yml
vendored
@ -271,49 +271,15 @@ jobs:
|
|||||||
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip
|
path: llama-${{ steps.tag.outputs.name }}-bin-ubuntu-x64.zip
|
||||||
name: llama-bin-ubuntu-x64.zip
|
name: llama-bin-ubuntu-x64.zip
|
||||||
|
|
||||||
# ubuntu-latest-cmake-sanitizer:
|
ubuntu-latest-cmake-sanitizer:
|
||||||
# runs-on: ubuntu-latest
|
|
||||||
#
|
|
||||||
# continue-on-error: true
|
|
||||||
#
|
|
||||||
# strategy:
|
|
||||||
# matrix:
|
|
||||||
# sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
|
||||||
# build_type: [Debug, Release]
|
|
||||||
#
|
|
||||||
# steps:
|
|
||||||
# - name: Clone
|
|
||||||
# id: checkout
|
|
||||||
# uses: actions/checkout@v4
|
|
||||||
#
|
|
||||||
# - name: Dependencies
|
|
||||||
# id: depends
|
|
||||||
# run: |
|
|
||||||
# sudo apt-get update
|
|
||||||
# sudo apt-get install build-essential
|
|
||||||
#
|
|
||||||
# - name: Build
|
|
||||||
# id: cmake_build
|
|
||||||
# run: |
|
|
||||||
# mkdir build
|
|
||||||
# cd build
|
|
||||||
# cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
|
||||||
# cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
|
|
||||||
#
|
|
||||||
# - name: Test
|
|
||||||
# id: cmake_test
|
|
||||||
# run: |
|
|
||||||
# cd build
|
|
||||||
# ctest -L main --verbose --timeout 900
|
|
||||||
|
|
||||||
ubuntu-latest-cmake-mpi:
|
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
continue-on-error: true
|
continue-on-error: true
|
||||||
|
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
mpi_library: [mpich, libopenmpi-dev]
|
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||||
|
build_type: [Debug, Release]
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Clone
|
- name: Clone
|
||||||
@ -324,14 +290,44 @@ jobs:
|
|||||||
id: depends
|
id: depends
|
||||||
run: |
|
run: |
|
||||||
sudo apt-get update
|
sudo apt-get update
|
||||||
sudo apt-get install build-essential ${{ matrix.mpi_library }}
|
sudo apt-get install build-essential
|
||||||
|
|
||||||
- name: Build
|
- name: Build
|
||||||
id: cmake_build
|
id: cmake_build
|
||||||
run: |
|
run: |
|
||||||
mkdir build
|
mkdir build
|
||||||
cd build
|
cd build
|
||||||
cmake -DLLAMA_MPI=ON ..
|
cmake .. -DLLAMA_FATAL_WARNINGS=ON -DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON -DCMAKE_BUILD_TYPE=${{ matrix.build_type }}
|
||||||
|
cmake --build . --config ${{ matrix.build_type }} -j $(nproc)
|
||||||
|
|
||||||
|
- name: Test
|
||||||
|
id: cmake_test
|
||||||
|
run: |
|
||||||
|
cd build
|
||||||
|
ctest -L main --verbose --timeout 900
|
||||||
|
|
||||||
|
ubuntu-latest-cmake-rpc:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
|
||||||
|
continue-on-error: true
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Clone
|
||||||
|
id: checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
|
||||||
|
- name: Dependencies
|
||||||
|
id: depends
|
||||||
|
run: |
|
||||||
|
sudo apt-get update
|
||||||
|
sudo apt-get install build-essential
|
||||||
|
|
||||||
|
- name: Build
|
||||||
|
id: cmake_build
|
||||||
|
run: |
|
||||||
|
mkdir build
|
||||||
|
cd build
|
||||||
|
cmake -DLLAMA_RPC=ON ..
|
||||||
cmake --build . --config Release -j $(nproc)
|
cmake --build . --config Release -j $(nproc)
|
||||||
|
|
||||||
- name: Test
|
- name: Test
|
||||||
@ -362,6 +358,33 @@ jobs:
|
|||||||
cmake -DLLAMA_VULKAN=ON ..
|
cmake -DLLAMA_VULKAN=ON ..
|
||||||
cmake --build . --config Release -j $(nproc)
|
cmake --build . --config Release -j $(nproc)
|
||||||
|
|
||||||
|
ubuntu-22-cmake-hip:
|
||||||
|
runs-on: ubuntu-22.04
|
||||||
|
container: rocm/dev-ubuntu-22.04:6.0.2
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Clone
|
||||||
|
id: checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
|
- name: Dependencies
|
||||||
|
id: depends
|
||||||
|
run: |
|
||||||
|
sudo apt-get update
|
||||||
|
sudo apt-get install -y build-essential git cmake rocblas-dev hipblas-dev
|
||||||
|
|
||||||
|
- name: Build with native CMake HIP support
|
||||||
|
id: cmake_build
|
||||||
|
run: |
|
||||||
|
cmake -B build -S . -DCMAKE_HIP_COMPILER="$(hipconfig -l)/clang" -DLLAMA_HIPBLAS=ON
|
||||||
|
cmake --build build --config Release -j $(nproc)
|
||||||
|
|
||||||
|
- name: Build with legacy HIP support
|
||||||
|
id: cmake_build_legacy_hip
|
||||||
|
run: |
|
||||||
|
cmake -B build2 -S . -DCMAKE_C_COMPILER=hipcc -DCMAKE_CXX_COMPILER=hipcc -DLLAMA_HIPBLAS=ON
|
||||||
|
cmake --build build2 --config Release -j $(nproc)
|
||||||
|
|
||||||
ubuntu-22-cmake-sycl:
|
ubuntu-22-cmake-sycl:
|
||||||
runs-on: ubuntu-22.04
|
runs-on: ubuntu-22.04
|
||||||
|
|
||||||
@ -663,24 +686,28 @@ jobs:
|
|||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
include:
|
include:
|
||||||
- build: 'noavx'
|
- build: 'rpc-x64'
|
||||||
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_RPC=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
|
- build: 'noavx-x64'
|
||||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX=OFF -DLLAMA_AVX2=OFF -DLLAMA_FMA=OFF -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'avx2'
|
- build: 'avx2-x64'
|
||||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'avx'
|
- build: 'avx-x64'
|
||||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX2=OFF -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'avx512'
|
- build: 'avx512-x64'
|
||||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_AVX512=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'clblast'
|
- build: 'clblast-x64'
|
||||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
|
||||||
- build: 'openblas'
|
- build: 'openblas-x64'
|
||||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||||
- build: 'kompute'
|
- build: 'kompute-x64'
|
||||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'vulkan'
|
- build: 'vulkan-x64'
|
||||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
- build: 'arm64'
|
- build: 'llvm-arm64'
|
||||||
defines: '-A ARM64 -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
|
- build: 'msvc-arm64'
|
||||||
|
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
|
||||||
|
|
||||||
steps:
|
steps:
|
||||||
- name: Clone
|
- name: Clone
|
||||||
@ -691,13 +718,13 @@ jobs:
|
|||||||
|
|
||||||
- name: Clone Kompute submodule
|
- name: Clone Kompute submodule
|
||||||
id: clone_kompute
|
id: clone_kompute
|
||||||
if: ${{ matrix.build == 'kompute' }}
|
if: ${{ matrix.build == 'kompute-x64' }}
|
||||||
run: |
|
run: |
|
||||||
git submodule update --init kompute
|
git submodule update --init kompute
|
||||||
|
|
||||||
- name: Download OpenCL SDK
|
- name: Download OpenCL SDK
|
||||||
id: get_opencl
|
id: get_opencl
|
||||||
if: ${{ matrix.build == 'clblast' }}
|
if: ${{ matrix.build == 'clblast-x64' }}
|
||||||
run: |
|
run: |
|
||||||
curl.exe -o $env:RUNNER_TEMP/opencl.zip -L "https://github.com/KhronosGroup/OpenCL-SDK/releases/download/v${env:OPENCL_VERSION}/OpenCL-SDK-v${env:OPENCL_VERSION}-Win-x64.zip"
|
curl.exe -o $env:RUNNER_TEMP/opencl.zip -L "https://github.com/KhronosGroup/OpenCL-SDK/releases/download/v${env:OPENCL_VERSION}/OpenCL-SDK-v${env:OPENCL_VERSION}-Win-x64.zip"
|
||||||
mkdir $env:RUNNER_TEMP/opencl
|
mkdir $env:RUNNER_TEMP/opencl
|
||||||
@ -705,7 +732,7 @@ jobs:
|
|||||||
|
|
||||||
- name: Download CLBlast
|
- name: Download CLBlast
|
||||||
id: get_clblast
|
id: get_clblast
|
||||||
if: ${{ matrix.build == 'clblast' }}
|
if: ${{ matrix.build == 'clblast-x64' }}
|
||||||
run: |
|
run: |
|
||||||
curl.exe -o $env:RUNNER_TEMP/clblast.7z -L "https://github.com/CNugteren/CLBlast/releases/download/${env:CLBLAST_VERSION}/CLBlast-${env:CLBLAST_VERSION}-windows-x64.7z"
|
curl.exe -o $env:RUNNER_TEMP/clblast.7z -L "https://github.com/CNugteren/CLBlast/releases/download/${env:CLBLAST_VERSION}/CLBlast-${env:CLBLAST_VERSION}-windows-x64.7z"
|
||||||
curl.exe -o $env:RUNNER_TEMP/CLBlast.LICENSE.txt -L "https://github.com/CNugteren/CLBlast/raw/${env:CLBLAST_VERSION}/LICENSE"
|
curl.exe -o $env:RUNNER_TEMP/CLBlast.LICENSE.txt -L "https://github.com/CNugteren/CLBlast/raw/${env:CLBLAST_VERSION}/LICENSE"
|
||||||
@ -718,7 +745,7 @@ jobs:
|
|||||||
|
|
||||||
- name: Download OpenBLAS
|
- name: Download OpenBLAS
|
||||||
id: get_openblas
|
id: get_openblas
|
||||||
if: ${{ matrix.build == 'openblas' }}
|
if: ${{ matrix.build == 'openblas-x64' }}
|
||||||
run: |
|
run: |
|
||||||
curl.exe -o $env:RUNNER_TEMP/openblas.zip -L "https://github.com/xianyi/OpenBLAS/releases/download/v${env:OPENBLAS_VERSION}/OpenBLAS-${env:OPENBLAS_VERSION}-x64.zip"
|
curl.exe -o $env:RUNNER_TEMP/openblas.zip -L "https://github.com/xianyi/OpenBLAS/releases/download/v${env:OPENBLAS_VERSION}/OpenBLAS-${env:OPENBLAS_VERSION}-x64.zip"
|
||||||
curl.exe -o $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt -L "https://github.com/xianyi/OpenBLAS/raw/v${env:OPENBLAS_VERSION}/LICENSE"
|
curl.exe -o $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt -L "https://github.com/xianyi/OpenBLAS/raw/v${env:OPENBLAS_VERSION}/LICENSE"
|
||||||
@ -731,38 +758,41 @@ jobs:
|
|||||||
|
|
||||||
- name: Install Vulkan SDK
|
- name: Install Vulkan SDK
|
||||||
id: get_vulkan
|
id: get_vulkan
|
||||||
if: ${{ matrix.build == 'kompute' || matrix.build == 'vulkan' }}
|
if: ${{ matrix.build == 'kompute-x64' || matrix.build == 'vulkan-x64' }}
|
||||||
run: |
|
run: |
|
||||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
|
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
|
||||||
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
|
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
|
||||||
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
|
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
|
||||||
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
|
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
|
||||||
|
|
||||||
|
- name: Install Ninja
|
||||||
|
id: install_ninja
|
||||||
|
run: |
|
||||||
|
choco install ninja
|
||||||
|
|
||||||
- name: Build
|
- name: Build
|
||||||
id: cmake_build
|
id: cmake_build
|
||||||
run: |
|
run: |
|
||||||
mkdir build
|
cmake -S . -B build ${{ matrix.defines }}
|
||||||
cd build
|
cmake --build build --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
||||||
cmake .. ${{ matrix.defines }}
|
|
||||||
cmake --build . --config Release -j ${env:NUMBER_OF_PROCESSORS}
|
|
||||||
|
|
||||||
- name: Add clblast.dll
|
- name: Add clblast.dll
|
||||||
id: add_clblast_dll
|
id: add_clblast_dll
|
||||||
if: ${{ matrix.build == 'clblast' }}
|
if: ${{ matrix.build == 'clblast-x64' }}
|
||||||
run: |
|
run: |
|
||||||
cp $env:RUNNER_TEMP/clblast/lib/clblast.dll ./build/bin/Release
|
cp $env:RUNNER_TEMP/clblast/lib/clblast.dll ./build/bin/Release
|
||||||
cp $env:RUNNER_TEMP/CLBlast.LICENSE.txt ./build/bin/Release/CLBlast-${env:CLBLAST_VERSION}.txt
|
cp $env:RUNNER_TEMP/CLBlast.LICENSE.txt ./build/bin/Release/CLBlast-${env:CLBLAST_VERSION}.txt
|
||||||
|
|
||||||
- name: Add libopenblas.dll
|
- name: Add libopenblas.dll
|
||||||
id: add_libopenblas_dll
|
id: add_libopenblas_dll
|
||||||
if: ${{ matrix.build == 'openblas' }}
|
if: ${{ matrix.build == 'openblas-x64' }}
|
||||||
run: |
|
run: |
|
||||||
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
|
cp $env:RUNNER_TEMP/openblas/bin/libopenblas.dll ./build/bin/Release/openblas.dll
|
||||||
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
|
cp $env:RUNNER_TEMP/OpenBLAS.LICENSE.txt ./build/bin/Release/OpenBLAS-${env:OPENBLAS_VERSION}.txt
|
||||||
|
|
||||||
- name: Check AVX512F support
|
- name: Check AVX512F support
|
||||||
id: check_avx512f
|
id: check_avx512f
|
||||||
if: ${{ matrix.build == 'avx512' }}
|
if: ${{ matrix.build == 'avx512-x64' }}
|
||||||
continue-on-error: true
|
continue-on-error: true
|
||||||
run: |
|
run: |
|
||||||
cd build
|
cd build
|
||||||
@ -776,14 +806,14 @@ jobs:
|
|||||||
- name: Test
|
- name: Test
|
||||||
id: cmake_test
|
id: cmake_test
|
||||||
# not all machines have native AVX-512
|
# not all machines have native AVX-512
|
||||||
if: ${{ matrix.build != 'arm64' && matrix.build != 'clblast' && matrix.build != 'kompute' && matrix.build != 'vulkan' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
|
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'clblast-x64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
|
||||||
run: |
|
run: |
|
||||||
cd build
|
cd build
|
||||||
ctest -L main -C Release --verbose --timeout 900
|
ctest -L main -C Release --verbose --timeout 900
|
||||||
|
|
||||||
- name: Test (Intel SDE)
|
- name: Test (Intel SDE)
|
||||||
id: cmake_test_sde
|
id: cmake_test_sde
|
||||||
if: ${{ matrix.build == 'avx512' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
|
if: ${{ matrix.build == 'avx512-x64' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation
|
||||||
run: |
|
run: |
|
||||||
curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz"
|
curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz"
|
||||||
# for some weird reason windows tar doesn't like sde tar.xz
|
# for some weird reason windows tar doesn't like sde tar.xz
|
||||||
@ -811,14 +841,14 @@ jobs:
|
|||||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||||
run: |
|
run: |
|
||||||
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
|
Copy-Item LICENSE .\build\bin\Release\llama.cpp.txt
|
||||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip .\build\bin\Release\*
|
7z a llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip .\build\bin\Release\*
|
||||||
|
|
||||||
- name: Upload artifacts
|
- name: Upload artifacts
|
||||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||||
uses: actions/upload-artifact@v4
|
uses: actions/upload-artifact@v4
|
||||||
with:
|
with:
|
||||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}-x64.zip
|
path: llama-${{ steps.tag.outputs.name }}-bin-win-${{ matrix.build }}.zip
|
||||||
name: llama-bin-win-${{ matrix.build }}-x64.zip
|
name: llama-bin-win-${{ matrix.build }}.zip
|
||||||
|
|
||||||
windows-latest-cmake-cuda:
|
windows-latest-cmake-cuda:
|
||||||
runs-on: windows-latest
|
runs-on: windows-latest
|
||||||
@ -898,9 +928,9 @@ jobs:
|
|||||||
shell: bash
|
shell: bash
|
||||||
|
|
||||||
env:
|
env:
|
||||||
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/62641e01-1e8d-4ace-91d6-ae03f7f8a71f/w_BaseKit_p_2024.0.0.49563_offline.exe
|
WINDOWS_BASEKIT_URL: https://registrationcenter-download.intel.com/akdlm/IRC_NAS/7dff44ba-e3af-4448-841c-0d616c8da6e7/w_BaseKit_p_2024.1.0.595_offline.exe
|
||||||
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
|
WINDOWS_DPCPP_MKL: intel.oneapi.win.cpp-dpcpp-common:intel.oneapi.win.mkl.devel
|
||||||
|
ONEAPI_ROOT: "C:/Program Files (x86)/Intel/oneAPI"
|
||||||
steps:
|
steps:
|
||||||
- name: Clone
|
- name: Clone
|
||||||
id: checkout
|
id: checkout
|
||||||
@ -932,6 +962,17 @@ jobs:
|
|||||||
id: pack_artifacts
|
id: pack_artifacts
|
||||||
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
if: ${{ ( github.event_name == 'push' && github.ref == 'refs/heads/master' ) || github.event.inputs.create_release == 'true' }}
|
||||||
run: |
|
run: |
|
||||||
|
echo "cp oneAPI running time dll files in ${{ env.ONEAPI_ROOT }} to ./build/bin"
|
||||||
|
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_sycl_blas.4.dll" ./build/bin
|
||||||
|
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_core.2.dll" ./build/bin
|
||||||
|
cp "${{ env.ONEAPI_ROOT }}/mkl/latest/bin/mkl_tbb_thread.2.dll" ./build/bin
|
||||||
|
|
||||||
|
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_win_proxy_loader.dll" ./build/bin
|
||||||
|
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/pi_level_zero.dll" ./build/bin
|
||||||
|
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/sycl7.dll" ./build/bin
|
||||||
|
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/svml_dispmd.dll" ./build/bin
|
||||||
|
cp "${{ env.ONEAPI_ROOT }}/compiler/latest/bin/libmmd.dll" ./build/bin
|
||||||
|
echo "cp oneAPI running time dll files to ./build/bin done"
|
||||||
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
|
7z a llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip ./build/bin/*
|
||||||
|
|
||||||
- name: Upload artifacts
|
- name: Upload artifacts
|
||||||
@ -941,6 +982,37 @@ jobs:
|
|||||||
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
|
path: llama-${{ steps.tag.outputs.name }}-bin-win-sycl-x64.zip
|
||||||
name: llama-bin-win-sycl-x64.zip
|
name: llama-bin-win-sycl-x64.zip
|
||||||
|
|
||||||
|
windows-latest-cmake-hip:
|
||||||
|
runs-on: windows-latest
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- name: Clone
|
||||||
|
id: checkout
|
||||||
|
uses: actions/checkout@v3
|
||||||
|
|
||||||
|
- name: Install
|
||||||
|
id: depends
|
||||||
|
run: |
|
||||||
|
$ErrorActionPreference = "Stop"
|
||||||
|
write-host "Downloading AMD HIP SDK Installer"
|
||||||
|
Invoke-WebRequest -Uri "https://download.amd.com/developer/eula/rocm-hub/AMD-Software-PRO-Edition-23.Q4-WinSvr2022-For-HIP.exe" -OutFile "${env:RUNNER_TEMP}\rocm-install.exe"
|
||||||
|
write-host "Installing AMD HIP SDK"
|
||||||
|
Start-Process "${env:RUNNER_TEMP}\rocm-install.exe" -ArgumentList '-install' -NoNewWindow -Wait
|
||||||
|
write-host "Completed AMD HIP SDK installation"
|
||||||
|
|
||||||
|
- name: Verify ROCm
|
||||||
|
id: verify
|
||||||
|
run: |
|
||||||
|
& 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' --version
|
||||||
|
|
||||||
|
- name: Build
|
||||||
|
id: cmake_build
|
||||||
|
run: |
|
||||||
|
$env:HIP_PATH=$(Resolve-Path 'C:\Program Files\AMD\ROCm\*\bin\clang.exe' | split-path | split-path)
|
||||||
|
$env:CMAKE_PREFIX_PATH="${env:HIP_PATH}"
|
||||||
|
cmake -G "Unix Makefiles" -B build -S . -DCMAKE_C_COMPILER="${env:HIP_PATH}\bin\clang.exe" -DCMAKE_CXX_COMPILER="${env:HIP_PATH}\bin\clang++.exe" -DLLAMA_HIPBLAS=ON
|
||||||
|
cmake --build build --config Release
|
||||||
|
|
||||||
ios-xcode-build:
|
ios-xcode-build:
|
||||||
runs-on: macos-latest
|
runs-on: macos-latest
|
||||||
|
|
||||||
|
17
.github/workflows/labeler.yml
vendored
Normal file
17
.github/workflows/labeler.yml
vendored
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
name: "Pull Request Labeler"
|
||||||
|
on:
|
||||||
|
- pull_request_target
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
labeler:
|
||||||
|
permissions:
|
||||||
|
contents: read
|
||||||
|
pull-requests: write
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
repository: "ggerganov/llama.cpp"
|
||||||
|
- uses: actions/labeler@v5
|
||||||
|
with:
|
||||||
|
configuration-path: '.github/labeler.yml'
|
8
.github/workflows/server.yml
vendored
8
.github/workflows/server.yml
vendored
@ -32,10 +32,8 @@ jobs:
|
|||||||
|
|
||||||
strategy:
|
strategy:
|
||||||
matrix:
|
matrix:
|
||||||
# TODO: temporary disabled due to linux kernel issues
|
sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
||||||
#sanitizer: [ADDRESS, THREAD, UNDEFINED]
|
build_type: [RelWithDebInfo]
|
||||||
sanitizer: [UNDEFINED]
|
|
||||||
build_type: [Debug]
|
|
||||||
include:
|
include:
|
||||||
- build_type: Release
|
- build_type: Release
|
||||||
sanitizer: ""
|
sanitizer: ""
|
||||||
@ -102,10 +100,8 @@ jobs:
|
|||||||
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
-DLLAMA_SANITIZE_${{ matrix.sanitizer }}=ON ;
|
||||||
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target server
|
cmake --build build --config ${{ matrix.build_type }} -j $(nproc) --target server
|
||||||
|
|
||||||
|
|
||||||
- name: Tests
|
- name: Tests
|
||||||
id: server_integration_tests
|
id: server_integration_tests
|
||||||
if: ${{ !matrix.disabled_on_pr || !github.event.pull_request }}
|
|
||||||
run: |
|
run: |
|
||||||
cd examples/server/tests
|
cd examples/server/tests
|
||||||
PORT=8888 ./tests.sh
|
PORT=8888 ./tests.sh
|
||||||
|
29
.github/workflows/zig-build.yml
vendored
29
.github/workflows/zig-build.yml
vendored
@ -1,29 +0,0 @@
|
|||||||
name: Zig CI
|
|
||||||
|
|
||||||
on:
|
|
||||||
pull_request:
|
|
||||||
push:
|
|
||||||
branches:
|
|
||||||
- master
|
|
||||||
|
|
||||||
concurrency:
|
|
||||||
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
|
|
||||||
cancel-in-progress: true
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
build:
|
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
runs-on: [ubuntu-latest, macos-latest, windows-latest]
|
|
||||||
runs-on: ${{ matrix.runs-on }}
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v4
|
|
||||||
with:
|
|
||||||
submodules: recursive
|
|
||||||
fetch-depth: 0
|
|
||||||
- uses: goto-bus-stop/setup-zig@v2
|
|
||||||
with:
|
|
||||||
version: 0.11.0
|
|
||||||
- name: Build Summary
|
|
||||||
run: zig build --summary all -freference-trace
|
|
102
CMakeLists.txt
102
CMakeLists.txt
@ -77,6 +77,7 @@ option(LLAMA_AVX2 "llama: enable AVX2"
|
|||||||
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
|
option(LLAMA_AVX512 "llama: enable AVX512" OFF)
|
||||||
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
|
option(LLAMA_AVX512_VBMI "llama: enable AVX512-VBMI" OFF)
|
||||||
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
|
option(LLAMA_AVX512_VNNI "llama: enable AVX512-VNNI" OFF)
|
||||||
|
option(LLAMA_AVX512_BF16 "llama: enable AVX512-BF16" OFF)
|
||||||
option(LLAMA_FMA "llama: enable FMA" ${INS_ENB})
|
option(LLAMA_FMA "llama: enable FMA" ${INS_ENB})
|
||||||
# in MSVC F16C is implied with AVX2/AVX512
|
# in MSVC F16C is implied with AVX2/AVX512
|
||||||
if (NOT MSVC)
|
if (NOT MSVC)
|
||||||
@ -122,7 +123,7 @@ set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING
|
|||||||
"llama: metal minimum macOS version")
|
"llama: metal minimum macOS version")
|
||||||
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
|
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
|
||||||
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
|
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
|
||||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
option(LLAMA_RPC "llama: use RPC" OFF)
|
||||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||||
option(LLAMA_SYCL "llama: use SYCL" OFF)
|
option(LLAMA_SYCL "llama: use SYCL" OFF)
|
||||||
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
|
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
|
||||||
@ -133,6 +134,8 @@ set(LLAMA_SCHED_MAX_COPIES "4" CACHE STRING "llama: max input copies for pipeli
|
|||||||
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STANDALONE})
|
||||||
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE})
|
||||||
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
|
option(LLAMA_BUILD_SERVER "llama: build server example" ON)
|
||||||
|
option(LLAMA_LASX "llama: enable lasx" ON)
|
||||||
|
option(LLAMA_LSX "llama: enable lsx" ON)
|
||||||
|
|
||||||
# add perf arguments
|
# add perf arguments
|
||||||
option(LLAMA_PERF "llama: enable perf" OFF)
|
option(LLAMA_PERF "llama: enable perf" OFF)
|
||||||
@ -465,33 +468,15 @@ if (LLAMA_CUDA)
|
|||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (LLAMA_MPI)
|
if (LLAMA_RPC)
|
||||||
cmake_minimum_required(VERSION 3.10)
|
add_compile_definitions(GGML_USE_RPC)
|
||||||
find_package(MPI)
|
|
||||||
if (MPI_C_FOUND)
|
|
||||||
message(STATUS "MPI found")
|
|
||||||
|
|
||||||
set(GGML_HEADERS_MPI ggml-mpi.h)
|
if (WIN32)
|
||||||
set(GGML_SOURCES_MPI ggml-mpi.c)
|
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ws2_32)
|
||||||
|
|
||||||
add_compile_definitions(GGML_USE_MPI)
|
|
||||||
add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS})
|
|
||||||
|
|
||||||
if (NOT MSVC)
|
|
||||||
add_compile_options(-Wno-cast-qual)
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES})
|
set(GGML_HEADERS_RPC ggml-rpc.h)
|
||||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS})
|
set(GGML_SOURCES_RPC ggml-rpc.cpp)
|
||||||
|
|
||||||
# Even if you're only using the C header, C++ programs may bring in MPI
|
|
||||||
# C++ functions, so more linkage is needed
|
|
||||||
if (MPI_CXX_FOUND)
|
|
||||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_CXX_LIBRARIES})
|
|
||||||
endif()
|
|
||||||
else()
|
|
||||||
message(WARNING "MPI not found")
|
|
||||||
endif()
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (LLAMA_CLBLAST)
|
if (LLAMA_CLBLAST)
|
||||||
@ -520,6 +505,12 @@ if (LLAMA_VULKAN)
|
|||||||
|
|
||||||
add_compile_definitions(GGML_USE_VULKAN)
|
add_compile_definitions(GGML_USE_VULKAN)
|
||||||
|
|
||||||
|
# Workaround to the "can't dereference invalidated vector iterator" bug in clang-cl debug build
|
||||||
|
# Posssibly relevant: https://stackoverflow.com/questions/74748276/visual-studio-no-displays-the-correct-length-of-stdvector
|
||||||
|
if (MSVC AND CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
|
||||||
|
add_compile_definitions(_ITERATOR_DEBUG_LEVEL=0)
|
||||||
|
endif()
|
||||||
|
|
||||||
if (LLAMA_VULKAN_CHECK_RESULTS)
|
if (LLAMA_VULKAN_CHECK_RESULTS)
|
||||||
add_compile_definitions(GGML_VULKAN_CHECK_RESULTS)
|
add_compile_definitions(GGML_VULKAN_CHECK_RESULTS)
|
||||||
endif()
|
endif()
|
||||||
@ -543,16 +534,37 @@ if (LLAMA_VULKAN)
|
|||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (LLAMA_HIPBLAS)
|
if (LLAMA_HIPBLAS)
|
||||||
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
|
if ($ENV{ROCM_PATH})
|
||||||
|
set(ROCM_PATH $ENV{ROCM_PATH})
|
||||||
|
else()
|
||||||
|
set(ROCM_PATH /opt/rocm)
|
||||||
|
endif()
|
||||||
|
list(APPEND CMAKE_PREFIX_PATH ${ROCM_PATH})
|
||||||
|
|
||||||
if (NOT ${CMAKE_C_COMPILER_ID} MATCHES "Clang")
|
# CMake on Windows doesn't support the HIP language yet
|
||||||
message(WARNING "Only LLVM is supported for HIP, hint: CC=/opt/rocm/llvm/bin/clang")
|
if(WIN32)
|
||||||
|
set(CXX_IS_HIPCC TRUE)
|
||||||
|
else()
|
||||||
|
string(REGEX MATCH "hipcc(\.bat)?$" CXX_IS_HIPCC "${CMAKE_CXX_COMPILER}")
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
if(CXX_IS_HIPCC)
|
||||||
|
if(LINUX)
|
||||||
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
if (NOT ${CMAKE_CXX_COMPILER_ID} MATCHES "Clang")
|
||||||
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
message(WARNING "Only LLVM is supported for HIP, hint: CXX=/opt/rocm/llvm/bin/clang++")
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
message(WARNING "Setting hipcc as the C++ compiler is legacy behavior."
|
||||||
|
" Prefer setting the HIP compiler directly. See README for details.")
|
||||||
|
endif()
|
||||||
|
else()
|
||||||
|
# Forward AMDGPU_TARGETS to CMAKE_HIP_ARCHITECTURES.
|
||||||
|
if(AMDGPU_TARGETS AND NOT CMAKE_HIP_ARCHITECTURES)
|
||||||
|
set(CMAKE_HIP_ARCHITECTURES ${AMDGPU_TARGETS})
|
||||||
|
endif()
|
||||||
|
cmake_minimum_required(VERSION 3.21)
|
||||||
|
enable_language(HIP)
|
||||||
|
endif()
|
||||||
find_package(hip REQUIRED)
|
find_package(hip REQUIRED)
|
||||||
find_package(hipblas REQUIRED)
|
find_package(hipblas REQUIRED)
|
||||||
find_package(rocblas REQUIRED)
|
find_package(rocblas REQUIRED)
|
||||||
@ -586,13 +598,18 @@ if (LLAMA_HIPBLAS)
|
|||||||
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||||
|
|
||||||
|
if (CXX_IS_HIPCC)
|
||||||
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE CXX)
|
||||||
|
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} hip::device)
|
||||||
|
else()
|
||||||
|
set_source_files_properties(${GGML_SOURCES_ROCM} PROPERTIES LANGUAGE HIP)
|
||||||
|
endif()
|
||||||
|
|
||||||
if (LLAMA_STATIC)
|
if (LLAMA_STATIC)
|
||||||
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
message(FATAL_ERROR "Static linking not supported for HIP/ROCm")
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
|
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (LLAMA_SYCL)
|
if (LLAMA_SYCL)
|
||||||
@ -995,6 +1012,11 @@ if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STR
|
|||||||
if (GGML_COMPILER_SUPPORT_DOTPROD)
|
if (GGML_COMPILER_SUPPORT_DOTPROD)
|
||||||
add_compile_definitions(__ARM_FEATURE_DOTPROD)
|
add_compile_definitions(__ARM_FEATURE_DOTPROD)
|
||||||
endif ()
|
endif ()
|
||||||
|
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { int8x16_t _a, _b; int32x4_t _s = vmlaq_f32(_s, _a, _b); return 0; }" GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||||
|
if (GGML_COMPILER_SUPPORT_MATMUL_INT8)
|
||||||
|
add_compile_definitions(__ARM_FEATURE_MATMUL_INT8)
|
||||||
|
endif ()
|
||||||
|
|
||||||
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
check_cxx_source_compiles("#include <arm_neon.h>\nint main() { float16_t _a; float16x8_t _s = vdupq_n_f16(_a); return 0; }" GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||||
if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
if (GGML_COMPILER_SUPPORT_FP16_VECTOR_ARITHMETIC)
|
||||||
add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
|
||||||
@ -1047,6 +1069,10 @@ elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LW
|
|||||||
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
|
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512VNNI__>)
|
||||||
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512VNNI__>)
|
||||||
endif()
|
endif()
|
||||||
|
if (LLAMA_AVX512_BF16)
|
||||||
|
add_compile_definitions($<$<COMPILE_LANGUAGE:C>:__AVX512BF16__>)
|
||||||
|
add_compile_definitions($<$<COMPILE_LANGUAGE:CXX>:__AVX512BF16__>)
|
||||||
|
endif()
|
||||||
elseif (LLAMA_AVX2)
|
elseif (LLAMA_AVX2)
|
||||||
list(APPEND ARCH_FLAGS /arch:AVX2)
|
list(APPEND ARCH_FLAGS /arch:AVX2)
|
||||||
elseif (LLAMA_AVX)
|
elseif (LLAMA_AVX)
|
||||||
@ -1078,6 +1104,9 @@ elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LW
|
|||||||
if (LLAMA_AVX512_VNNI)
|
if (LLAMA_AVX512_VNNI)
|
||||||
list(APPEND ARCH_FLAGS -mavx512vnni)
|
list(APPEND ARCH_FLAGS -mavx512vnni)
|
||||||
endif()
|
endif()
|
||||||
|
if (LLAMA_AVX512_BF16)
|
||||||
|
list(APPEND ARCH_FLAGS -mavx512bf16)
|
||||||
|
endif()
|
||||||
endif()
|
endif()
|
||||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
||||||
message(STATUS "PowerPC detected")
|
message(STATUS "PowerPC detected")
|
||||||
@ -1087,6 +1116,17 @@ elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "ppc64")
|
|||||||
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native)
|
list(APPEND ARCH_FLAGS -mcpu=native -mtune=native)
|
||||||
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
|
#TODO: Add targets for Power8/Power9 (Altivec/VSX) and Power10(MMA) and query for big endian systems (ppc64/le/be)
|
||||||
endif()
|
endif()
|
||||||
|
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
|
||||||
|
message(STATUS "loongarch64 detected")
|
||||||
|
|
||||||
|
list(APPEND ARCH_FLAGS -march=loongarch64)
|
||||||
|
if (LLAMA_LASX)
|
||||||
|
list(APPEND ARCH_FLAGS -mlasx)
|
||||||
|
endif()
|
||||||
|
if (LLAMA_LSX)
|
||||||
|
list(APPEND ARCH_FLAGS -mlsx)
|
||||||
|
endif()
|
||||||
|
|
||||||
else()
|
else()
|
||||||
message(STATUS "Unknown architecture")
|
message(STATUS "Unknown architecture")
|
||||||
endif()
|
endif()
|
||||||
@ -1175,7 +1215,7 @@ add_library(ggml OBJECT
|
|||||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
${GGML_SOURCES_RPC} ${GGML_HEADERS_RPC}
|
||||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||||
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
|
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
|
||||||
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
|
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
|
||||||
@ -1262,7 +1302,7 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
|
|||||||
|
|
||||||
set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h"
|
set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h"
|
||||||
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}"
|
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}"
|
||||||
"${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}")
|
"${GGML_HEADERS_METAL}" "${GGML_HEADERS_EXTRA}")
|
||||||
|
|
||||||
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||||
install(TARGETS ggml PUBLIC_HEADER)
|
install(TARGETS ggml PUBLIC_HEADER)
|
||||||
|
45
CMakePresets.json
Normal file
45
CMakePresets.json
Normal file
@ -0,0 +1,45 @@
|
|||||||
|
{
|
||||||
|
"version": 4,
|
||||||
|
"configurePresets": [
|
||||||
|
{
|
||||||
|
"name": "base",
|
||||||
|
"hidden": true,
|
||||||
|
"generator": "Ninja",
|
||||||
|
"binaryDir": "${sourceDir}/build-${presetName}",
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_EXPORT_COMPILE_COMMANDS": "ON",
|
||||||
|
"CMAKE_INSTALL_RPATH": "$ORIGIN;$ORIGIN/.."
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
{ "name": "debug", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "Debug" } },
|
||||||
|
{ "name": "release", "hidden": true, "cacheVariables": { "CMAKE_BUILD_TYPE": "RelWithDebInfo" } },
|
||||||
|
{ "name": "static", "hidden": true, "cacheVariables": { "LLAMA_STATIC": "ON" } },
|
||||||
|
|
||||||
|
{
|
||||||
|
"name": "arm64-windows-msvc", "hidden": true,
|
||||||
|
"architecture": { "value": "arm64", "strategy": "external" },
|
||||||
|
"toolset": { "value": "host=x86_64", "strategy": "external" },
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-msvc.cmake"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
{
|
||||||
|
"name": "arm64-windows-llvm", "hidden": true,
|
||||||
|
"architecture": { "value": "arm64", "strategy": "external" },
|
||||||
|
"toolset": { "value": "host=x86_64", "strategy": "external" },
|
||||||
|
"cacheVariables": {
|
||||||
|
"CMAKE_TOOLCHAIN_FILE": "${sourceDir}/cmake/arm64-windows-llvm.cmake"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
|
||||||
|
{ "name": "arm64-windows-llvm-debug" , "inherits": [ "base", "arm64-windows-llvm", "debug" ] },
|
||||||
|
{ "name": "arm64-windows-llvm-release", "inherits": [ "base", "arm64-windows-llvm", "release" ] },
|
||||||
|
{ "name": "arm64-windows-llvm+static-release", "inherits": [ "base", "arm64-windows-llvm", "release", "static" ] },
|
||||||
|
|
||||||
|
{ "name": "arm64-windows-msvc-debug" , "inherits": [ "base", "arm64-windows-msvc", "debug" ] },
|
||||||
|
{ "name": "arm64-windows-msvc-release", "inherits": [ "base", "arm64-windows-msvc", "release" ] },
|
||||||
|
{ "name": "arm64-windows-msvc+static-release", "inherits": [ "base", "arm64-windows-msvc", "release", "static" ] }
|
||||||
|
]
|
||||||
|
}
|
23
Makefile
23
Makefile
@ -379,6 +379,11 @@ ifneq ($(filter ppc64le%,$(UNAME_M)),)
|
|||||||
CUDA_POWER_ARCH = 1
|
CUDA_POWER_ARCH = 1
|
||||||
endif
|
endif
|
||||||
|
|
||||||
|
ifneq ($(filter loongarch64%,$(UNAME_M)),)
|
||||||
|
MK_CFLAGS += -mlasx
|
||||||
|
MK_CXXFLAGS += -mlasx
|
||||||
|
endif
|
||||||
|
|
||||||
else
|
else
|
||||||
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
|
MK_CFLAGS += -march=rv64gcv -mabi=lp64d
|
||||||
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
|
||||||
@ -399,13 +404,6 @@ ifndef LLAMA_NO_ACCELERATE
|
|||||||
endif
|
endif
|
||||||
endif # LLAMA_NO_ACCELERATE
|
endif # LLAMA_NO_ACCELERATE
|
||||||
|
|
||||||
ifdef LLAMA_MPI
|
|
||||||
MK_CPPFLAGS += -DGGML_USE_MPI
|
|
||||||
MK_CFLAGS += -Wno-cast-qual
|
|
||||||
MK_CXXFLAGS += -Wno-cast-qual
|
|
||||||
OBJS += ggml-mpi.o
|
|
||||||
endif # LLAMA_MPI
|
|
||||||
|
|
||||||
ifdef LLAMA_OPENBLAS
|
ifdef LLAMA_OPENBLAS
|
||||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas)
|
MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas)
|
||||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
|
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
|
||||||
@ -560,10 +558,10 @@ endif # LLAMA_VULKAN
|
|||||||
ifdef LLAMA_HIPBLAS
|
ifdef LLAMA_HIPBLAS
|
||||||
ifeq ($(wildcard /opt/rocm),)
|
ifeq ($(wildcard /opt/rocm),)
|
||||||
ROCM_PATH ?= /usr
|
ROCM_PATH ?= /usr
|
||||||
GPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
|
AMDGPU_TARGETS ?= $(shell $(shell which amdgpu-arch))
|
||||||
else
|
else
|
||||||
ROCM_PATH ?= /opt/rocm
|
ROCM_PATH ?= /opt/rocm
|
||||||
GPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
AMDGPU_TARGETS ?= $(shell $(ROCM_PATH)/llvm/bin/amdgpu-arch)
|
||||||
endif
|
endif
|
||||||
HIPCC ?= $(CCACHE) $(ROCM_PATH)/bin/hipcc
|
HIPCC ?= $(CCACHE) $(ROCM_PATH)/bin/hipcc
|
||||||
LLAMA_CUDA_DMMV_X ?= 32
|
LLAMA_CUDA_DMMV_X ?= 32
|
||||||
@ -575,7 +573,7 @@ ifdef LLAMA_HIP_UMA
|
|||||||
endif # LLAMA_HIP_UMA
|
endif # LLAMA_HIP_UMA
|
||||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||||
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||||
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS))
|
||||||
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||||
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||||
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
||||||
@ -629,11 +627,6 @@ ggml-metal-embed.o: ggml-metal.metal ggml-common.h
|
|||||||
endif
|
endif
|
||||||
endif # LLAMA_METAL
|
endif # LLAMA_METAL
|
||||||
|
|
||||||
ifdef LLAMA_MPI
|
|
||||||
ggml-mpi.o: ggml-mpi.c ggml-mpi.h
|
|
||||||
$(CC) $(CFLAGS) -c $< -o $@
|
|
||||||
endif # LLAMA_MPI
|
|
||||||
|
|
||||||
ifndef LLAMA_NO_LLAMAFILE
|
ifndef LLAMA_NO_LLAMAFILE
|
||||||
sgemm.o: sgemm.cpp sgemm.h ggml.h
|
sgemm.o: sgemm.cpp sgemm.h ggml.h
|
||||||
$(CXX) $(CXXFLAGS) -c $< -o $@
|
$(CXX) $(CXXFLAGS) -c $< -o $@
|
||||||
|
72
README.md
72
README.md
@ -107,7 +107,6 @@ Typically finetunes of the base models below are supported as well.
|
|||||||
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
|
- [X] [Aquila 1 & 2](https://huggingface.co/models?search=BAAI/Aquila)
|
||||||
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
- [X] [Starcoder models](https://github.com/ggerganov/llama.cpp/pull/3187)
|
||||||
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
- [X] [Refact](https://huggingface.co/smallcloudai/Refact-1_6B-fim)
|
||||||
- [X] [Persimmon 8B](https://github.com/ggerganov/llama.cpp/pull/3410)
|
|
||||||
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
- [X] [MPT](https://github.com/ggerganov/llama.cpp/pull/3417)
|
||||||
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
- [X] [Bloom](https://github.com/ggerganov/llama.cpp/pull/3553)
|
||||||
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
|
- [x] [Yi models](https://huggingface.co/models?search=01-ai/Yi)
|
||||||
@ -301,7 +300,7 @@ cd llama.cpp
|
|||||||
|
|
||||||
### Build
|
### Build
|
||||||
|
|
||||||
In order to build llama.cpp you have three different options.
|
In order to build llama.cpp you have four different options.
|
||||||
|
|
||||||
- Using `make`:
|
- Using `make`:
|
||||||
- On Linux or MacOS:
|
- On Linux or MacOS:
|
||||||
@ -382,45 +381,6 @@ To disable the Metal build at compile time use the `LLAMA_NO_METAL=1` flag or th
|
|||||||
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
|
When built with Metal support, you can explicitly disable GPU inference with the `--n-gpu-layers|-ngl 0` command-line
|
||||||
argument.
|
argument.
|
||||||
|
|
||||||
### MPI Build
|
|
||||||
|
|
||||||
MPI lets you distribute the computation over a cluster of machines. Because of the serial nature of LLM prediction, this won't yield any end-to-end speed-ups, but it will let you run larger models than would otherwise fit into RAM on a single machine.
|
|
||||||
|
|
||||||
First you will need MPI libraries installed on your system. The two most popular (only?) options are [MPICH](https://www.mpich.org) and [OpenMPI](https://www.open-mpi.org). Either can be installed with a package manager (`apt`, Homebrew, MacPorts, etc).
|
|
||||||
|
|
||||||
Next you will need to build the project with `LLAMA_MPI` set to true on all machines; if you're building with `make`, you will also need to specify an MPI-capable compiler (when building with CMake, this is configured automatically):
|
|
||||||
|
|
||||||
- Using `make`:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
make CC=mpicc CXX=mpicxx LLAMA_MPI=1
|
|
||||||
```
|
|
||||||
|
|
||||||
- Using `CMake`:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
cmake -S . -B build -DLLAMA_MPI=ON
|
|
||||||
```
|
|
||||||
|
|
||||||
Once the programs are built, download/convert the weights on all of the machines in your cluster. The paths to the weights and programs should be identical on all machines.
|
|
||||||
|
|
||||||
Next, ensure password-less SSH access to each machine from the primary host, and create a `hostfile` with a list of the hostnames and their relative "weights" (slots). If you want to use localhost for computation, use its local subnet IP address rather than the loopback address or "localhost".
|
|
||||||
|
|
||||||
Here is an example hostfile:
|
|
||||||
|
|
||||||
```
|
|
||||||
192.168.0.1:2
|
|
||||||
malvolio.local:1
|
|
||||||
```
|
|
||||||
|
|
||||||
The above will distribute the computation across 2 processes on the first host and 1 process on the second host. Each process will use roughly an equal amount of RAM. Try to keep these numbers small, as inter-process (intra-host) communication is expensive.
|
|
||||||
|
|
||||||
Finally, you're ready to run a computation using `mpirun`:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
mpirun -hostfile hostfile -n 3 ./main -m ./models/7B/ggml-model-q4_0.gguf -n 128
|
|
||||||
```
|
|
||||||
|
|
||||||
### BLAS Build
|
### BLAS Build
|
||||||
|
|
||||||
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use:
|
Building the program with BLAS support may lead to some performance improvements in prompt processing using batch sizes higher than 32 (the default is 512). Support with CPU-only BLAS implementations doesn't affect the normal generation performance. We may see generation performance improvements with GPU-involved BLAS implementations, e.g. cuBLAS, hipBLAS and CLBlast. There are currently several different BLAS implementations available for build and use:
|
||||||
@ -528,13 +488,28 @@ Building the program with BLAS support may lead to some performance improvements
|
|||||||
```
|
```
|
||||||
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
|
- Using `CMake` for Linux (assuming a gfx1030-compatible AMD GPU):
|
||||||
```bash
|
```bash
|
||||||
CC=/opt/rocm/llvm/bin/clang CXX=/opt/rocm/llvm/bin/clang++ \
|
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -R)" \
|
||||||
cmake -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
cmake -S . -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||||
&& cmake --build build --config Release -- -j 16
|
&& cmake --build build --config Release -- -j 16
|
||||||
```
|
```
|
||||||
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON"`.
|
On Linux it is also possible to use unified memory architecture (UMA) to share main memory between the CPU and integrated GPU by setting `-DLLAMA_HIP_UMA=ON`.
|
||||||
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
However, this hurts performance for non-integrated GPUs (but enables working with integrated GPUs).
|
||||||
|
|
||||||
|
Note that if you get the following error:
|
||||||
|
```
|
||||||
|
clang: error: cannot find ROCm device library; provide its path via '--rocm-path' or '--rocm-device-lib-path', or pass '-nogpulib' to build without ROCm device library
|
||||||
|
```
|
||||||
|
Try searching for a directory under `HIP_PATH` that contains the file
|
||||||
|
`oclc_abi_version_400.bc`. Then, add the following to the start of the
|
||||||
|
command: `HIP_DEVICE_LIB_PATH=<directory-you-just-found>`, so something
|
||||||
|
like:
|
||||||
|
```bash
|
||||||
|
HIPCXX="$(hipconfig -l)/clang" HIP_PATH="$(hipconfig -p)" \
|
||||||
|
HIP_DEVICE_LIB_PATH=<directory-you-just-found> \
|
||||||
|
cmake -S . -B build -DLLAMA_HIPBLAS=ON -DAMDGPU_TARGETS=gfx1030 -DCMAKE_BUILD_TYPE=Release \
|
||||||
|
&& cmake --build build -- -j 16
|
||||||
|
```
|
||||||
|
|
||||||
- Using `make` (example for target gfx1030, build with 16 CPU threads):
|
- Using `make` (example for target gfx1030, build with 16 CPU threads):
|
||||||
```bash
|
```bash
|
||||||
make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
|
make -j16 LLAMA_HIPBLAS=1 LLAMA_HIP_UMA=1 AMDGPU_TARGETS=gfx1030
|
||||||
@ -543,10 +518,8 @@ Building the program with BLAS support may lead to some performance improvements
|
|||||||
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
- Using `CMake` for Windows (using x64 Native Tools Command Prompt for VS, and assuming a gfx1100-compatible AMD GPU):
|
||||||
```bash
|
```bash
|
||||||
set PATH=%HIP_PATH%\bin;%PATH%
|
set PATH=%HIP_PATH%\bin;%PATH%
|
||||||
mkdir build
|
cmake -S . -B build -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release
|
||||||
cd build
|
cmake --build build
|
||||||
cmake -G Ninja -DAMDGPU_TARGETS=gfx1100 -DLLAMA_HIPBLAS=ON -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_BUILD_TYPE=Release ..
|
|
||||||
cmake --build .
|
|
||||||
```
|
```
|
||||||
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
Make sure that `AMDGPU_TARGETS` is set to the GPU arch you want to compile for. The above example uses `gfx1100` that corresponds to Radeon RX 7900XTX/XT/GRE. You can find a list of targets [here](https://llvm.org/docs/AMDGPUUsage.html#processors)
|
||||||
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
|
Find your gpu version string by matching the most significant version information from `rocminfo | grep gfx | head -1 | awk '{print $2}'` with the list of processors, e.g. `gfx1035` maps to `gfx1030`.
|
||||||
@ -712,6 +685,9 @@ Building the program with BLAS support may lead to some performance improvements
|
|||||||
|
|
||||||
### Prepare and Quantize
|
### Prepare and Quantize
|
||||||
|
|
||||||
|
> [!NOTE]
|
||||||
|
> You can use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space on Hugging Face to quantise your model weights without any setup too. It is synced from `llama.cpp` main every 6 hours.
|
||||||
|
|
||||||
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
|
To obtain the official LLaMA 2 weights please see the <a href="#obtaining-and-using-the-facebook-llama-2-model">Obtaining and using the Facebook LLaMA 2 model</a> section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
|
||||||
|
|
||||||
Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
|
Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
|
||||||
|
172
build.zig
172
build.zig
@ -1,172 +0,0 @@
|
|||||||
// Compatible with Zig Version 0.11.0
|
|
||||||
const std = @import("std");
|
|
||||||
const ArrayList = std.ArrayList;
|
|
||||||
const Compile = std.Build.Step.Compile;
|
|
||||||
const ConfigHeader = std.Build.Step.ConfigHeader;
|
|
||||||
const Mode = std.builtin.Mode;
|
|
||||||
const CrossTarget = std.zig.CrossTarget;
|
|
||||||
|
|
||||||
const Maker = struct {
|
|
||||||
builder: *std.build.Builder,
|
|
||||||
target: CrossTarget,
|
|
||||||
optimize: Mode,
|
|
||||||
enable_lto: bool,
|
|
||||||
|
|
||||||
include_dirs: ArrayList([]const u8),
|
|
||||||
cflags: ArrayList([]const u8),
|
|
||||||
cxxflags: ArrayList([]const u8),
|
|
||||||
objs: ArrayList(*Compile),
|
|
||||||
|
|
||||||
fn addInclude(m: *Maker, dir: []const u8) !void {
|
|
||||||
try m.include_dirs.append(dir);
|
|
||||||
}
|
|
||||||
fn addProjectInclude(m: *Maker, path: []const []const u8) !void {
|
|
||||||
try m.addInclude(try m.builder.build_root.join(m.builder.allocator, path));
|
|
||||||
}
|
|
||||||
fn addCFlag(m: *Maker, flag: []const u8) !void {
|
|
||||||
try m.cflags.append(flag);
|
|
||||||
}
|
|
||||||
fn addCxxFlag(m: *Maker, flag: []const u8) !void {
|
|
||||||
try m.cxxflags.append(flag);
|
|
||||||
}
|
|
||||||
fn addFlag(m: *Maker, flag: []const u8) !void {
|
|
||||||
try m.addCFlag(flag);
|
|
||||||
try m.addCxxFlag(flag);
|
|
||||||
}
|
|
||||||
|
|
||||||
fn init(builder: *std.build.Builder) !Maker {
|
|
||||||
const target = builder.standardTargetOptions(.{});
|
|
||||||
const zig_version = @import("builtin").zig_version_string;
|
|
||||||
const commit_hash = try std.ChildProcess.exec(
|
|
||||||
.{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } },
|
|
||||||
);
|
|
||||||
try std.fs.cwd().writeFile("common/build-info.cpp", builder.fmt(
|
|
||||||
\\int LLAMA_BUILD_NUMBER = {};
|
|
||||||
\\char const *LLAMA_COMMIT = "{s}";
|
|
||||||
\\char const *LLAMA_COMPILER = "Zig {s}";
|
|
||||||
\\char const *LLAMA_BUILD_TARGET = "{s}";
|
|
||||||
\\
|
|
||||||
, .{ 0, commit_hash.stdout[0 .. commit_hash.stdout.len - 1], zig_version, try target.allocDescription(builder.allocator) }));
|
|
||||||
var m = Maker{
|
|
||||||
.builder = builder,
|
|
||||||
.target = target,
|
|
||||||
.optimize = builder.standardOptimizeOption(.{}),
|
|
||||||
.enable_lto = false,
|
|
||||||
.include_dirs = ArrayList([]const u8).init(builder.allocator),
|
|
||||||
.cflags = ArrayList([]const u8).init(builder.allocator),
|
|
||||||
.cxxflags = ArrayList([]const u8).init(builder.allocator),
|
|
||||||
.objs = ArrayList(*Compile).init(builder.allocator),
|
|
||||||
};
|
|
||||||
|
|
||||||
try m.addCFlag("-std=c11");
|
|
||||||
try m.addCxxFlag("-std=c++11");
|
|
||||||
try m.addProjectInclude(&.{});
|
|
||||||
try m.addProjectInclude(&.{"common"});
|
|
||||||
return m;
|
|
||||||
}
|
|
||||||
|
|
||||||
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
|
|
||||||
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
|
||||||
if (o.target.getAbi() != .msvc)
|
|
||||||
o.defineCMacro("_GNU_SOURCE", null);
|
|
||||||
|
|
||||||
if (std.mem.endsWith(u8, src, ".c")) {
|
|
||||||
o.addCSourceFiles(&.{src}, m.cflags.items);
|
|
||||||
o.linkLibC();
|
|
||||||
} else {
|
|
||||||
o.addCSourceFiles(&.{src}, m.cxxflags.items);
|
|
||||||
if (o.target.getAbi() == .msvc) {
|
|
||||||
o.linkLibC(); // need winsdk + crt
|
|
||||||
} else {
|
|
||||||
// linkLibCpp already add (libc++ + libunwind + libc)
|
|
||||||
o.linkLibCpp();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
|
|
||||||
o.want_lto = m.enable_lto;
|
|
||||||
return o;
|
|
||||||
}
|
|
||||||
|
|
||||||
fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile {
|
|
||||||
const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
|
||||||
e.addCSourceFiles(&.{src}, m.cxxflags.items);
|
|
||||||
for (deps) |d| e.addObject(d);
|
|
||||||
for (m.objs.items) |o| e.addObject(o);
|
|
||||||
for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i });
|
|
||||||
|
|
||||||
// https://github.com/ziglang/zig/issues/15448
|
|
||||||
if (e.target.getAbi() == .msvc) {
|
|
||||||
e.linkLibC(); // need winsdk + crt
|
|
||||||
} else {
|
|
||||||
// linkLibCpp already add (libc++ + libunwind + libc)
|
|
||||||
e.linkLibCpp();
|
|
||||||
}
|
|
||||||
m.builder.installArtifact(e);
|
|
||||||
e.want_lto = m.enable_lto;
|
|
||||||
return e;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
pub fn build(b: *std.build.Builder) !void {
|
|
||||||
var make = try Maker.init(b);
|
|
||||||
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
|
|
||||||
|
|
||||||
const ggml = make.obj("ggml", "ggml.c");
|
|
||||||
const sgemm = make.obj("sgemm", "sgemm.cpp");
|
|
||||||
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
|
|
||||||
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
|
|
||||||
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
|
|
||||||
const unicode = make.obj("unicode", "unicode.cpp");
|
|
||||||
const unicode_data = make.obj("unicode-data", "unicode-data.cpp");
|
|
||||||
const llama = make.obj("llama", "llama.cpp");
|
|
||||||
const buildinfo = make.obj("common", "common/build-info.cpp");
|
|
||||||
const common = make.obj("common", "common/common.cpp");
|
|
||||||
const console = make.obj("console", "common/console.cpp");
|
|
||||||
const sampling = make.obj("sampling", "common/sampling.cpp");
|
|
||||||
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
|
|
||||||
const json_schema_to_grammar = make.obj("json-schema-to-grammar", "common/json-schema-to-grammar.cpp");
|
|
||||||
const train = make.obj("train", "common/train.cpp");
|
|
||||||
const clip = make.obj("clip", "examples/llava/clip.cpp");
|
|
||||||
const llava = make.obj("llava", "examples/llava/llava.cpp");
|
|
||||||
|
|
||||||
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, console, grammar_parser });
|
|
||||||
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
|
||||||
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
|
||||||
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
|
|
||||||
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
|
|
||||||
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
|
|
||||||
|
|
||||||
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, grammar_parser, clip, llava });
|
|
||||||
if (server.target.isWindows()) {
|
|
||||||
server.linkSystemLibrary("ws2_32");
|
|
||||||
}
|
|
||||||
|
|
||||||
const server_assets = [_][]const u8{ "index.html", "index.js", "completion.js", "json-schema-to-grammar.mjs" };
|
|
||||||
for (server_assets) |asset| {
|
|
||||||
const input_path = b.fmt("examples/server/public/{s}", .{asset});
|
|
||||||
const output_path = b.fmt("examples/server/{s}.hpp", .{asset});
|
|
||||||
|
|
||||||
// Portable equivalent of `b.addSystemCommand(&.{ "xxd", "-n", asset, "-i", input_path, output_path }) })`:
|
|
||||||
|
|
||||||
const input = try std.fs.cwd().readFileAlloc(b.allocator, input_path, std.math.maxInt(usize));
|
|
||||||
defer b.allocator.free(input);
|
|
||||||
|
|
||||||
var buf = std.ArrayList(u8).init(b.allocator);
|
|
||||||
defer buf.deinit();
|
|
||||||
|
|
||||||
for (input) |byte| {
|
|
||||||
try std.fmt.format(buf.writer(), "0x{X:0>2}, ", .{byte});
|
|
||||||
}
|
|
||||||
|
|
||||||
var name = try std.mem.replaceOwned(u8, b.allocator, asset, "-", "_");
|
|
||||||
defer b.allocator.free(name);
|
|
||||||
std.mem.replaceScalar(u8, name, '.', '_');
|
|
||||||
|
|
||||||
try std.fs.cwd().writeFile(output_path, b.fmt(
|
|
||||||
"unsigned char {s}[] = {{{s}}};\nunsigned int {s}_len = {d};\n",
|
|
||||||
.{ name, buf.items, name, input.len },
|
|
||||||
));
|
|
||||||
|
|
||||||
std.debug.print("Dumped hex of \"{s}\" ({s}) to {s}\n", .{ input_path, name, output_path });
|
|
||||||
}
|
|
||||||
}
|
|
16
cmake/arm64-windows-llvm.cmake
Normal file
16
cmake/arm64-windows-llvm.cmake
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
set( CMAKE_SYSTEM_NAME Windows )
|
||||||
|
set( CMAKE_SYSTEM_PROCESSOR arm64 )
|
||||||
|
|
||||||
|
set( target arm64-pc-windows-msvc )
|
||||||
|
|
||||||
|
set( CMAKE_C_COMPILER clang )
|
||||||
|
set( CMAKE_CXX_COMPILER clang++ )
|
||||||
|
|
||||||
|
set( CMAKE_C_COMPILER_TARGET ${target} )
|
||||||
|
set( CMAKE_CXX_COMPILER_TARGET ${target} )
|
||||||
|
|
||||||
|
set( arch_c_flags "-march=armv8.7-a -fvectorize -ffp-model=fast" )
|
||||||
|
set( warn_c_flags "-Wno-format -Wno-unused-variable -Wno-unused-function -Wno-gnu-zero-variadic-macro-arguments" )
|
||||||
|
|
||||||
|
set( CMAKE_C_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
||||||
|
set( CMAKE_CXX_FLAGS_INIT "${arch_c_flags} ${warn_c_flags}" )
|
6
cmake/arm64-windows-msvc.cmake
Normal file
6
cmake/arm64-windows-msvc.cmake
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
set( CMAKE_SYSTEM_NAME Windows )
|
||||||
|
set( CMAKE_SYSTEM_PROCESSOR arm64 )
|
||||||
|
|
||||||
|
set( target arm64-pc-windows-msvc )
|
||||||
|
set( CMAKE_C_COMPILER_TARGET ${target} )
|
||||||
|
set( CMAKE_CXX_COMPILER_TARGET ${target} )
|
1334
common/common.cpp
1334
common/common.cpp
File diff suppressed because it is too large
Load Diff
@ -35,14 +35,18 @@
|
|||||||
|
|
||||||
// build info
|
// build info
|
||||||
extern int LLAMA_BUILD_NUMBER;
|
extern int LLAMA_BUILD_NUMBER;
|
||||||
extern char const *LLAMA_COMMIT;
|
extern char const * LLAMA_COMMIT;
|
||||||
extern char const *LLAMA_COMPILER;
|
extern char const * LLAMA_COMPILER;
|
||||||
extern char const *LLAMA_BUILD_TARGET;
|
extern char const * LLAMA_BUILD_TARGET;
|
||||||
|
|
||||||
struct llama_control_vector_load_info;
|
struct llama_control_vector_load_info;
|
||||||
|
|
||||||
int get_math_cpu_count();
|
//
|
||||||
int32_t get_num_physical_cores();
|
// CPU utils
|
||||||
|
//
|
||||||
|
|
||||||
|
int32_t cpu_get_num_physical_cores();
|
||||||
|
int32_t cpu_get_num_math();
|
||||||
|
|
||||||
//
|
//
|
||||||
// CLI argument parsing
|
// CLI argument parsing
|
||||||
@ -51,7 +55,7 @@ int32_t get_num_physical_cores();
|
|||||||
struct gpt_params {
|
struct gpt_params {
|
||||||
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
|
||||||
|
|
||||||
int32_t n_threads = get_math_cpu_count();
|
int32_t n_threads = cpu_get_num_math();
|
||||||
int32_t n_threads_draft = -1;
|
int32_t n_threads_draft = -1;
|
||||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||||
int32_t n_threads_batch_draft = -1;
|
int32_t n_threads_batch_draft = -1;
|
||||||
@ -82,6 +86,7 @@ struct gpt_params {
|
|||||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||||
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
float defrag_thold = -1.0f; // KV cache defragmentation threshold
|
||||||
|
std::string rpc_servers = ""; // comma separated list of RPC servers
|
||||||
|
|
||||||
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
ggml_backend_sched_eval_callback cb_eval = nullptr;
|
||||||
void * cb_eval_user_data = nullptr;
|
void * cb_eval_user_data = nullptr;
|
||||||
@ -178,33 +183,34 @@ struct gpt_params {
|
|||||||
|
|
||||||
void gpt_params_handle_model_default(gpt_params & params);
|
void gpt_params_handle_model_default(gpt_params & params);
|
||||||
|
|
||||||
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
|
||||||
|
bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
|
||||||
|
bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
|
||||||
|
void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
|
||||||
|
|
||||||
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
|
std::string gpt_params_get_system_info(const gpt_params & params);
|
||||||
|
|
||||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
|
||||||
|
|
||||||
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
|
|
||||||
|
|
||||||
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
|
|
||||||
|
|
||||||
std::string get_system_info(const gpt_params & params);
|
|
||||||
|
|
||||||
std::string gpt_random_prompt(std::mt19937 & rng);
|
|
||||||
|
|
||||||
void process_escapes(std::string& input);
|
|
||||||
|
|
||||||
bool validate_file_name(const std::string & filename);
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// String utils
|
// String utils
|
||||||
//
|
//
|
||||||
|
|
||||||
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
|
||||||
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
|
|
||||||
std::vector<std::string> string_split(std::string input, char separator);
|
std::vector<std::string> string_split(std::string input, char separator);
|
||||||
|
|
||||||
std::string string_strip(const std::string & str);
|
std::string string_strip(const std::string & str);
|
||||||
std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
|
std::string string_get_sortable_timestamp();
|
||||||
|
std::string string_random_prompt(std::mt19937 & rng);
|
||||||
|
|
||||||
|
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
|
||||||
|
void string_process_escapes(std::string & input);
|
||||||
|
|
||||||
|
//
|
||||||
|
// Filesystem utils
|
||||||
|
//
|
||||||
|
|
||||||
|
bool fs_validate_filename(const std::string & filename);
|
||||||
|
bool fs_create_directory_with_parents(const std::string & path);
|
||||||
|
|
||||||
|
std::string fs_get_cache_directory();
|
||||||
|
|
||||||
//
|
//
|
||||||
// Model utils
|
// Model utils
|
||||||
@ -275,29 +281,15 @@ std::string llama_detokenize_bpe(
|
|||||||
// defaults to true when model type is SPM, otherwise false.
|
// defaults to true when model type is SPM, otherwise false.
|
||||||
bool llama_should_add_bos_token(const llama_model * model);
|
bool llama_should_add_bos_token(const llama_model * model);
|
||||||
|
|
||||||
//
|
|
||||||
// YAML utils
|
|
||||||
//
|
|
||||||
|
|
||||||
bool create_directory_with_parents(const std::string & path);
|
|
||||||
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
|
|
||||||
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
|
|
||||||
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
|
|
||||||
std::string get_sortable_timestamp();
|
|
||||||
|
|
||||||
void dump_non_result_info_yaml(
|
|
||||||
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
|
||||||
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// KV cache utils
|
// KV cache utils
|
||||||
//
|
//
|
||||||
|
|
||||||
// Dump the KV cache view with the number of sequences per cell.
|
// Dump the KV cache view with the number of sequences per cell.
|
||||||
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
|
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||||
|
|
||||||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||||||
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Embedding utils
|
// Embedding utils
|
||||||
@ -331,6 +323,20 @@ llama_control_vector_data llama_control_vector_load(const std::vector<llama_cont
|
|||||||
//
|
//
|
||||||
// Split utils
|
// Split utils
|
||||||
//
|
//
|
||||||
|
|
||||||
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
static const char * const LLM_KV_SPLIT_NO = "split.no";
|
||||||
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
|
||||||
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
|
||||||
|
|
||||||
|
//
|
||||||
|
// YAML utils
|
||||||
|
//
|
||||||
|
|
||||||
|
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
|
||||||
|
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
|
||||||
|
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
|
||||||
|
|
||||||
|
void yaml_dump_non_result_info(
|
||||||
|
FILE * stream, const gpt_params & params, const llama_context * lctx,
|
||||||
|
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
|
||||||
|
|
||||||
|
@ -26,7 +26,7 @@ namespace grammar_parser {
|
|||||||
|
|
||||||
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
|
static uint32_t get_symbol_id(parse_state & state, const char * src, size_t len) {
|
||||||
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
uint32_t next_id = static_cast<uint32_t>(state.symbol_ids.size());
|
||||||
auto result = state.symbol_ids.insert(std::make_pair(std::string(src, len), next_id));
|
auto result = state.symbol_ids.emplace(std::string(src, len), next_id);
|
||||||
return result.first->second;
|
return result.first->second;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -272,7 +272,7 @@ private:
|
|||||||
if (literal.empty()) {
|
if (literal.empty()) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
ret.push_back(std::make_pair(literal, true));
|
ret.emplace_back(literal, true);
|
||||||
literal.clear();
|
literal.clear();
|
||||||
return true;
|
return true;
|
||||||
};
|
};
|
||||||
@ -298,7 +298,7 @@ private:
|
|||||||
while (i < length) {
|
while (i < length) {
|
||||||
char c = sub_pattern[i];
|
char c = sub_pattern[i];
|
||||||
if (c == '.') {
|
if (c == '.') {
|
||||||
seq.push_back(std::make_pair(get_dot(), false));
|
seq.emplace_back(get_dot(), false);
|
||||||
i++;
|
i++;
|
||||||
} else if (c == '(') {
|
} else if (c == '(') {
|
||||||
i++;
|
i++;
|
||||||
@ -307,7 +307,7 @@ private:
|
|||||||
_warnings.push_back("Unsupported pattern syntax");
|
_warnings.push_back("Unsupported pattern syntax");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
seq.push_back(std::make_pair("(" + to_rule(transform()) + ")", false));
|
seq.emplace_back("(" + to_rule(transform()) + ")", false);
|
||||||
} else if (c == ')') {
|
} else if (c == ')') {
|
||||||
i++;
|
i++;
|
||||||
if (start > 0 && sub_pattern[start - 1] != '(') {
|
if (start > 0 && sub_pattern[start - 1] != '(') {
|
||||||
@ -331,9 +331,9 @@ private:
|
|||||||
}
|
}
|
||||||
square_brackets += ']';
|
square_brackets += ']';
|
||||||
i++;
|
i++;
|
||||||
seq.push_back(std::make_pair(square_brackets, false));
|
seq.emplace_back(square_brackets, false);
|
||||||
} else if (c == '|') {
|
} else if (c == '|') {
|
||||||
seq.push_back(std::make_pair("|", false));
|
seq.emplace_back("|", false);
|
||||||
i++;
|
i++;
|
||||||
} else if (c == '*' || c == '+' || c == '?') {
|
} else if (c == '*' || c == '+' || c == '?') {
|
||||||
seq.back() = std::make_pair(to_rule(seq.back()) + c, false);
|
seq.back() = std::make_pair(to_rule(seq.back()) + c, false);
|
||||||
@ -417,7 +417,7 @@ private:
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (!literal.empty()) {
|
if (!literal.empty()) {
|
||||||
seq.push_back(std::make_pair(literal, true));
|
seq.emplace_back(literal, true);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
10
common/log.h
10
common/log.h
@ -211,7 +211,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
|||||||
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||||
#else
|
#else
|
||||||
#define LOG_FLF_FMT "[%24s:%5ld][%24s] "
|
#define LOG_FLF_FMT "[%24s:%5ld][%24s] "
|
||||||
#define LOG_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
#define LOG_FLF_VAL , __FILE__, (long)__LINE__, __FUNCTION__
|
||||||
#endif
|
#endif
|
||||||
#else
|
#else
|
||||||
#define LOG_FLF_FMT "%s"
|
#define LOG_FLF_FMT "%s"
|
||||||
@ -224,7 +224,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
|||||||
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
||||||
#else
|
#else
|
||||||
#define LOG_TEE_FLF_FMT "[%24s:%5ld][%24s] "
|
#define LOG_TEE_FLF_FMT "[%24s:%5ld][%24s] "
|
||||||
#define LOG_TEE_FLF_VAL , __FILE__, __LINE__, __FUNCTION__
|
#define LOG_TEE_FLF_VAL , __FILE__, (long)__LINE__, __FUNCTION__
|
||||||
#endif
|
#endif
|
||||||
#else
|
#else
|
||||||
#define LOG_TEE_FLF_FMT "%s"
|
#define LOG_TEE_FLF_FMT "%s"
|
||||||
@ -294,7 +294,7 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
|||||||
// Main LOG macro.
|
// Main LOG macro.
|
||||||
// behaves like printf, and supports arguments the exact same way.
|
// behaves like printf, and supports arguments the exact same way.
|
||||||
//
|
//
|
||||||
#ifndef _MSC_VER
|
#if !defined(_MSC_VER) || defined(__clang__)
|
||||||
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
|
#define LOG(...) LOG_IMPL(__VA_ARGS__, "")
|
||||||
#else
|
#else
|
||||||
#define LOG(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "")
|
#define LOG(str, ...) LOG_IMPL("%s" str, "", ##__VA_ARGS__, "")
|
||||||
@ -308,14 +308,14 @@ inline std::string log_filename_generator_impl(LogTriState multilog, const std::
|
|||||||
// Secondary target can be changed just like LOG_TARGET
|
// Secondary target can be changed just like LOG_TARGET
|
||||||
// by defining LOG_TEE_TARGET
|
// by defining LOG_TEE_TARGET
|
||||||
//
|
//
|
||||||
#ifndef _MSC_VER
|
#if !defined(_MSC_VER) || defined(__clang__)
|
||||||
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
|
#define LOG_TEE(...) LOG_TEE_IMPL(__VA_ARGS__, "")
|
||||||
#else
|
#else
|
||||||
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "")
|
#define LOG_TEE(str, ...) LOG_TEE_IMPL("%s" str, "", ##__VA_ARGS__, "")
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// LOG macro variants with auto endline.
|
// LOG macro variants with auto endline.
|
||||||
#ifndef _MSC_VER
|
#if !defined(_MSC_VER) || defined(__clang__)
|
||||||
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
|
#define LOGLN(...) LOG_IMPL(__VA_ARGS__, "\n")
|
||||||
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
|
#define LOG_TEELN(...) LOG_TEE_IMPL(__VA_ARGS__, "\n")
|
||||||
#else
|
#else
|
||||||
|
@ -125,7 +125,7 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) {
|
|||||||
std::string result = "CFG -> Penalties ";
|
std::string result = "CFG -> Penalties ";
|
||||||
if (params.mirostat == 0) {
|
if (params.mirostat == 0) {
|
||||||
for (auto sampler_type : params.samplers_sequence) {
|
for (auto sampler_type : params.samplers_sequence) {
|
||||||
const auto sampler_type_name = sampler_type_to_name_string(sampler_type);
|
const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
|
||||||
if (!sampler_type_name.empty()) {
|
if (!sampler_type_name.empty()) {
|
||||||
result += "-> " + sampler_type_name + " ";
|
result += "-> " + sampler_type_name + " ";
|
||||||
}
|
}
|
||||||
@ -137,6 +137,87 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) {
|
|||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
|
||||||
|
switch (sampler_type) {
|
||||||
|
case llama_sampler_type::TOP_K: return "top_k";
|
||||||
|
case llama_sampler_type::TFS_Z: return "tfs_z";
|
||||||
|
case llama_sampler_type::TYPICAL_P: return "typical_p";
|
||||||
|
case llama_sampler_type::TOP_P: return "top_p";
|
||||||
|
case llama_sampler_type::MIN_P: return "min_p";
|
||||||
|
case llama_sampler_type::TEMPERATURE: return "temperature";
|
||||||
|
default : return "";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
|
||||||
|
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
|
||||||
|
{"top_k", llama_sampler_type::TOP_K},
|
||||||
|
{"top_p", llama_sampler_type::TOP_P},
|
||||||
|
{"typical_p", llama_sampler_type::TYPICAL_P},
|
||||||
|
{"min_p", llama_sampler_type::MIN_P},
|
||||||
|
{"tfs_z", llama_sampler_type::TFS_Z},
|
||||||
|
{"temperature", llama_sampler_type::TEMPERATURE}
|
||||||
|
};
|
||||||
|
|
||||||
|
// since samplers names are written multiple ways
|
||||||
|
// make it ready for both system names and input names
|
||||||
|
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
|
||||||
|
{"top-k", llama_sampler_type::TOP_K},
|
||||||
|
{"top-p", llama_sampler_type::TOP_P},
|
||||||
|
{"nucleus", llama_sampler_type::TOP_P},
|
||||||
|
{"typical-p", llama_sampler_type::TYPICAL_P},
|
||||||
|
{"typical", llama_sampler_type::TYPICAL_P},
|
||||||
|
{"min-p", llama_sampler_type::MIN_P},
|
||||||
|
{"tfs-z", llama_sampler_type::TFS_Z},
|
||||||
|
{"tfs", llama_sampler_type::TFS_Z},
|
||||||
|
{"temp", llama_sampler_type::TEMPERATURE}
|
||||||
|
};
|
||||||
|
|
||||||
|
std::vector<llama_sampler_type> sampler_types;
|
||||||
|
sampler_types.reserve(names.size());
|
||||||
|
for (const auto & name : names)
|
||||||
|
{
|
||||||
|
auto sampler_item = sampler_canonical_name_map.find(name);
|
||||||
|
if (sampler_item != sampler_canonical_name_map.end())
|
||||||
|
{
|
||||||
|
sampler_types.push_back(sampler_item->second);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
if (allow_alt_names)
|
||||||
|
{
|
||||||
|
sampler_item = sampler_alt_name_map.find(name);
|
||||||
|
if (sampler_item != sampler_alt_name_map.end())
|
||||||
|
{
|
||||||
|
sampler_types.push_back(sampler_item->second);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return sampler_types;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
|
||||||
|
std::unordered_map<char, llama_sampler_type> sampler_name_map {
|
||||||
|
{'k', llama_sampler_type::TOP_K},
|
||||||
|
{'p', llama_sampler_type::TOP_P},
|
||||||
|
{'y', llama_sampler_type::TYPICAL_P},
|
||||||
|
{'m', llama_sampler_type::MIN_P},
|
||||||
|
{'f', llama_sampler_type::TFS_Z},
|
||||||
|
{'t', llama_sampler_type::TEMPERATURE}
|
||||||
|
};
|
||||||
|
|
||||||
|
std::vector<llama_sampler_type> sampler_types;
|
||||||
|
sampler_types.reserve(names_string.size());
|
||||||
|
for (const auto & c : names_string) {
|
||||||
|
const auto sampler_item = sampler_name_map.find(c);
|
||||||
|
if (sampler_item != sampler_name_map.end()) {
|
||||||
|
sampler_types.push_back(sampler_item->second);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return sampler_types;
|
||||||
|
}
|
||||||
|
|
||||||
// no reasons to expose this function in header
|
// no reasons to expose this function in header
|
||||||
static void sampler_queue(
|
static void sampler_queue(
|
||||||
struct llama_context * ctx_main,
|
struct llama_context * ctx_main,
|
||||||
@ -179,7 +260,7 @@ static llama_token llama_sampling_sample_impl(
|
|||||||
struct llama_context * ctx_main,
|
struct llama_context * ctx_main,
|
||||||
struct llama_context * ctx_cfg,
|
struct llama_context * ctx_cfg,
|
||||||
const int idx,
|
const int idx,
|
||||||
bool is_resampling) { // Add a parameter to indicate if we are resampling
|
bool is_resampling) {
|
||||||
const llama_sampling_params & params = ctx_sampling->params;
|
const llama_sampling_params & params = ctx_sampling->params;
|
||||||
|
|
||||||
const float temp = params.temp;
|
const float temp = params.temp;
|
||||||
@ -188,8 +269,8 @@ static llama_token llama_sampling_sample_impl(
|
|||||||
const float mirostat_eta = params.mirostat_eta;
|
const float mirostat_eta = params.mirostat_eta;
|
||||||
|
|
||||||
std::vector<float> original_logits;
|
std::vector<float> original_logits;
|
||||||
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, !is_resampling, &original_logits);
|
auto cur_p = llama_sampling_prepare(ctx_sampling, ctx_main, ctx_cfg, idx, /* apply_grammar= */ is_resampling, &original_logits);
|
||||||
if (!is_resampling) {
|
if (ctx_sampling->grammar != NULL && !is_resampling) {
|
||||||
GGML_ASSERT(!original_logits.empty());
|
GGML_ASSERT(!original_logits.empty());
|
||||||
}
|
}
|
||||||
llama_token id = 0;
|
llama_token id = 0;
|
||||||
@ -252,7 +333,7 @@ static llama_token llama_sampling_sample_impl(
|
|||||||
// Restore logits from the copy
|
// Restore logits from the copy
|
||||||
std::copy(original_logits.begin(), original_logits.end(), logits);
|
std::copy(original_logits.begin(), original_logits.end(), logits);
|
||||||
|
|
||||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, true); // Pass true for is_resampling
|
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ true);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -285,7 +366,8 @@ static llama_token_data_array llama_sampling_prepare_impl(
|
|||||||
// Get a pointer to the logits
|
// Get a pointer to the logits
|
||||||
float * logits = llama_get_logits_ith(ctx_main, idx);
|
float * logits = llama_get_logits_ith(ctx_main, idx);
|
||||||
|
|
||||||
if (apply_grammar && original_logits != NULL) {
|
if (ctx_sampling->grammar != NULL && !apply_grammar) {
|
||||||
|
GGML_ASSERT(original_logits != NULL);
|
||||||
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
|
// Only make a copy of the original logits if we are not applying grammar checks, not sure if I actually have to do this.
|
||||||
*original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
|
*original_logits = {logits, logits + llama_n_vocab(llama_get_model(ctx_main))};
|
||||||
}
|
}
|
||||||
@ -342,7 +424,7 @@ llama_token llama_sampling_sample(
|
|||||||
struct llama_context * ctx_cfg,
|
struct llama_context * ctx_cfg,
|
||||||
const int idx) {
|
const int idx) {
|
||||||
// Call the implementation function with is_resampling set to false by default
|
// Call the implementation function with is_resampling set to false by default
|
||||||
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, false);
|
return llama_sampling_sample_impl(ctx_sampling, ctx_main, ctx_cfg, idx, /* is_resampling= */ false);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_token_data_array llama_sampling_prepare(
|
llama_token_data_array llama_sampling_prepare(
|
||||||
|
@ -116,6 +116,11 @@ std::string llama_sampling_print(const llama_sampling_params & params);
|
|||||||
// Print sampling order into a string
|
// Print sampling order into a string
|
||||||
std::string llama_sampling_order_print(const llama_sampling_params & params);
|
std::string llama_sampling_order_print(const llama_sampling_params & params);
|
||||||
|
|
||||||
|
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type);
|
||||||
|
|
||||||
|
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
|
||||||
|
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string);
|
||||||
|
|
||||||
// this is a common sampling function used across the examples for convenience
|
// this is a common sampling function used across the examples for convenience
|
||||||
// it can serve as a starting point for implementing your own sampling function
|
// it can serve as a starting point for implementing your own sampling function
|
||||||
// Note: When using multiple sequences, it is the caller's responsibility to call
|
// Note: When using multiple sequences, it is the caller's responsibility to call
|
||||||
|
@ -1380,7 +1380,7 @@ bool consume_common_train_arg(
|
|||||||
|
|
||||||
void finish_processing_train_args(struct train_params_common * params) {
|
void finish_processing_train_args(struct train_params_common * params) {
|
||||||
if (params->escape) {
|
if (params->escape) {
|
||||||
process_escapes(params->sample_start);
|
string_process_escapes(params->sample_start);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -20,11 +20,13 @@
|
|||||||
# - Update llama.cpp with the new pre-tokenizer if necessary
|
# - Update llama.cpp with the new pre-tokenizer if necessary
|
||||||
#
|
#
|
||||||
# TODO: generate tokenizer tests for llama.cpp
|
# TODO: generate tokenizer tests for llama.cpp
|
||||||
# TODO: automate the update of convert-hf-to-gguf.py
|
|
||||||
#
|
#
|
||||||
|
|
||||||
import logging
|
import logging
|
||||||
import os
|
import os
|
||||||
|
import pathlib
|
||||||
|
import re
|
||||||
|
|
||||||
import requests
|
import requests
|
||||||
import sys
|
import sys
|
||||||
import json
|
import json
|
||||||
@ -35,6 +37,7 @@ from transformers import AutoTokenizer
|
|||||||
|
|
||||||
logging.basicConfig(level=logging.DEBUG)
|
logging.basicConfig(level=logging.DEBUG)
|
||||||
logger = logging.getLogger("convert-hf-to-gguf-update")
|
logger = logging.getLogger("convert-hf-to-gguf-update")
|
||||||
|
sess = requests.Session()
|
||||||
|
|
||||||
|
|
||||||
class TOKENIZER_TYPE(IntEnum):
|
class TOKENIZER_TYPE(IntEnum):
|
||||||
@ -69,73 +72,55 @@ models = [
|
|||||||
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
{"name": "mpt", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/mosaicml/mpt-7b", },
|
||||||
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
{"name": "starcoder", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/bigcode/starcoder2-3b", },
|
||||||
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
{"name": "gpt-2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/openai-community/gpt2", },
|
||||||
|
{"name": "stablelm2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b", },
|
||||||
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
|
{"name": "refact", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/smallcloudai/Refact-1_6-base", },
|
||||||
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
|
{"name": "command-r", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/CohereForAI/c4ai-command-r-v01", },
|
||||||
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
|
{"name": "qwen2", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/Qwen/Qwen1.5-7B", },
|
||||||
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
|
{"name": "olmo", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/allenai/OLMo-1.7-7B-hf", },
|
||||||
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
|
{"name": "dbrx", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/databricks/dbrx-base", },
|
||||||
{"name": "jina-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
|
{"name": "jina-v2-en", "tokt": TOKENIZER_TYPE.WPM, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", }, # WPM!
|
||||||
{"name": "jina-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
{"name": "jina-v2-es", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-es", },
|
||||||
{"name": "jina-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
{"name": "jina-v2-de", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/jinaai/jina-embeddings-v2-base-de", },
|
||||||
]
|
]
|
||||||
|
|
||||||
# make directory "models/tokenizers" if it doesn't exist
|
|
||||||
if not os.path.exists("models/tokenizers"):
|
|
||||||
os.makedirs("models/tokenizers")
|
|
||||||
|
|
||||||
|
|
||||||
def download_file_with_auth(url, token, save_path):
|
def download_file_with_auth(url, token, save_path):
|
||||||
headers = {"Authorization": f"Bearer {token}"}
|
headers = {"Authorization": f"Bearer {token}"}
|
||||||
response = requests.get(url, headers=headers)
|
response = sess.get(url, headers=headers)
|
||||||
if response.status_code == 200:
|
response.raise_for_status()
|
||||||
|
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
||||||
with open(save_path, 'wb') as f:
|
with open(save_path, 'wb') as f:
|
||||||
f.write(response.content)
|
f.write(response.content)
|
||||||
logger.info(f"File {save_path} downloaded successfully")
|
logger.info(f"File {save_path} downloaded successfully")
|
||||||
else:
|
|
||||||
logger.info(f"Failed to download file. Status code: {response.status_code}")
|
|
||||||
|
|
||||||
|
|
||||||
# download the tokenizer models
|
def download_model(model):
|
||||||
for model in models:
|
|
||||||
name = model["name"]
|
name = model["name"]
|
||||||
repo = model["repo"]
|
repo = model["repo"]
|
||||||
tokt = model["tokt"]
|
tokt = model["tokt"]
|
||||||
|
|
||||||
if not os.path.exists(f"models/tokenizers/{name}"):
|
os.makedirs(f"models/tokenizers/{name}", exist_ok=True)
|
||||||
os.makedirs(f"models/tokenizers/{name}")
|
|
||||||
else:
|
|
||||||
logger.info(f"Directory models/tokenizers/{name} already exists - skipping")
|
|
||||||
continue
|
|
||||||
|
|
||||||
logger.info(f"Downloading {name} to models/tokenizers/{name}")
|
|
||||||
|
|
||||||
url = f"{repo}/raw/main/config.json"
|
|
||||||
save_path = f"models/tokenizers/{name}/config.json"
|
|
||||||
download_file_with_auth(url, token, save_path)
|
|
||||||
|
|
||||||
url = f"{repo}/raw/main/tokenizer.json"
|
|
||||||
save_path = f"models/tokenizers/{name}/tokenizer.json"
|
|
||||||
download_file_with_auth(url, token, save_path)
|
|
||||||
|
|
||||||
# if downloaded file is less than 1KB, we likely need to download an LFS instead
|
|
||||||
if os.path.getsize(save_path) < 1024:
|
|
||||||
# remove the file
|
|
||||||
os.remove(save_path)
|
|
||||||
url = f"{repo}/resolve/main/tokenizer.json"
|
|
||||||
save_path = f"models/tokenizers/{name}/tokenizer.json"
|
|
||||||
download_file_with_auth(url, token, save_path)
|
|
||||||
|
|
||||||
|
files = ["config.json", "tokenizer.json", "tokenizer_config.json"]
|
||||||
if tokt == TOKENIZER_TYPE.SPM:
|
if tokt == TOKENIZER_TYPE.SPM:
|
||||||
url = f"{repo}/resolve/main/tokenizer.model"
|
files.append("tokenizer.model")
|
||||||
save_path = f"models/tokenizers/{name}/tokenizer.model"
|
|
||||||
download_file_with_auth(url, token, save_path)
|
for file in files:
|
||||||
|
save_path = f"models/tokenizers/{name}/{file}"
|
||||||
|
if os.path.isfile(save_path):
|
||||||
|
logger.info(f"{name}: File {save_path} already exists - skipping")
|
||||||
|
continue
|
||||||
|
download_file_with_auth(f"{repo}/resolve/main/{file}", token, save_path)
|
||||||
|
|
||||||
|
|
||||||
|
for model in models:
|
||||||
|
try:
|
||||||
|
download_model(model)
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to download model {model['name']}. Error: {e}")
|
||||||
|
|
||||||
url = f"{repo}/raw/main/tokenizer_config.json"
|
|
||||||
save_path = f"models/tokenizers/{name}/tokenizer_config.json"
|
|
||||||
download_file_with_auth(url, token, save_path)
|
|
||||||
|
|
||||||
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
|
# generate the source code for the convert-hf-to-gguf.py:get_vocab_base_pre() function:
|
||||||
# TODO: auto-update convert-hf-to-gguf.py with the generated function
|
|
||||||
|
|
||||||
src_ifs = ""
|
src_ifs = ""
|
||||||
for model in models:
|
for model in models:
|
||||||
@ -224,11 +209,18 @@ src_func = f"""
|
|||||||
return res
|
return res
|
||||||
"""
|
"""
|
||||||
|
|
||||||
print(src_func) # noqa: NP100
|
convert_py_pth = pathlib.Path("convert-hf-to-gguf.py")
|
||||||
|
convert_py = convert_py_pth.read_text()
|
||||||
|
convert_py = re.sub(
|
||||||
|
r"(# Marker: Start get_vocab_base_pre)(.+?)( +# Marker: End get_vocab_base_pre)",
|
||||||
|
lambda m: m.group(1) + src_func + m.group(3),
|
||||||
|
convert_py,
|
||||||
|
flags=re.DOTALL | re.MULTILINE,
|
||||||
|
)
|
||||||
|
|
||||||
logger.info("\n")
|
convert_py_pth.write_text(convert_py)
|
||||||
logger.info("!!! Copy-paste the function above into convert-hf-to-gguf.py !!!")
|
|
||||||
logger.info("\n")
|
logger.info("+++ convert-hf-to-gguf.py was updated")
|
||||||
|
|
||||||
# generate tests for each tokenizer model
|
# generate tests for each tokenizer model
|
||||||
|
|
||||||
|
@ -14,6 +14,7 @@ from pathlib import Path
|
|||||||
from hashlib import sha256
|
from hashlib import sha256
|
||||||
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
|
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Sequence, TypeVar, cast
|
||||||
|
|
||||||
|
import math
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
@ -240,23 +241,6 @@ class Model:
|
|||||||
return False
|
return False
|
||||||
|
|
||||||
def write_tensors(self):
|
def write_tensors(self):
|
||||||
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
|
|
||||||
def np_fp32_to_bf16(n: np.ndarray):
|
|
||||||
# force nan to quiet
|
|
||||||
n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
|
|
||||||
# flush subnormals to zero
|
|
||||||
n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
|
|
||||||
# round to nearest even
|
|
||||||
n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
|
|
||||||
return n.astype(np.int16)
|
|
||||||
|
|
||||||
# Doing this row-wise is much, much faster than element-wise, hence the signature
|
|
||||||
v_fp32_to_bf16 = np.vectorize(np_fp32_to_bf16, otypes=[np.int16], signature="(n)->(n)")
|
|
||||||
if self.lazy:
|
|
||||||
# TODO: find a way to implicitly wrap np.vectorize functions
|
|
||||||
# NOTE: the type is changed to reflect otypes passed to np.vectorize above
|
|
||||||
v_fp32_to_bf16 = gguf.LazyNumpyTensor._wrap_fn(v_fp32_to_bf16, meta_noop=np.int16)
|
|
||||||
|
|
||||||
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
|
max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
|
||||||
|
|
||||||
for name, data_torch in self.get_tensors():
|
for name, data_torch in self.get_tensors():
|
||||||
@ -309,27 +293,31 @@ class Model:
|
|||||||
))
|
))
|
||||||
|
|
||||||
if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
|
if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
|
||||||
if self.ftype == gguf.LlamaFileType.MOSTLY_F16:
|
if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
|
||||||
|
data = gguf.quantize_bf16(data)
|
||||||
|
assert data.dtype == np.int16
|
||||||
|
data_qtype = gguf.GGMLQuantizationType.BF16
|
||||||
|
|
||||||
|
elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
|
||||||
|
data = gguf.quantize_q8_0(data)
|
||||||
|
assert data.dtype == np.uint8
|
||||||
|
data_qtype = gguf.GGMLQuantizationType.Q8_0
|
||||||
|
|
||||||
|
else: # default to float16 for quantized tensors
|
||||||
if data_dtype != np.float16:
|
if data_dtype != np.float16:
|
||||||
data = data.astype(np.float16)
|
data = data.astype(np.float16)
|
||||||
data_qtype = gguf.GGMLQuantizationType.F16
|
data_qtype = gguf.GGMLQuantizationType.F16
|
||||||
|
|
||||||
elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
|
if data_qtype is None: # by default, convert to float32
|
||||||
if data_dtype != np.float32:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
data = v_fp32_to_bf16(data.view(np.int32))
|
|
||||||
assert data.dtype == np.int16
|
|
||||||
data_qtype = gguf.GGMLQuantizationType.BF16
|
|
||||||
|
|
||||||
else: # by default, convert to float32
|
|
||||||
if data_dtype != np.float32:
|
if data_dtype != np.float32:
|
||||||
data = data.astype(np.float32)
|
data = data.astype(np.float32)
|
||||||
data_qtype = gguf.GGMLQuantizationType.F32
|
data_qtype = gguf.GGMLQuantizationType.F32
|
||||||
|
|
||||||
assert data_qtype is not None
|
block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype]
|
||||||
|
|
||||||
# reverse shape to make it similar to the internal ggml dimension order
|
# reverse shape to make it similar to the internal ggml dimension order
|
||||||
shape_str = f"{{{', '.join(str(n) for n in reversed(data.shape))}}}"
|
shape_str = f"""{{{', '.join(str(n) for n in reversed(
|
||||||
|
(*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size))
|
||||||
|
)}}}"""
|
||||||
|
|
||||||
# n_dims is implicit in the shape
|
# n_dims is implicit in the shape
|
||||||
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
|
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
|
||||||
@ -415,6 +403,7 @@ class Model:
|
|||||||
# NOTE: this function is generated by convert-hf-to-gguf-update.py
|
# NOTE: this function is generated by convert-hf-to-gguf-update.py
|
||||||
# do not modify it manually!
|
# do not modify it manually!
|
||||||
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
# ref: https://github.com/ggerganov/llama.cpp/pull/6920
|
||||||
|
# Marker: Start get_vocab_base_pre
|
||||||
def get_vocab_base_pre(self, tokenizer) -> str:
|
def get_vocab_base_pre(self, tokenizer) -> str:
|
||||||
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
|
# encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
|
||||||
# is specific for the BPE pre-tokenizer used by the model
|
# is specific for the BPE pre-tokenizer used by the model
|
||||||
@ -458,6 +447,9 @@ class Model:
|
|||||||
if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
|
if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
|
||||||
# ref: https://huggingface.co/openai-community/gpt2
|
# ref: https://huggingface.co/openai-community/gpt2
|
||||||
res = "gpt-2"
|
res = "gpt-2"
|
||||||
|
if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
|
||||||
|
# ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
|
||||||
|
res = "stablelm2"
|
||||||
if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
|
if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
|
||||||
# ref: https://huggingface.co/smallcloudai/Refact-1_6-base
|
# ref: https://huggingface.co/smallcloudai/Refact-1_6-base
|
||||||
res = "refact"
|
res = "refact"
|
||||||
@ -475,13 +467,13 @@ class Model:
|
|||||||
res = "dbrx"
|
res = "dbrx"
|
||||||
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
|
if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
|
||||||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
|
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
|
||||||
res = "jina-en"
|
res = "jina-v2-en"
|
||||||
if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
|
if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
|
||||||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
|
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
|
||||||
res = "jina-es"
|
res = "jina-v2-es"
|
||||||
if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
|
if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
|
||||||
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
|
# ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
|
||||||
res = "jina-de"
|
res = "jina-v2-de"
|
||||||
|
|
||||||
if res is None:
|
if res is None:
|
||||||
logger.warning("\n")
|
logger.warning("\n")
|
||||||
@ -502,6 +494,7 @@ class Model:
|
|||||||
logger.debug(f"chkhsh: {chkhsh}")
|
logger.debug(f"chkhsh: {chkhsh}")
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
# Marker: End get_vocab_base_pre
|
||||||
|
|
||||||
def _set_vocab_gpt2(self) -> None:
|
def _set_vocab_gpt2(self) -> None:
|
||||||
tokens, toktypes, tokpre = self.get_vocab_base()
|
tokens, toktypes, tokpre = self.get_vocab_base()
|
||||||
@ -539,7 +532,7 @@ class Model:
|
|||||||
|
|
||||||
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
|
# for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
|
||||||
added_vocab = tokenizer.special_tokens
|
added_vocab = tokenizer.special_tokens
|
||||||
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
|
reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
|
||||||
|
|
||||||
for i in range(vocab_size):
|
for i in range(vocab_size):
|
||||||
if i not in reverse_vocab:
|
if i not in reverse_vocab:
|
||||||
@ -584,6 +577,10 @@ class Model:
|
|||||||
|
|
||||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||||
|
|
||||||
|
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
|
||||||
|
scores: list[float] = [-10000.0] * vocab_size
|
||||||
|
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
|
||||||
|
|
||||||
for token_id in range(tokenizer.vocab_size()):
|
for token_id in range(tokenizer.vocab_size()):
|
||||||
piece = tokenizer.IdToPiece(token_id)
|
piece = tokenizer.IdToPiece(token_id)
|
||||||
text = piece.encode("utf-8")
|
text = piece.encode("utf-8")
|
||||||
@ -599,21 +596,23 @@ class Model:
|
|||||||
elif tokenizer.IsByte(token_id):
|
elif tokenizer.IsByte(token_id):
|
||||||
toktype = SentencePieceTokenTypes.BYTE
|
toktype = SentencePieceTokenTypes.BYTE
|
||||||
|
|
||||||
tokens.append(text)
|
tokens[token_id] = text
|
||||||
scores.append(score)
|
scores[token_id] = score
|
||||||
toktypes.append(toktype)
|
toktypes[token_id] = toktype
|
||||||
|
|
||||||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||||||
if added_tokens_file.is_file():
|
if added_tokens_file.is_file():
|
||||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||||
added_tokens_json = json.load(f)
|
added_tokens_json = json.load(f)
|
||||||
|
|
||||||
for key in added_tokens_json:
|
for key in added_tokens_json:
|
||||||
key = key.encode("utf-8")
|
token_id = added_tokens_json[key]
|
||||||
if key not in tokens:
|
if (token_id >= vocab_size):
|
||||||
tokens.append(key)
|
logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
|
||||||
scores.append(-1000.0)
|
continue
|
||||||
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
|
|
||||||
|
tokens[token_id] = key.encode("utf-8")
|
||||||
|
scores[token_id] = -1000.0
|
||||||
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||||
|
|
||||||
if vocab_size > len(tokens):
|
if vocab_size > len(tokens):
|
||||||
pad_count = vocab_size - len(tokens)
|
pad_count = vocab_size - len(tokens)
|
||||||
@ -623,8 +622,6 @@ class Model:
|
|||||||
scores.append(-1000.0)
|
scores.append(-1000.0)
|
||||||
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
toktypes.append(SentencePieceTokenTypes.UNUSED)
|
||||||
|
|
||||||
assert len(tokens) == vocab_size
|
|
||||||
|
|
||||||
self.gguf_writer.add_tokenizer_model("llama")
|
self.gguf_writer.add_tokenizer_model("llama")
|
||||||
self.gguf_writer.add_tokenizer_pre("default")
|
self.gguf_writer.add_tokenizer_pre("default")
|
||||||
self.gguf_writer.add_token_list(tokens)
|
self.gguf_writer.add_token_list(tokens)
|
||||||
@ -859,6 +856,7 @@ class BaichuanModel(Model):
|
|||||||
self.gguf_writer.add_head_count(head_count)
|
self.gguf_writer.add_head_count(head_count)
|
||||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||||
@ -981,6 +979,7 @@ class XverseModel(Model):
|
|||||||
self.gguf_writer.add_head_count(head_count)
|
self.gguf_writer.add_head_count(head_count)
|
||||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
self.gguf_writer.add_head_count_kv(head_count_kv)
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||||
if self.hparams["rope_scaling"].get("type") == "linear":
|
if self.hparams["rope_scaling"].get("type") == "linear":
|
||||||
@ -1150,45 +1149,6 @@ class RefactModel(Model):
|
|||||||
return tensors
|
return tensors
|
||||||
|
|
||||||
|
|
||||||
@Model.register("PersimmonForCausalLM")
|
|
||||||
class PersimmonModel(Model):
|
|
||||||
model_arch = gguf.MODEL_ARCH.PERSIMMON
|
|
||||||
|
|
||||||
def set_gguf_parameters(self):
|
|
||||||
block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
|
|
||||||
head_count = self.hparams["num_attention_heads"]
|
|
||||||
head_count_kv = head_count
|
|
||||||
hidden_size = self.hparams["hidden_size"]
|
|
||||||
|
|
||||||
self.gguf_writer.add_name('persimmon-8b-chat')
|
|
||||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
|
||||||
self.gguf_writer.add_embedding_length(hidden_size)
|
|
||||||
self.gguf_writer.add_block_count(block_count)
|
|
||||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
|
||||||
|
|
||||||
# NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
|
|
||||||
# than the head size?
|
|
||||||
# ref: https://github.com/ggerganov/llama.cpp/pull/4889
|
|
||||||
# self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
|
|
||||||
self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
|
|
||||||
|
|
||||||
self.gguf_writer.add_head_count(head_count)
|
|
||||||
self.gguf_writer.add_head_count_kv(head_count_kv)
|
|
||||||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
|
||||||
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
|
|
||||||
|
|
||||||
def set_vocab(self):
|
|
||||||
self._set_vocab_sentencepiece()
|
|
||||||
# self.gguf_writer.add_bos_token_id(71013)
|
|
||||||
# self.gguf_writer.add_eos_token_id(71013)
|
|
||||||
|
|
||||||
def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
|
|
||||||
del name, new_name, bid, n_dims # unused
|
|
||||||
|
|
||||||
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
|
||||||
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
|
@Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
|
||||||
class StableLMModel(Model):
|
class StableLMModel(Model):
|
||||||
model_arch = gguf.MODEL_ARCH.STABLELM
|
model_arch = gguf.MODEL_ARCH.STABLELM
|
||||||
@ -1215,6 +1175,7 @@ class StableLMModel(Model):
|
|||||||
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
|
self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
|
||||||
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
|
||||||
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
_q_norms: list[dict[str, Tensor]] | None = None
|
_q_norms: list[dict[str, Tensor]] | None = None
|
||||||
_k_norms: list[dict[str, Tensor]] | None = None
|
_k_norms: list[dict[str, Tensor]] | None = None
|
||||||
@ -1591,6 +1552,7 @@ class QwenModel(Model):
|
|||||||
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
|
||||||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
|
|
||||||
@Model.register("Qwen2ForCausalLM")
|
@Model.register("Qwen2ForCausalLM")
|
||||||
@ -1779,6 +1741,38 @@ class Phi3MiniModel(Model):
|
|||||||
scores[token_id] = -1000.0
|
scores[token_id] = -1000.0
|
||||||
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||||
|
|
||||||
|
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||||
|
if tokenizer_config_file.is_file():
|
||||||
|
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||||
|
tokenizer_config_json = json.load(f)
|
||||||
|
added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
|
||||||
|
for token_id, foken_data in added_tokens_decoder.items():
|
||||||
|
token_id = int(token_id)
|
||||||
|
token = foken_data["content"].encode("utf-8")
|
||||||
|
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
||||||
|
assert tokens[token_id] == token
|
||||||
|
tokens[token_id] = token
|
||||||
|
scores[token_id] = -1000.0
|
||||||
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||||
|
if foken_data.get("special"):
|
||||||
|
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
|
||||||
|
|
||||||
|
tokenizer_file = self.dir_model / 'tokenizer.json'
|
||||||
|
if tokenizer_file.is_file():
|
||||||
|
with open(tokenizer_file, "r", encoding="utf-8") as f:
|
||||||
|
tokenizer_json = json.load(f)
|
||||||
|
added_tokens = tokenizer_json.get("added_tokens", [])
|
||||||
|
for foken_data in added_tokens:
|
||||||
|
token_id = int(foken_data["id"])
|
||||||
|
token = foken_data["content"].encode("utf-8")
|
||||||
|
if toktypes[token_id] != SentencePieceTokenTypes.UNKNOWN:
|
||||||
|
assert tokens[token_id] == token
|
||||||
|
tokens[token_id] = token
|
||||||
|
scores[token_id] = -1000.0
|
||||||
|
toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
|
||||||
|
if foken_data.get("special"):
|
||||||
|
toktypes[token_id] = SentencePieceTokenTypes.CONTROL
|
||||||
|
|
||||||
self.gguf_writer.add_tokenizer_model("llama")
|
self.gguf_writer.add_tokenizer_model("llama")
|
||||||
self.gguf_writer.add_tokenizer_pre("default")
|
self.gguf_writer.add_tokenizer_pre("default")
|
||||||
self.gguf_writer.add_token_list(tokens)
|
self.gguf_writer.add_token_list(tokens)
|
||||||
@ -1791,23 +1785,59 @@ class Phi3MiniModel(Model):
|
|||||||
def set_gguf_parameters(self):
|
def set_gguf_parameters(self):
|
||||||
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
|
||||||
|
|
||||||
rot_pct = 1.0
|
|
||||||
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
n_embd = self.find_hparam(["hidden_size", "n_embd"])
|
||||||
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
n_head = self.find_hparam(["num_attention_heads", "n_head"])
|
||||||
|
n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
|
||||||
rms_eps = self.find_hparam(["rms_norm_eps"])
|
rms_eps = self.find_hparam(["rms_norm_eps"])
|
||||||
|
max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
|
||||||
|
orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
|
||||||
|
rope_dims = n_embd // n_head
|
||||||
|
|
||||||
self.gguf_writer.add_name("Phi3")
|
self.gguf_writer.add_name("Phi3")
|
||||||
self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
|
self.gguf_writer.add_context_length(max_pos_embds)
|
||||||
|
self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
|
||||||
self.gguf_writer.add_embedding_length(n_embd)
|
self.gguf_writer.add_embedding_length(n_embd)
|
||||||
self.gguf_writer.add_feed_forward_length(8192)
|
self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
|
||||||
self.gguf_writer.add_block_count(block_count)
|
self.gguf_writer.add_block_count(block_count)
|
||||||
self.gguf_writer.add_head_count(n_head)
|
self.gguf_writer.add_head_count(n_head)
|
||||||
self.gguf_writer.add_head_count_kv(n_head)
|
self.gguf_writer.add_head_count_kv(n_head_kv)
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
|
self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
|
||||||
self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
|
self.gguf_writer.add_rope_dimension_count(rope_dims)
|
||||||
|
self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
|
||||||
self.gguf_writer.add_file_type(self.ftype)
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
|
# write rope scaling for long context (128k) model
|
||||||
|
rope_scaling = self.find_hparam(['rope_scaling'], True)
|
||||||
|
if (rope_scaling is None):
|
||||||
|
return
|
||||||
|
|
||||||
|
scale = max_pos_embds / orig_max_pos_embds
|
||||||
|
|
||||||
|
rope_scaling_type = rope_scaling.get('type', '').lower()
|
||||||
|
if len(rope_scaling_type) == 0:
|
||||||
|
raise KeyError('Missing the required key rope_scaling.type')
|
||||||
|
|
||||||
|
if rope_scaling_type == 'su':
|
||||||
|
attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
|
||||||
|
elif rope_scaling_type == 'yarn':
|
||||||
|
attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
|
||||||
|
|
||||||
|
self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
|
||||||
|
|
||||||
|
long_factors = rope_scaling.get('long_factor', None)
|
||||||
|
short_factors = rope_scaling.get('short_factor', None)
|
||||||
|
|
||||||
|
if long_factors is None or short_factors is None:
|
||||||
|
raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
|
||||||
|
|
||||||
|
if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
|
||||||
|
raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
|
||||||
|
|
||||||
|
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
|
||||||
|
self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
|
||||||
|
|
||||||
|
|
||||||
@Model.register("PlamoForCausalLM")
|
@Model.register("PlamoForCausalLM")
|
||||||
class PlamoModel(Model):
|
class PlamoModel(Model):
|
||||||
@ -1828,6 +1858,7 @@ class PlamoModel(Model):
|
|||||||
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
self.gguf_writer.add_head_count(hparams["num_attention_heads"])
|
||||||
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
|
self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
def shuffle_attn_q_weight(self, data_torch):
|
def shuffle_attn_q_weight(self, data_torch):
|
||||||
assert data_torch.size() == (5120, 5120)
|
assert data_torch.size() == (5120, 5120)
|
||||||
@ -2007,6 +2038,7 @@ in chat mode so that the conversation can end normally.")
|
|||||||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||||
num_heads = self.hparams["num_attention_heads"]
|
num_heads = self.hparams["num_attention_heads"]
|
||||||
@ -2415,25 +2447,15 @@ class LazyTorchTensor(gguf.LazyBase):
|
|||||||
def numpy(self) -> gguf.LazyNumpyTensor:
|
def numpy(self) -> gguf.LazyNumpyTensor:
|
||||||
dtype = self._dtype_map[self.dtype]
|
dtype = self._dtype_map[self.dtype]
|
||||||
return gguf.LazyNumpyTensor(
|
return gguf.LazyNumpyTensor(
|
||||||
meta=np.lib.stride_tricks.as_strided(np.zeros(1, dtype), self.shape, (0 for _ in self.shape)),
|
meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
|
||||||
lazy=self._lazy,
|
lazy=self._lazy,
|
||||||
args=(self,),
|
args=(self,),
|
||||||
func=(lambda s: s[0].numpy())
|
func=(lambda s: s[0].numpy())
|
||||||
)
|
)
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def eager_to_meta(cls, t: Tensor) -> Tensor:
|
def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: torch.Size) -> Tensor:
|
||||||
if t.is_meta:
|
return torch.empty(size=shape, dtype=dtype, device="meta")
|
||||||
return t
|
|
||||||
return t.detach().to("meta")
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def meta_with_dtype(cls, m: Tensor, dtype: torch.dtype) -> Tensor:
|
|
||||||
m = m.detach()
|
|
||||||
if not m.is_meta:
|
|
||||||
m = m.to("meta")
|
|
||||||
m.dtype = dtype
|
|
||||||
return m
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
||||||
@ -2464,8 +2486,8 @@ def parse_args() -> argparse.Namespace:
|
|||||||
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--outtype", type=str, choices=["f32", "f16", "bf16", "auto"], default="f16",
|
"--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
|
||||||
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--bigendian", action="store_true",
|
"--bigendian", action="store_true",
|
||||||
@ -2523,6 +2545,7 @@ def main() -> None:
|
|||||||
"f32": gguf.LlamaFileType.ALL_F32,
|
"f32": gguf.LlamaFileType.ALL_F32,
|
||||||
"f16": gguf.LlamaFileType.MOSTLY_F16,
|
"f16": gguf.LlamaFileType.MOSTLY_F16,
|
||||||
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
|
"bf16": gguf.LlamaFileType.MOSTLY_BF16,
|
||||||
|
"q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
|
||||||
"auto": gguf.LlamaFileType.GUESSED,
|
"auto": gguf.LlamaFileType.GUESSED,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1,143 +0,0 @@
|
|||||||
#!/usr/bin/env python3
|
|
||||||
from __future__ import annotations
|
|
||||||
|
|
||||||
import logging
|
|
||||||
import argparse
|
|
||||||
import os
|
|
||||||
import sys
|
|
||||||
from pathlib import Path
|
|
||||||
from pprint import pprint
|
|
||||||
|
|
||||||
import torch
|
|
||||||
from sentencepiece import SentencePieceProcessor
|
|
||||||
|
|
||||||
if 'NO_LOCAL_GGUF' not in os.environ:
|
|
||||||
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
|
|
||||||
import gguf
|
|
||||||
|
|
||||||
logger = logging.getLogger("persimmon-to-gguf")
|
|
||||||
|
|
||||||
|
|
||||||
def _flatten_dict(dct, tensors, prefix=None):
|
|
||||||
assert isinstance(dct, dict)
|
|
||||||
for key in dct.keys():
|
|
||||||
new_prefix = prefix + '.' + key if prefix is not None else key
|
|
||||||
if isinstance(dct[key], torch.Tensor):
|
|
||||||
tensors[new_prefix] = dct[key]
|
|
||||||
elif isinstance(dct[key], dict):
|
|
||||||
_flatten_dict(dct[key], tensors, new_prefix)
|
|
||||||
else:
|
|
||||||
raise ValueError(type(dct[key]))
|
|
||||||
return None
|
|
||||||
|
|
||||||
|
|
||||||
def _get_sentencepiece_tokenizer_info(dir_model: Path):
|
|
||||||
tokenizer_path = dir_model / 'adept_vocab.model'
|
|
||||||
logger.info('getting sentencepiece tokenizer from', tokenizer_path)
|
|
||||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
|
||||||
logger.info('adding tokens')
|
|
||||||
tokens: list[bytes] = []
|
|
||||||
scores: list[float] = []
|
|
||||||
toktypes: list[int] = []
|
|
||||||
|
|
||||||
for i in range(tokenizer.vocab_size()):
|
|
||||||
text: bytes
|
|
||||||
score: float
|
|
||||||
|
|
||||||
piece = tokenizer.id_to_piece(i)
|
|
||||||
text = piece.encode("utf-8")
|
|
||||||
score = tokenizer.get_score(i)
|
|
||||||
|
|
||||||
toktype = 1
|
|
||||||
if tokenizer.is_unknown(i):
|
|
||||||
toktype = 2
|
|
||||||
if tokenizer.is_control(i):
|
|
||||||
toktype = 3
|
|
||||||
if tokenizer.is_unused(i):
|
|
||||||
toktype = 5
|
|
||||||
if tokenizer.is_byte(i):
|
|
||||||
toktype = 6
|
|
||||||
|
|
||||||
tokens.append(text)
|
|
||||||
scores.append(score)
|
|
||||||
toktypes.append(toktype)
|
|
||||||
pass
|
|
||||||
return tokens, scores, toktypes
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
|
|
||||||
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
|
||||||
parser.add_argument("--ckpt-path", type=Path, help="path to persimmon checkpoint .pt file")
|
|
||||||
parser.add_argument("--model-dir", type=Path, help="directory containing model e.g. 8b_chat_model_release")
|
|
||||||
parser.add_argument("--adept-inference-dir", type=str, help="path to adept-inference code directory")
|
|
||||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
|
||||||
args = parser.parse_args()
|
|
||||||
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
|
|
||||||
sys.path.append(str(args.adept_inference_dir))
|
|
||||||
persimmon_model = torch.load(args.ckpt_path)
|
|
||||||
hparams = persimmon_model['args']
|
|
||||||
pprint(hparams)
|
|
||||||
tensors: dict[str, torch.Tensor] = {}
|
|
||||||
_flatten_dict(persimmon_model['model'], tensors, None)
|
|
||||||
|
|
||||||
arch = gguf.MODEL_ARCH.PERSIMMON
|
|
||||||
gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
|
|
||||||
|
|
||||||
block_count = hparams.num_layers
|
|
||||||
head_count = hparams.num_attention_heads
|
|
||||||
head_count_kv = head_count
|
|
||||||
ctx_length = hparams.seq_length
|
|
||||||
hidden_size = hparams.hidden_size
|
|
||||||
|
|
||||||
gguf_writer.add_name('persimmon-8b-chat')
|
|
||||||
gguf_writer.add_context_length(ctx_length)
|
|
||||||
gguf_writer.add_embedding_length(hidden_size)
|
|
||||||
gguf_writer.add_block_count(block_count)
|
|
||||||
gguf_writer.add_feed_forward_length(hparams.ffn_hidden_size)
|
|
||||||
# ref: https://github.com/ggerganov/llama.cpp/pull/4889/commits/eea19039fc52ea2dbd1aab45b59ab4e3e29a3443
|
|
||||||
gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
|
|
||||||
gguf_writer.add_head_count(head_count)
|
|
||||||
gguf_writer.add_head_count_kv(head_count_kv)
|
|
||||||
gguf_writer.add_rope_freq_base(hparams.rotary_emb_base)
|
|
||||||
gguf_writer.add_layer_norm_eps(hparams.layernorm_epsilon)
|
|
||||||
|
|
||||||
tokens, scores, toktypes = _get_sentencepiece_tokenizer_info(args.model_dir)
|
|
||||||
gguf_writer.add_tokenizer_model('llama')
|
|
||||||
gguf_writer.add_tokenizer_pre('default')
|
|
||||||
gguf_writer.add_token_list(tokens)
|
|
||||||
gguf_writer.add_token_scores(scores)
|
|
||||||
gguf_writer.add_token_types(toktypes)
|
|
||||||
gguf_writer.add_bos_token_id(71013)
|
|
||||||
gguf_writer.add_eos_token_id(71013)
|
|
||||||
|
|
||||||
tensor_map = gguf.get_tensor_name_map(arch, block_count)
|
|
||||||
logger.info(tensor_map)
|
|
||||||
for name in tensors.keys():
|
|
||||||
data_torch = tensors[name]
|
|
||||||
if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
|
||||||
continue
|
|
||||||
old_dtype = data_torch.dtype
|
|
||||||
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
|
||||||
data = data_torch.to(torch.float32).squeeze().numpy()
|
|
||||||
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
|
||||||
if new_name is None:
|
|
||||||
raise ValueError(f"Can not map tensor '{name}'")
|
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
|
||||||
logger.debug(f"{new_name}, n_dims = {str(n_dims)}, {str(old_dtype)} --> {str(data.dtype)}")
|
|
||||||
gguf_writer.add_tensor(new_name, data)
|
|
||||||
logger.info("gguf: write header")
|
|
||||||
gguf_writer.write_header_to_file()
|
|
||||||
logger.info("gguf: write metadata")
|
|
||||||
gguf_writer.write_kv_data_to_file()
|
|
||||||
logger.info("gguf: write tensors")
|
|
||||||
gguf_writer.write_tensors_to_file()
|
|
||||||
|
|
||||||
gguf_writer.close()
|
|
||||||
|
|
||||||
logger.info(f"gguf: model successfully exported to '{args.outfile}'")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
178
convert.py
178
convert.py
@ -24,7 +24,7 @@ from abc import ABC, abstractmethod
|
|||||||
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
|
||||||
from dataclasses import dataclass
|
from dataclasses import dataclass
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable
|
from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable, Optional
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from sentencepiece import SentencePieceProcessor
|
from sentencepiece import SentencePieceProcessor
|
||||||
@ -344,10 +344,47 @@ class Params:
|
|||||||
return params
|
return params
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Metadata:
|
||||||
|
name: Optional[str] = None
|
||||||
|
author: Optional[str] = None
|
||||||
|
version: Optional[str] = None
|
||||||
|
url: Optional[str] = None
|
||||||
|
description: Optional[str] = None
|
||||||
|
licence: Optional[str] = None
|
||||||
|
source_url: Optional[str] = None
|
||||||
|
source_hf_repo: Optional[str] = None
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def load(metadata_path: Path) -> Metadata:
|
||||||
|
if metadata_path is None or not metadata_path.exists():
|
||||||
|
return Metadata()
|
||||||
|
|
||||||
|
with open(metadata_path, 'r') as file:
|
||||||
|
data = json.load(file)
|
||||||
|
|
||||||
|
# Create a new Metadata instance
|
||||||
|
metadata = Metadata()
|
||||||
|
|
||||||
|
# Assigning values to Metadata attributes if they exist in the JSON file
|
||||||
|
# This is based on LLM_KV_NAMES mapping in llama.cpp
|
||||||
|
metadata.name = data.get("general.name")
|
||||||
|
metadata.author = data.get("general.author")
|
||||||
|
metadata.version = data.get("general.version")
|
||||||
|
metadata.url = data.get("general.url")
|
||||||
|
metadata.description = data.get("general.description")
|
||||||
|
metadata.license = data.get("general.license")
|
||||||
|
metadata.source_url = data.get("general.source.url")
|
||||||
|
metadata.source_hf_repo = data.get("general.source.huggingface.repository")
|
||||||
|
|
||||||
|
return metadata
|
||||||
|
|
||||||
|
|
||||||
#
|
#
|
||||||
# vocab
|
# vocab
|
||||||
#
|
#
|
||||||
|
|
||||||
|
|
||||||
@runtime_checkable
|
@runtime_checkable
|
||||||
class BaseVocab(Protocol):
|
class BaseVocab(Protocol):
|
||||||
tokenizer_model: ClassVar[str]
|
tokenizer_model: ClassVar[str]
|
||||||
@ -1066,21 +1103,42 @@ class OutputFile:
|
|||||||
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
|
def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE):
|
||||||
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess)
|
||||||
|
|
||||||
def add_meta_arch(self, params: Params) -> None:
|
def add_meta_model(self, params: Params, metadata: Metadata) -> None:
|
||||||
|
# Metadata About The Model And Its Provenence
|
||||||
name = "LLaMA"
|
name = "LLaMA"
|
||||||
|
if metadata is not None and metadata.name is not None:
|
||||||
# TODO: better logic to determine model name
|
name = metadata.name
|
||||||
if params.n_ctx == 4096:
|
|
||||||
name = "LLaMA v2"
|
|
||||||
elif params.path_model is not None:
|
elif params.path_model is not None:
|
||||||
name = str(params.path_model.parent).split('/')[-1]
|
name = params.path_model.name
|
||||||
|
elif params.n_ctx == 4096:
|
||||||
|
# Heuristic detection of LLaMA v2 model
|
||||||
|
name = "LLaMA v2"
|
||||||
|
|
||||||
self.gguf.add_name (name)
|
self.gguf.add_name(name)
|
||||||
self.gguf.add_vocab_size (params.n_vocab)
|
|
||||||
self.gguf.add_context_length (params.n_ctx)
|
if metadata is not None:
|
||||||
self.gguf.add_embedding_length (params.n_embd)
|
if metadata.author is not None:
|
||||||
self.gguf.add_block_count (params.n_layer)
|
self.gguf.add_author(metadata.author)
|
||||||
self.gguf.add_feed_forward_length (params.n_ff)
|
if metadata.version is not None:
|
||||||
|
self.gguf.add_version(metadata.version)
|
||||||
|
if metadata.url is not None:
|
||||||
|
self.gguf.add_url(metadata.url)
|
||||||
|
if metadata.description is not None:
|
||||||
|
self.gguf.add_description(metadata.description)
|
||||||
|
if metadata.licence is not None:
|
||||||
|
self.gguf.add_licence(metadata.licence)
|
||||||
|
if metadata.source_url is not None:
|
||||||
|
self.gguf.add_source_url(metadata.source_url)
|
||||||
|
if metadata.source_hf_repo is not None:
|
||||||
|
self.gguf.add_source_hf_repo(metadata.source_hf_repo)
|
||||||
|
|
||||||
|
def add_meta_arch(self, params: Params) -> None:
|
||||||
|
# Metadata About The Neural Architecture Itself
|
||||||
|
self.gguf.add_vocab_size(params.n_vocab)
|
||||||
|
self.gguf.add_context_length(params.n_ctx)
|
||||||
|
self.gguf.add_embedding_length(params.n_embd)
|
||||||
|
self.gguf.add_block_count(params.n_layer)
|
||||||
|
self.gguf.add_feed_forward_length(params.n_ff)
|
||||||
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
|
self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
|
||||||
self.gguf.add_head_count (params.n_head)
|
self.gguf.add_head_count (params.n_head)
|
||||||
self.gguf.add_head_count_kv (params.n_head_kv)
|
self.gguf.add_head_count_kv (params.n_head_kv)
|
||||||
@ -1183,13 +1241,14 @@ class OutputFile:
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def write_vocab_only(
|
def write_vocab_only(
|
||||||
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
|
fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab,
|
||||||
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False,
|
endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, metadata: Metadata = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
||||||
|
|
||||||
of = OutputFile(fname_out, endianess=endianess)
|
of = OutputFile(fname_out, endianess=endianess)
|
||||||
|
|
||||||
# meta data
|
# meta data
|
||||||
|
of.add_meta_model(params, metadata)
|
||||||
of.add_meta_arch(params)
|
of.add_meta_arch(params)
|
||||||
of.add_meta_vocab(vocab)
|
of.add_meta_vocab(vocab)
|
||||||
of.add_meta_special_vocab(svocab)
|
of.add_meta_special_vocab(svocab)
|
||||||
@ -1216,12 +1275,14 @@ class OutputFile:
|
|||||||
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
|
fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: BaseVocab, svocab: gguf.SpecialVocab,
|
||||||
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE,
|
||||||
pad_vocab: bool = False,
|
pad_vocab: bool = False,
|
||||||
|
metadata: Metadata = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
check_vocab_size(params, vocab, pad_vocab=pad_vocab)
|
||||||
|
|
||||||
of = OutputFile(fname_out, endianess=endianess)
|
of = OutputFile(fname_out, endianess=endianess)
|
||||||
|
|
||||||
# meta data
|
# meta data
|
||||||
|
of.add_meta_model(params, metadata)
|
||||||
of.add_meta_arch(params)
|
of.add_meta_arch(params)
|
||||||
if isinstance(vocab, Vocab):
|
if isinstance(vocab, Vocab):
|
||||||
of.add_meta_vocab(vocab)
|
of.add_meta_vocab(vocab)
|
||||||
@ -1257,6 +1318,37 @@ def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileT
|
|||||||
raise ValueError(f"Unexpected combination of types: {name_to_type}")
|
raise ValueError(f"Unexpected combination of types: {name_to_type}")
|
||||||
|
|
||||||
|
|
||||||
|
def model_parameter_count(model: LazyModel) -> int:
|
||||||
|
total_model_parameters = 0
|
||||||
|
for i, (name, lazy_tensor) in enumerate(model.items()):
|
||||||
|
sum_weights_in_tensor = 1
|
||||||
|
for dim in lazy_tensor.shape:
|
||||||
|
sum_weights_in_tensor *= dim
|
||||||
|
total_model_parameters += sum_weights_in_tensor
|
||||||
|
return total_model_parameters
|
||||||
|
|
||||||
|
|
||||||
|
def model_parameter_count_rounded_notation(model_params_count: int) -> str:
|
||||||
|
if model_params_count > 1e12 :
|
||||||
|
# Trillions Of Parameters
|
||||||
|
scaled_model_params = model_params_count * 1e-12
|
||||||
|
scale_suffix = "T"
|
||||||
|
elif model_params_count > 1e9 :
|
||||||
|
# Billions Of Parameters
|
||||||
|
scaled_model_params = model_params_count * 1e-9
|
||||||
|
scale_suffix = "B"
|
||||||
|
elif model_params_count > 1e6 :
|
||||||
|
# Millions Of Parameters
|
||||||
|
scaled_model_params = model_params_count * 1e-6
|
||||||
|
scale_suffix = "M"
|
||||||
|
else:
|
||||||
|
# Thousands Of Parameters
|
||||||
|
scaled_model_params = model_params_count * 1e-3
|
||||||
|
scale_suffix = "K"
|
||||||
|
|
||||||
|
return f"{round(scaled_model_params)}{scale_suffix}"
|
||||||
|
|
||||||
|
|
||||||
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
|
||||||
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
|
return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
|
||||||
for (name, tensor) in model.items()}
|
for (name, tensor) in model.items()}
|
||||||
@ -1436,13 +1528,35 @@ class VocabFactory:
|
|||||||
return vocab, special_vocab
|
return vocab, special_vocab
|
||||||
|
|
||||||
|
|
||||||
def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path:
|
def default_convention_outfile(file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> str:
|
||||||
namestr = {
|
quantization = {
|
||||||
GGMLFileType.AllF32: "f32",
|
GGMLFileType.AllF32: "F32",
|
||||||
GGMLFileType.MostlyF16: "f16",
|
GGMLFileType.MostlyF16: "F16",
|
||||||
GGMLFileType.MostlyQ8_0:"q8_0",
|
GGMLFileType.MostlyQ8_0: "Q8_0",
|
||||||
}[file_type]
|
}[file_type]
|
||||||
ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
|
|
||||||
|
parameters = model_parameter_count_rounded_notation(model_params_count)
|
||||||
|
|
||||||
|
expert_count = ""
|
||||||
|
if params.n_experts is not None:
|
||||||
|
expert_count = f"{params.n_experts}x"
|
||||||
|
|
||||||
|
version = ""
|
||||||
|
if metadata is not None and metadata.version is not None:
|
||||||
|
version = f"-{metadata.version}"
|
||||||
|
|
||||||
|
name = "ggml-model"
|
||||||
|
if metadata is not None and metadata.name is not None:
|
||||||
|
name = metadata.name
|
||||||
|
elif params.path_model is not None:
|
||||||
|
name = params.path_model.name
|
||||||
|
|
||||||
|
return f"{name}{version}-{expert_count}{parameters}-{quantization}"
|
||||||
|
|
||||||
|
|
||||||
|
def default_outfile(model_paths: list[Path], file_type: GGMLFileType, params: Params, model_params_count: int, metadata: Metadata) -> Path:
|
||||||
|
default_filename = default_convention_outfile(file_type, params, model_params_count, metadata)
|
||||||
|
ret = model_paths[0].parent / f"{default_filename}.gguf"
|
||||||
if ret in model_paths:
|
if ret in model_paths:
|
||||||
logger.error(
|
logger.error(
|
||||||
f"Error: Default output path ({ret}) would overwrite the input. "
|
f"Error: Default output path ({ret}) would overwrite the input. "
|
||||||
@ -1480,17 +1594,30 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
||||||
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
|
parser.add_argument("--skip-unknown", action="store_true", help="skip unknown tensor names instead of failing")
|
||||||
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
|
||||||
|
parser.add_argument("--metadata", type=Path, help="Specify the path for a metadata file")
|
||||||
|
parser.add_argument("--get-outfile", action="store_true", help="get calculated default outfile name")
|
||||||
|
|
||||||
args = parser.parse_args(args_in)
|
args = parser.parse_args(args_in)
|
||||||
|
|
||||||
if args.verbose:
|
if args.verbose:
|
||||||
logging.basicConfig(level=logging.DEBUG)
|
logging.basicConfig(level=logging.DEBUG)
|
||||||
elif args.dump_single or args.dump:
|
elif args.dump_single or args.dump or args.get_outfile:
|
||||||
# Avoid printing anything besides the dump output
|
# Avoid printing anything besides the dump output
|
||||||
logging.basicConfig(level=logging.WARNING)
|
logging.basicConfig(level=logging.WARNING)
|
||||||
else:
|
else:
|
||||||
logging.basicConfig(level=logging.INFO)
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
|
||||||
|
metadata = Metadata.load(args.metadata)
|
||||||
|
|
||||||
|
if args.get_outfile:
|
||||||
|
model_plus = load_some_model(args.model)
|
||||||
|
params = Params.load(model_plus)
|
||||||
|
model = convert_model_names(model_plus.model, params, args.skip_unknown)
|
||||||
|
model_params_count = model_parameter_count(model_plus.model)
|
||||||
|
ftype = pick_output_type(model, args.outtype)
|
||||||
|
print(f"{default_convention_outfile(ftype, params, model_params_count, metadata)}") # noqa: NP100
|
||||||
|
return
|
||||||
|
|
||||||
if args.no_vocab and args.vocab_only:
|
if args.no_vocab and args.vocab_only:
|
||||||
raise ValueError("--vocab-only does not make sense with --no-vocab")
|
raise ValueError("--vocab-only does not make sense with --no-vocab")
|
||||||
|
|
||||||
@ -1504,6 +1631,9 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
else:
|
else:
|
||||||
model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
|
model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
|
||||||
|
|
||||||
|
model_params_count = model_parameter_count(model_plus.model)
|
||||||
|
logger.info(f"model parameters count : {model_params_count} ({model_parameter_count_rounded_notation(model_params_count)})")
|
||||||
|
|
||||||
if args.dump:
|
if args.dump:
|
||||||
do_dump_model(model_plus)
|
do_dump_model(model_plus)
|
||||||
return
|
return
|
||||||
@ -1557,7 +1687,7 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
f_norm_eps = 1e-5,
|
f_norm_eps = 1e-5,
|
||||||
)
|
)
|
||||||
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
|
OutputFile.write_vocab_only(outfile, params, vocab, special_vocab,
|
||||||
endianess=endianess, pad_vocab=args.pad_vocab)
|
endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
|
||||||
logger.info(f"Wrote {outfile}")
|
logger.info(f"Wrote {outfile}")
|
||||||
return
|
return
|
||||||
|
|
||||||
@ -1570,13 +1700,13 @@ def main(args_in: list[str] | None = None) -> None:
|
|||||||
model = convert_model_names(model, params, args.skip_unknown)
|
model = convert_model_names(model, params, args.skip_unknown)
|
||||||
ftype = pick_output_type(model, args.outtype)
|
ftype = pick_output_type(model, args.outtype)
|
||||||
model = convert_to_output_type(model, ftype)
|
model = convert_to_output_type(model, ftype)
|
||||||
outfile = args.outfile or default_outfile(model_plus.paths, ftype)
|
outfile = args.outfile or default_outfile(model_plus.paths, ftype, params, model_params_count, metadata)
|
||||||
|
|
||||||
params.ftype = ftype
|
params.ftype = ftype
|
||||||
logger.info(f"Writing {outfile}, format {ftype}")
|
logger.info(f"Writing {outfile}, format {ftype}")
|
||||||
|
|
||||||
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
|
OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab,
|
||||||
concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab)
|
concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab, metadata=metadata)
|
||||||
logger.info(f"Wrote {outfile}")
|
logger.info(f"Wrote {outfile}")
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
# Debugging Tests Tips
|
# Debugging Tests Tips
|
||||||
|
|
||||||
## How to run & debug a specific test without anything else to keep the feedback loop short?
|
## How to run & execute or debug a specific test without anything else to keep the feedback loop short?
|
||||||
|
|
||||||
There is a script called debug-test.sh in the scripts folder whose parameter takes a REGEX and an optional test number.
|
There is a script called debug-test.sh in the scripts folder whose parameter takes a REGEX and an optional test number.
|
||||||
|
|
||||||
@ -10,13 +10,27 @@ For example, running the following command will output an interactive list from
|
|||||||
|
|
||||||
It will then build & run in the debugger for you.
|
It will then build & run in the debugger for you.
|
||||||
|
|
||||||
|
To just execute a test and get back a PASS or FAIL message run:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
./scripts/debug-test.sh test-tokenizer
|
./scripts/debug-test.sh test-tokenizer
|
||||||
|
```
|
||||||
|
|
||||||
|
To test in GDB use the `-g` flag to enable gdb test mode.
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./scripts/debug-test.sh -g test-tokenizer
|
||||||
|
|
||||||
# Once in the debugger, i.e. at the chevrons prompt, setting a breakpoint could be as follows:
|
# Once in the debugger, i.e. at the chevrons prompt, setting a breakpoint could be as follows:
|
||||||
>>> b main
|
>>> b main
|
||||||
```
|
```
|
||||||
|
|
||||||
|
To speed up the testing loop, if you know your test number you can just run it similar to below:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./scripts/debug-test.sh test 23
|
||||||
|
```
|
||||||
|
|
||||||
For further reference use `debug-test.sh -h` to print help.
|
For further reference use `debug-test.sh -h` to print help.
|
||||||
|
|
||||||
|
|
||||||
@ -41,7 +55,7 @@ cmake -DCMAKE_BUILD_TYPE=Debug -DLLAMA_CUDA=1 -DLLAMA_FATAL_WARNINGS=ON ..
|
|||||||
make -j
|
make -j
|
||||||
```
|
```
|
||||||
|
|
||||||
#### Step 3.1: Identify Test Command for Debugging
|
#### Step 3: Find all tests available that matches REGEX
|
||||||
|
|
||||||
The output of this command will give you the command & arguments needed to run GDB.
|
The output of this command will give you the command & arguments needed to run GDB.
|
||||||
|
|
||||||
@ -69,11 +83,13 @@ Labels: main
|
|||||||
...
|
...
|
||||||
```
|
```
|
||||||
|
|
||||||
So for test #1 we can tell these two pieces of relevant information:
|
#### Step 4: Identify Test Command for Debugging
|
||||||
|
|
||||||
|
So for test #1 above we can tell these two pieces of relevant information:
|
||||||
* Test Binary: `~/llama.cpp/build-ci-debug/bin/test-tokenizer-0`
|
* Test Binary: `~/llama.cpp/build-ci-debug/bin/test-tokenizer-0`
|
||||||
* Test GGUF Model: `~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf`
|
* Test GGUF Model: `~/llama.cpp/tests/../models/ggml-vocab-llama-spm.gguf`
|
||||||
|
|
||||||
#### Step 3.2: Run GDB on test command
|
#### Step 5: Run GDB on test command
|
||||||
|
|
||||||
Based on the ctest 'test command' report above we can then run a gdb session via this command below:
|
Based on the ctest 'test command' report above we can then run a gdb session via this command below:
|
||||||
|
|
||||||
|
@ -49,4 +49,7 @@ else()
|
|||||||
add_subdirectory(server)
|
add_subdirectory(server)
|
||||||
endif()
|
endif()
|
||||||
add_subdirectory(export-lora)
|
add_subdirectory(export-lora)
|
||||||
|
if (LLAMA_RPC)
|
||||||
|
add_subdirectory(rpc)
|
||||||
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
@ -48,7 +48,7 @@ int main(int argc, char ** argv) {
|
|||||||
params.prompt = "Hello my name is";
|
params.prompt = "Hello my name is";
|
||||||
}
|
}
|
||||||
|
|
||||||
process_escapes(params.prompt);
|
string_process_escapes(params.prompt);
|
||||||
|
|
||||||
// init LLM
|
// init LLM
|
||||||
|
|
||||||
|
@ -80,7 +80,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
std::mt19937 rng(params.seed);
|
std::mt19937 rng(params.seed);
|
||||||
if (params.random_prompt) {
|
if (params.random_prompt) {
|
||||||
params.prompt = gpt_random_prompt(rng);
|
params.prompt = string_random_prompt(rng);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
@ -107,7 +107,7 @@ int main(int argc, char ** argv) {
|
|||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
// split the prompt into lines
|
// split the prompt into lines
|
||||||
@ -211,6 +211,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
// clean up
|
// clean up
|
||||||
llama_print_timings(ctx);
|
llama_print_timings(ctx);
|
||||||
|
llama_batch_free(batch);
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
@ -152,7 +152,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
std::mt19937 rng(params.seed);
|
std::mt19937 rng(params.seed);
|
||||||
if (params.random_prompt) {
|
if (params.random_prompt) {
|
||||||
params.prompt = gpt_random_prompt(rng);
|
params.prompt = string_random_prompt(rng);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
@ -176,7 +176,7 @@ int main(int argc, char ** argv) {
|
|||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
bool OK = run(ctx, params);
|
bool OK = run(ctx, params);
|
||||||
|
@ -563,8 +563,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
|||||||
// not capturing these, to silcence warnings
|
// not capturing these, to silcence warnings
|
||||||
const int rope_mode = 0;
|
const int rope_mode = 0;
|
||||||
|
|
||||||
return ggml_rope_custom(ctx,
|
return ggml_rope_ext(ctx,
|
||||||
t, KQ_pos, n_rot, rope_mode, n_ctx, 0,
|
t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, 0,
|
||||||
rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
|
rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
|
||||||
);
|
);
|
||||||
};
|
};
|
||||||
|
@ -598,7 +598,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
std::mt19937 rng(params.seed);
|
std::mt19937 rng(params.seed);
|
||||||
if (params.random_prompt) {
|
if (params.random_prompt) {
|
||||||
params.prompt = gpt_random_prompt(rng);
|
params.prompt = string_random_prompt(rng);
|
||||||
}
|
}
|
||||||
|
|
||||||
sparams.dataset = params.prompt_file;
|
sparams.dataset = params.prompt_file;
|
||||||
@ -667,7 +667,7 @@ int main(int argc, char ** argv) {
|
|||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk);
|
bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk);
|
||||||
|
@ -50,9 +50,9 @@ static void write_logfile(
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
const std::string timestamp = get_sortable_timestamp();
|
const std::string timestamp = string_get_sortable_timestamp();
|
||||||
|
|
||||||
const bool success = create_directory_with_parents(params.logdir);
|
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||||
if (!success) {
|
if (!success) {
|
||||||
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||||
__func__, params.logdir.c_str());
|
__func__, params.logdir.c_str());
|
||||||
@ -70,7 +70,7 @@ static void write_logfile(
|
|||||||
fprintf(logfile, "binary: infill\n");
|
fprintf(logfile, "binary: infill\n");
|
||||||
char model_desc[128];
|
char model_desc[128];
|
||||||
llama_model_desc(model, model_desc, sizeof(model_desc));
|
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||||
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||||
|
|
||||||
fprintf(logfile, "\n");
|
fprintf(logfile, "\n");
|
||||||
fprintf(logfile, "######################\n");
|
fprintf(logfile, "######################\n");
|
||||||
@ -78,8 +78,8 @@ static void write_logfile(
|
|||||||
fprintf(logfile, "######################\n");
|
fprintf(logfile, "######################\n");
|
||||||
fprintf(logfile, "\n");
|
fprintf(logfile, "\n");
|
||||||
|
|
||||||
dump_string_yaml_multiline(logfile, "output", output.c_str());
|
yaml_dump_string_multiline(logfile, "output", output.c_str());
|
||||||
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
|
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
|
||||||
|
|
||||||
llama_dump_timing_info_yaml(logfile, ctx);
|
llama_dump_timing_info_yaml(logfile, ctx);
|
||||||
fclose(logfile);
|
fclose(logfile);
|
||||||
@ -236,7 +236,7 @@ int main(int argc, char ** argv) {
|
|||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_TEE("\n");
|
LOG_TEE("\n");
|
||||||
LOG_TEE("%s\n", get_system_info(params).c_str());
|
LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
const bool add_bos = llama_should_add_bos_token(model);
|
const bool add_bos = llama_should_add_bos_token(model);
|
||||||
GGML_ASSERT(llama_add_eos_token(model) != 1);
|
GGML_ASSERT(llama_add_eos_token(model) != 1);
|
||||||
@ -621,8 +621,8 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
if (params.escape) {
|
if (params.escape) {
|
||||||
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
|
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
|
||||||
process_escapes(params.input_prefix);
|
string_process_escapes(params.input_prefix);
|
||||||
process_escapes(params.input_suffix);
|
string_process_escapes(params.input_suffix);
|
||||||
}
|
}
|
||||||
suff_rm_leading_spc = params.escape;
|
suff_rm_leading_spc = params.escape;
|
||||||
if (suff_rm_leading_spc && params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
|
if (suff_rm_leading_spc && params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {
|
||||||
|
@ -195,12 +195,12 @@ static const cmd_params cmd_params_defaults = {
|
|||||||
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
|
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
|
||||||
/* n_prompt */ {512},
|
/* n_prompt */ {512},
|
||||||
/* n_gen */ {128},
|
/* n_gen */ {128},
|
||||||
/* n_pg */ {{512, 128}},
|
/* n_pg */ {},
|
||||||
/* n_batch */ {2048},
|
/* n_batch */ {2048},
|
||||||
/* n_ubatch */ {512},
|
/* n_ubatch */ {512},
|
||||||
/* type_k */ {GGML_TYPE_F16},
|
/* type_k */ {GGML_TYPE_F16},
|
||||||
/* type_v */ {GGML_TYPE_F16},
|
/* type_v */ {GGML_TYPE_F16},
|
||||||
/* n_threads */ {get_math_cpu_count()},
|
/* n_threads */ {cpu_get_num_math()},
|
||||||
/* n_gpu_layers */ {99},
|
/* n_gpu_layers */ {99},
|
||||||
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
|
||||||
/* main_gpu */ {0},
|
/* main_gpu */ {0},
|
||||||
|
@ -12,15 +12,20 @@ cmake_minimum_required(VERSION 3.22.1)
|
|||||||
# build script scope).
|
# build script scope).
|
||||||
project("llama-android")
|
project("llama-android")
|
||||||
|
|
||||||
include(FetchContent)
|
## Fetch latest llama.cpp from GitHub
|
||||||
FetchContent_Declare(
|
#include(FetchContent)
|
||||||
llama
|
#FetchContent_Declare(
|
||||||
GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
|
# llama
|
||||||
GIT_TAG master
|
# GIT_REPOSITORY https://github.com/ggerganov/llama.cpp
|
||||||
)
|
# GIT_TAG master
|
||||||
|
#)
|
||||||
|
#
|
||||||
|
## Also provides "common"
|
||||||
|
#FetchContent_MakeAvailable(llama)
|
||||||
|
|
||||||
# Also provides "common"
|
# llama.cpp CI uses the code from the current branch
|
||||||
FetchContent_MakeAvailable(llama)
|
# ref: https://github.com/ggerganov/llama.cpp/pull/7341#issuecomment-2117617700
|
||||||
|
add_subdirectory(../../../../../../ build-llama)
|
||||||
|
|
||||||
# Creates and names a library, sets it as either STATIC
|
# Creates and names a library, sets it as either STATIC
|
||||||
# or SHARED, and provides the relative paths to its source code.
|
# or SHARED, and provides the relative paths to its source code.
|
||||||
|
@ -290,7 +290,7 @@ int main(int argc, char ** argv) {
|
|||||||
#endif // LOG_DISABLE_LOGS
|
#endif // LOG_DISABLE_LOGS
|
||||||
|
|
||||||
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
|
||||||
gpt_print_usage(argc, argv, params);
|
gpt_params_print_usage(argc, argv, params);
|
||||||
show_additional_info(argc, argv);
|
show_additional_info(argc, argv);
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
@ -300,6 +300,19 @@ int main(int argc, char ** argv) {
|
|||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (prompt_contains_image(params.prompt)) {
|
||||||
|
auto ctx_llava = llava_init_context(¶ms, model);
|
||||||
|
|
||||||
|
auto image_embed = load_image(ctx_llava, ¶ms, "");
|
||||||
|
|
||||||
|
// process the prompt
|
||||||
|
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||||
|
|
||||||
|
llama_print_timings(ctx_llava->ctx_llama);
|
||||||
|
llava_image_embed_free(image_embed);
|
||||||
|
ctx_llava->model = NULL;
|
||||||
|
llava_free(ctx_llava);
|
||||||
|
} else {
|
||||||
for (auto & image : params.image) {
|
for (auto & image : params.image) {
|
||||||
auto ctx_llava = llava_init_context(¶ms, model);
|
auto ctx_llava = llava_init_context(¶ms, model);
|
||||||
|
|
||||||
@ -317,6 +330,8 @@ int main(int argc, char ** argv) {
|
|||||||
ctx_llava->model = NULL;
|
ctx_llava->model = NULL;
|
||||||
llava_free(ctx_llava);
|
llava_free(ctx_llava);
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
llama_free_model(model);
|
llama_free_model(model);
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
@ -88,7 +88,6 @@ static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<
|
|||||||
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
|
// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
|
||||||
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
|
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
|
||||||
struct {
|
struct {
|
||||||
struct ggml_tensor * newline;
|
|
||||||
struct ggml_context * ctx;
|
struct ggml_context * ctx;
|
||||||
} model;
|
} model;
|
||||||
|
|
||||||
@ -150,20 +149,6 @@ static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *>
|
|||||||
|
|
||||||
model.ctx = ggml_init(params);
|
model.ctx = ggml_init(params);
|
||||||
|
|
||||||
ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip);
|
|
||||||
model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
|
|
||||||
if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) {
|
|
||||||
if (newline_tmp->buffer == NULL) {
|
|
||||||
LOG_TEE("newline_tmp tensor buffer is NULL\n");
|
|
||||||
}
|
|
||||||
ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp));
|
|
||||||
} else {
|
|
||||||
model.newline->data = newline_tmp->data;
|
|
||||||
if (model.newline->data == NULL) {
|
|
||||||
LOG_TEE("newline_tmp tensor data is NULL\n");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
|
struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
|
||||||
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
|
// ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
|
||||||
// fill it with the image embeddings, ignoring the base
|
// fill it with the image embeddings, ignoring the base
|
||||||
|
@ -174,7 +174,7 @@ int main(int argc, char ** argv) {
|
|||||||
// debug
|
// debug
|
||||||
if (dump_kv_cache) {
|
if (dump_kv_cache) {
|
||||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||||
dump_kv_cache_view_seqs(kvc_view, 40);
|
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||||
}
|
}
|
||||||
|
|
||||||
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/
|
||||||
|
@ -121,7 +121,7 @@ int main(int argc, char ** argv){
|
|||||||
// debug
|
// debug
|
||||||
if (dump_kv_cache) {
|
if (dump_kv_cache) {
|
||||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||||
dump_kv_cache_view_seqs(kvc_view, 40);
|
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||||
}
|
}
|
||||||
|
|
||||||
// print current draft sequence
|
// print current draft sequence
|
||||||
|
@ -325,3 +325,5 @@ These options provide extra functionality and customization when running the LLa
|
|||||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
|
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance.
|
||||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||||
|
|
||||||
|
- `-hfr URL --hf-repo URL`: The url to the Hugging Face model repository. Used in conjunction with `--hf-file` or `-hff`. The model is downloaded and stored in the file provided by `-m` or `--model`. If `-m` is not provided, the model is auto-stored in the path specified by the `LLAMA_CACHE` environment variable or in an OS-specific local cache.
|
||||||
|
@ -60,9 +60,9 @@ static void write_logfile(
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
const std::string timestamp = get_sortable_timestamp();
|
const std::string timestamp = string_get_sortable_timestamp();
|
||||||
|
|
||||||
const bool success = create_directory_with_parents(params.logdir);
|
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||||
if (!success) {
|
if (!success) {
|
||||||
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||||
__func__, params.logdir.c_str());
|
__func__, params.logdir.c_str());
|
||||||
@ -80,7 +80,7 @@ static void write_logfile(
|
|||||||
fprintf(logfile, "binary: main\n");
|
fprintf(logfile, "binary: main\n");
|
||||||
char model_desc[128];
|
char model_desc[128];
|
||||||
llama_model_desc(model, model_desc, sizeof(model_desc));
|
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||||
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||||
|
|
||||||
fprintf(logfile, "\n");
|
fprintf(logfile, "\n");
|
||||||
fprintf(logfile, "######################\n");
|
fprintf(logfile, "######################\n");
|
||||||
@ -88,8 +88,8 @@ static void write_logfile(
|
|||||||
fprintf(logfile, "######################\n");
|
fprintf(logfile, "######################\n");
|
||||||
fprintf(logfile, "\n");
|
fprintf(logfile, "\n");
|
||||||
|
|
||||||
dump_string_yaml_multiline(logfile, "output", output.c_str());
|
yaml_dump_string_multiline(logfile, "output", output.c_str());
|
||||||
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
|
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
|
||||||
|
|
||||||
llama_dump_timing_info_yaml(logfile, ctx);
|
llama_dump_timing_info_yaml(logfile, ctx);
|
||||||
fclose(logfile);
|
fclose(logfile);
|
||||||
@ -181,7 +181,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
std::mt19937 rng(params.seed);
|
std::mt19937 rng(params.seed);
|
||||||
if (params.random_prompt) {
|
if (params.random_prompt) {
|
||||||
params.prompt = gpt_random_prompt(rng);
|
params.prompt = string_random_prompt(rng);
|
||||||
}
|
}
|
||||||
|
|
||||||
LOG("%s: llama backend init\n", __func__);
|
LOG("%s: llama backend init\n", __func__);
|
||||||
@ -219,7 +219,7 @@ int main(int argc, char ** argv) {
|
|||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_TEE("\n");
|
LOG_TEE("\n");
|
||||||
LOG_TEE("%s\n", get_system_info(params).c_str());
|
LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
std::string path_session = params.path_prompt_cache;
|
std::string path_session = params.path_prompt_cache;
|
||||||
@ -707,7 +707,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
|
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
|
||||||
|
|
||||||
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
llama_sampling_accept(ctx_sampling, ctx, id, /* apply_grammar= */ true);
|
||||||
|
|
||||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
||||||
|
|
||||||
@ -728,7 +728,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
// push the prompt in the sampling context in order to apply repetition penalties later
|
||||||
// for the prompt, we don't apply grammar rules
|
// for the prompt, we don't apply grammar rules
|
||||||
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
|
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], /* apply_grammar= */ false);
|
||||||
|
|
||||||
++n_consumed;
|
++n_consumed;
|
||||||
if ((int) embd.size() >= params.n_batch) {
|
if ((int) embd.size() >= params.n_batch) {
|
||||||
@ -879,7 +879,7 @@ int main(int argc, char ** argv) {
|
|||||||
embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
|
embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
|
||||||
}
|
}
|
||||||
if (params.escape) {
|
if (params.escape) {
|
||||||
process_escapes(buffer);
|
string_process_escapes(buffer);
|
||||||
}
|
}
|
||||||
|
|
||||||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||||
|
@ -210,7 +210,7 @@ int main(int argc, char ** argv) {
|
|||||||
while (true) {
|
while (true) {
|
||||||
if (dump_kv_cache) {
|
if (dump_kv_cache) {
|
||||||
llama_kv_cache_view_update(ctx, &kvc_view);
|
llama_kv_cache_view_update(ctx, &kvc_view);
|
||||||
dump_kv_cache_view_seqs(kvc_view, 40);
|
llama_kv_cache_dump_view_seqs(kvc_view, 40);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_batch_clear(batch);
|
llama_batch_clear(batch);
|
||||||
|
@ -7,6 +7,8 @@ Also note that finetunes typically result in a higher perplexity value even thou
|
|||||||
|
|
||||||
Within llama.cpp the perplexity of base models is used primarily to judge the quality loss from e.g. quantized models vs. FP16.
|
Within llama.cpp the perplexity of base models is used primarily to judge the quality loss from e.g. quantized models vs. FP16.
|
||||||
The convention among contributors is to use the Wikitext-2 test set for testing unless noted otherwise (can be obtained with `scripts/get-wikitext-2.sh`).
|
The convention among contributors is to use the Wikitext-2 test set for testing unless noted otherwise (can be obtained with `scripts/get-wikitext-2.sh`).
|
||||||
|
When numbers are listed all command line arguments and compilation options are left at their defaults unless noted otherwise.
|
||||||
|
llama.cpp numbers are **not** directly comparable to those of other projects because the exact values depend strongly on the implementation details.
|
||||||
|
|
||||||
By default only the mean perplexity value and the corresponding uncertainty is calculated.
|
By default only the mean perplexity value and the corresponding uncertainty is calculated.
|
||||||
The uncertainty is determined empirically by assuming a Gaussian distribution of the "correct" logits per and then applying error propagation.
|
The uncertainty is determined empirically by assuming a Gaussian distribution of the "correct" logits per and then applying error propagation.
|
||||||
@ -32,12 +34,21 @@ In addition to the KL divergence the following statistics are calculated with `-
|
|||||||
|
|
||||||
## LLaMA 3 8b Scoreboard
|
## LLaMA 3 8b Scoreboard
|
||||||
|
|
||||||
Results are sorted by Kullback-Leibler divergence relative to FP16.
|
| Revision | f364eb6f |
|
||||||
|
|:---------|:-------------------|
|
||||||
|
| Backend | CUDA |
|
||||||
|
| CPU | AMD Epyc 7742 |
|
||||||
|
| GPU | 1x NVIDIA RTX 4090 |
|
||||||
|
|
||||||
|
Results were generated using the CUDA backend and are sorted by Kullback-Leibler divergence relative to FP16.
|
||||||
The "WT" importance matrices were created using varying numbers of Wikitext tokens and can be found [here](https://huggingface.co/JohannesGaessler/llama.cpp_importance_matrices/blob/main/imatrix-llama_3-8b-f16-2.7m_tokens.dat).
|
The "WT" importance matrices were created using varying numbers of Wikitext tokens and can be found [here](https://huggingface.co/JohannesGaessler/llama.cpp_importance_matrices/blob/main/imatrix-llama_3-8b-f16-2.7m_tokens.dat).
|
||||||
|
Note: the FP16 logits used for the calculation of all metrics other than perplexity are stored in a binary file between runs.
|
||||||
|
In order to save space this file does **not** contain the exact same FP32 logits but instead casts them to 16 bit unsigned integers (with some scaling).
|
||||||
|
So the "f16" results are to be understood as the difference resulting only from this downcast.
|
||||||
|
|
||||||
| Quantization | imatrix | Model size [GiB] | PPL | ΔPPL | KLD | Mean Δp | RMS Δp |
|
| Quantization | imatrix | Model size [GiB] | PPL | ΔPPL | KLD | Mean Δp | RMS Δp |
|
||||||
|--------------|---------|------------------|------------------------|------------------------|-----------------------|-------------------|------------------|
|
|--------------|---------|------------------|------------------------|------------------------|-----------------------|-------------------|------------------|
|
||||||
| f16 | None | 14.97 | 6.233160 ± 0.037828 | - | - | - | - |
|
| f16 | None | 14.97 | 6.233160 ± 0.037828 | 0.001524 ± 0.000755 | 0.000551 ± 0.000002 | 0.001 ± 0.002 % | 0.787 ± 0.004 % |
|
||||||
| q8_0 | None | 7.96 | 6.234284 ± 0.037878 | 0.002650 ± 0.001006 | 0.001355 ± 0.000006 | -0.019 ± 0.003 % | 1.198 ± 0.007 % |
|
| q8_0 | None | 7.96 | 6.234284 ± 0.037878 | 0.002650 ± 0.001006 | 0.001355 ± 0.000006 | -0.019 ± 0.003 % | 1.198 ± 0.007 % |
|
||||||
| q6_K | None | 6.14 | 6.253382 ± 0.038078 | 0.021748 ± 0.001852 | 0.005452 ± 0.000035 | -0.007 ± 0.006 % | 2.295 ± 0.019 % |
|
| q6_K | None | 6.14 | 6.253382 ± 0.038078 | 0.021748 ± 0.001852 | 0.005452 ± 0.000035 | -0.007 ± 0.006 % | 2.295 ± 0.019 % |
|
||||||
| q5_K_M | None | 5.33 | 6.288607 ± 0.038338 | 0.056974 ± 0.002598 | 0.010762 ± 0.000079 | -0.114 ± 0.008 % | 3.160 ± 0.031 % |
|
| q5_K_M | None | 5.33 | 6.288607 ± 0.038338 | 0.056974 ± 0.002598 | 0.010762 ± 0.000079 | -0.114 ± 0.008 % | 3.160 ± 0.031 % |
|
||||||
@ -89,6 +100,12 @@ K-quants score better on mean Δp than the legacy quants than e.g. KL divergence
|
|||||||
|
|
||||||
## LLaMA 2 vs. LLaMA 3 Quantization comparison
|
## LLaMA 2 vs. LLaMA 3 Quantization comparison
|
||||||
|
|
||||||
|
| Revision | f364eb6f |
|
||||||
|
|:---------|:-------------------|
|
||||||
|
| Backend | CUDA |
|
||||||
|
| CPU | AMD Epyc 7742 |
|
||||||
|
| GPU | 1x NVIDIA RTX 4090 |
|
||||||
|
|
||||||
| Metric | L2 7b q2_K | L3 8b q2_K | L2 7b q4_K_M | L3 8b q4_K_M | L2 7b q6_K | L3 8b q6_K | L2 7b q8_0 | L3 8b q8_0 |
|
| Metric | L2 7b q2_K | L3 8b q2_K | L2 7b q4_K_M | L3 8b q4_K_M | L2 7b q6_K | L3 8b q6_K | L2 7b q8_0 | L3 8b q8_0 |
|
||||||
|-----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|
|-----------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|
||||||
| Mean PPL | 5.794552 ± 0.032298 | 9.751568 ± 0.063312 | 5.877078 ± 0.032781 | 6.407115 ± 0.039119 | 5.808494 ± 0.032425 | 6.253382 ± 0.038078 | 5.798542 ± 0.032366 | 6.234284 ± 0.037878 |
|
| Mean PPL | 5.794552 ± 0.032298 | 9.751568 ± 0.063312 | 5.877078 ± 0.032781 | 6.407115 ± 0.039119 | 5.808494 ± 0.032425 | 6.253382 ± 0.038078 | 5.798542 ± 0.032366 | 6.234284 ± 0.037878 |
|
||||||
@ -107,6 +124,50 @@ K-quants score better on mean Δp than the legacy quants than e.g. KL divergence
|
|||||||
| RMS Δp | 9.762 ± 0.053 % | 21.421 ± 0.079 % | 3.252 ± 0.024 % | 5.519 ± 0.050 % | 1.339 ± 0.010 % | 2.295 ± 0.019 % | 0.618 ± 0.011 % | 1.198 ± 0.007 % |
|
| RMS Δp | 9.762 ± 0.053 % | 21.421 ± 0.079 % | 3.252 ± 0.024 % | 5.519 ± 0.050 % | 1.339 ± 0.010 % | 2.295 ± 0.019 % | 0.618 ± 0.011 % | 1.198 ± 0.007 % |
|
||||||
| Same top p | 85.584 ± 0.086 % | 71.138 ± 0.119 % | 94.665 ± 0.055 % | 91.901 ± 0.072 % | 97.520 ± 0.038 % | 96.031 ± 0.051 % | 98.846 ± 0.026 % | 97.674 ± 0.040 % |
|
| Same top p | 85.584 ± 0.086 % | 71.138 ± 0.119 % | 94.665 ± 0.055 % | 91.901 ± 0.072 % | 97.520 ± 0.038 % | 96.031 ± 0.051 % | 98.846 ± 0.026 % | 97.674 ± 0.040 % |
|
||||||
|
|
||||||
|
## LLaMA 3 BF16 vs. FP16 comparison
|
||||||
|
|
||||||
|
| Revision | 83330d8c |
|
||||||
|
|:---------|:--------------|
|
||||||
|
| Backend | CPU |
|
||||||
|
| CPU | AMD Epyc 7742 |
|
||||||
|
| GPU | N/A |
|
||||||
|
|
||||||
|
Results were calculated with LLaMA 3 8b BF16 as `--kl-divergence-base` and LLaMA 3 8b FP16 as the `--model` for comparison.
|
||||||
|
|
||||||
|
| Metric | Value |
|
||||||
|
|--------------------------------|--------------------------|
|
||||||
|
| Mean PPL(Q) | 6.227711 ± 0.037833 |
|
||||||
|
| Mean PPL(base) | 6.225194 ± 0.037771 |
|
||||||
|
| Cor(ln(PPL(Q)), ln(PPL(base))) | 99.990% |
|
||||||
|
| Mean ln(PPL(Q)/PPL(base)) | 0.000404 ± 0.000086 |
|
||||||
|
| Mean PPL(Q)/PPL(base) | 1.000404 ± 0.000086 |
|
||||||
|
| Mean PPL(Q)-PPL(base) | 0.002517 ± 0.000536 |
|
||||||
|
| Mean KLD | 0.00002515 ± 0.00000020 |
|
||||||
|
| Maximum KLD | 0.012206 |
|
||||||
|
| 99.9% KLD | 0.000799 |
|
||||||
|
| 99.0% KLD | 0.000222 |
|
||||||
|
| 99.0% KLD | 0.000222 |
|
||||||
|
| Median KLD | 0.000013 |
|
||||||
|
| 10.0% KLD | -0.000002 |
|
||||||
|
| 5.0% KLD | -0.000008 |
|
||||||
|
| 1.0% KLD | -0.000023 |
|
||||||
|
| Minimum KLD | -0.000059 |
|
||||||
|
| Mean Δp | -0.0000745 ± 0.0003952 % |
|
||||||
|
| Maximum Δp | 4.186% |
|
||||||
|
| 99.9% Δp | 1.049% |
|
||||||
|
| 99.0% Δp | 0.439% |
|
||||||
|
| 95.0% Δp | 0.207% |
|
||||||
|
| 90.0% Δp | 0.125% |
|
||||||
|
| 75.0% Δp | 0.029% |
|
||||||
|
| Median Δp | 0.000% |
|
||||||
|
| 25.0% Δp | -0.030% |
|
||||||
|
| 10.0% Δp | -0.126% |
|
||||||
|
| 5.0% Δp | -0.207% |
|
||||||
|
| 1.0% Δp | -0.434% |
|
||||||
|
| 0.1% Δp | -1.016% |
|
||||||
|
| Minimum Δp | -4.672% |
|
||||||
|
| RMS Δp | 0.150 ± 0.001 % |
|
||||||
|
| Same top p | 99.739 ± 0.013 % |
|
||||||
|
|
||||||
## Old Numbers
|
## Old Numbers
|
||||||
|
|
||||||
|
@ -44,9 +44,9 @@ static void write_logfile(
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
const std::string timestamp = get_sortable_timestamp();
|
const std::string timestamp = string_get_sortable_timestamp();
|
||||||
|
|
||||||
const bool success = create_directory_with_parents(params.logdir);
|
const bool success = fs_create_directory_with_parents(params.logdir);
|
||||||
if (!success) {
|
if (!success) {
|
||||||
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||||
__func__, params.logdir.c_str());
|
__func__, params.logdir.c_str());
|
||||||
@ -64,7 +64,7 @@ static void write_logfile(
|
|||||||
fprintf(logfile, "binary: main\n");
|
fprintf(logfile, "binary: main\n");
|
||||||
char model_desc[128];
|
char model_desc[128];
|
||||||
llama_model_desc(model, model_desc, sizeof(model_desc));
|
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||||
dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
|
yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc);
|
||||||
|
|
||||||
fprintf(logfile, "\n");
|
fprintf(logfile, "\n");
|
||||||
fprintf(logfile, "######################\n");
|
fprintf(logfile, "######################\n");
|
||||||
@ -72,9 +72,9 @@ static void write_logfile(
|
|||||||
fprintf(logfile, "######################\n");
|
fprintf(logfile, "######################\n");
|
||||||
fprintf(logfile, "\n");
|
fprintf(logfile, "\n");
|
||||||
|
|
||||||
dump_vector_float_yaml(logfile, "logits", results.logits);
|
yaml_dump_vector_float(logfile, "logits", results.logits);
|
||||||
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
|
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
|
||||||
dump_vector_float_yaml(logfile, "probs", results.probs);
|
yaml_dump_vector_float(logfile, "probs", results.probs);
|
||||||
|
|
||||||
llama_dump_timing_info_yaml(logfile, ctx);
|
llama_dump_timing_info_yaml(logfile, ctx);
|
||||||
fclose(logfile);
|
fclose(logfile);
|
||||||
@ -1425,7 +1425,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
|||||||
// Use all tasks
|
// Use all tasks
|
||||||
tasks.resize(n_task);
|
tasks.resize(n_task);
|
||||||
printf("%s: reading tasks", __func__);
|
printf("%s: reading tasks", __func__);
|
||||||
int n_dot = n_task/100;
|
int n_dot = std::max((int) n_task/100, 1);
|
||||||
int i = 0;
|
int i = 0;
|
||||||
for (auto& task : tasks) {
|
for (auto& task : tasks) {
|
||||||
++i;
|
++i;
|
||||||
@ -1675,7 +1675,7 @@ static void multiple_choice_score(llama_context * ctx, const gpt_params & params
|
|||||||
|
|
||||||
llama_batch_free(batch);
|
llama_batch_free(batch);
|
||||||
|
|
||||||
if (n_done < 100) return;
|
if (n_done < 100 && (params.multiple_choice_tasks != 0 && params.multiple_choice_tasks < (size_t)n_task)) return;
|
||||||
|
|
||||||
float p = 1.f*n_correct/n_done;
|
float p = 1.f*n_correct/n_done;
|
||||||
float sigma = sqrt(p*(1-p)/(n_done-1));
|
float sigma = sqrt(p*(1-p)/(n_done-1));
|
||||||
@ -2007,7 +2007,7 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
std::mt19937 rng(params.seed);
|
std::mt19937 rng(params.seed);
|
||||||
if (params.random_prompt) {
|
if (params.random_prompt) {
|
||||||
params.prompt = gpt_random_prompt(rng);
|
params.prompt = string_random_prompt(rng);
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_backend_init();
|
llama_backend_init();
|
||||||
@ -2035,7 +2035,7 @@ int main(int argc, char ** argv) {
|
|||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
struct results_perplexity results;
|
struct results_perplexity results;
|
||||||
|
@ -1,6 +1,8 @@
|
|||||||
# quantize
|
# quantize
|
||||||
|
|
||||||
TODO
|
You can also use the [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space on Hugging Face to build your own quants without any setup.
|
||||||
|
|
||||||
|
Note: It is synced from llama.cpp `main` every 6 hours.
|
||||||
|
|
||||||
## Llama 2 7B
|
## Llama 2 7B
|
||||||
|
|
||||||
|
@ -259,7 +259,7 @@ int main(int argc, char ** argv) {
|
|||||||
usage(argv[0]);
|
usage(argv[0]);
|
||||||
}
|
}
|
||||||
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
|
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
|
||||||
if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) {
|
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
|
||||||
usage(argv[0]);
|
usage(argv[0]);
|
||||||
}
|
}
|
||||||
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
|
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {
|
||||||
@ -284,7 +284,7 @@ int main(int argc, char ** argv) {
|
|||||||
} else {
|
} else {
|
||||||
usage(argv[0]);
|
usage(argv[0]);
|
||||||
}
|
}
|
||||||
} else if (strcmp(argv[arg_idx], "--keep-split")) {
|
} else if (strcmp(argv[arg_idx], "--keep-split") == 0) {
|
||||||
params.keep_split = true;
|
params.keep_split = true;
|
||||||
} else {
|
} else {
|
||||||
usage(argv[0]);
|
usage(argv[0]);
|
||||||
|
@ -41,8 +41,8 @@ $SPLIT --split-max-tensors 28 $WORK_PATH/gemma-1.1-2b-it.Q8_0.gguf $WORK_PATH/g
|
|||||||
echo PASS
|
echo PASS
|
||||||
echo
|
echo
|
||||||
|
|
||||||
# 3. Requant model with '--keep_split'
|
# 3. Requant model with '--keep-split'
|
||||||
$QUANTIZE --allow-requantize --keep_split $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant.gguf Q4_K
|
$QUANTIZE --allow-requantize --keep-split $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant.gguf Q4_K
|
||||||
echo PASS
|
echo PASS
|
||||||
echo
|
echo
|
||||||
|
|
||||||
@ -51,7 +51,7 @@ $MAIN --model $WORK_PATH/ggml-model-requant-00001-of-00006.gguf --random-prompt
|
|||||||
echo PASS
|
echo PASS
|
||||||
echo
|
echo
|
||||||
|
|
||||||
# 4. Requant mode without '--keep_split'
|
# 4. Requant mode without '--keep-split'
|
||||||
$QUANTIZE --allow-requantize $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant-merge.gguf Q4_K
|
$QUANTIZE --allow-requantize $WORK_PATH/ggml-model-split-00001-of-00006.gguf $WORK_PATH/ggml-model-requant-merge.gguf Q4_K
|
||||||
echo PASS
|
echo PASS
|
||||||
echo
|
echo
|
||||||
|
@ -11,7 +11,7 @@ struct retrieval_params {
|
|||||||
};
|
};
|
||||||
|
|
||||||
static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) {
|
static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) {
|
||||||
gpt_print_usage(argc, argv, gpt_params);
|
gpt_params_print_usage(argc, argv, gpt_params);
|
||||||
printf("retrieval options:\n");
|
printf("retrieval options:\n");
|
||||||
printf(" --context-file FNAME file containing context to embed.\n");
|
printf(" --context-file FNAME file containing context to embed.\n");
|
||||||
printf(" specify multiple files by providing --context-file option multiple times.\n");
|
printf(" specify multiple files by providing --context-file option multiple times.\n");
|
||||||
@ -226,7 +226,7 @@ int main(int argc, char ** argv) {
|
|||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
fprintf(stderr, "\n");
|
fprintf(stderr, "\n");
|
||||||
fprintf(stderr, "%s\n", get_system_info(params).c_str());
|
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
// max batch size
|
// max batch size
|
||||||
|
2
examples/rpc/CMakeLists.txt
Normal file
2
examples/rpc/CMakeLists.txt
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
add_executable(rpc-server rpc-server.cpp)
|
||||||
|
target_link_libraries(rpc-server PRIVATE ggml llama)
|
74
examples/rpc/README.md
Normal file
74
examples/rpc/README.md
Normal file
@ -0,0 +1,74 @@
|
|||||||
|
## Overview
|
||||||
|
|
||||||
|
The `rpc-server` allows running `ggml` backend on a remote host.
|
||||||
|
The RPC backend communicates with one or several instances of `rpc-server` and offloads computations to them.
|
||||||
|
This can be used for distributed LLM inference with `llama.cpp` in the following way:
|
||||||
|
|
||||||
|
```mermaid
|
||||||
|
flowchart TD
|
||||||
|
rpcb---|TCP|srva
|
||||||
|
rpcb---|TCP|srvb
|
||||||
|
rpcb-.-|TCP|srvn
|
||||||
|
subgraph hostn[Host N]
|
||||||
|
srvn[rpc-server]-.-backend3["Backend (CUDA,Metal,etc.)"]
|
||||||
|
end
|
||||||
|
subgraph hostb[Host B]
|
||||||
|
srvb[rpc-server]---backend2["Backend (CUDA,Metal,etc.)"]
|
||||||
|
end
|
||||||
|
subgraph hosta[Host A]
|
||||||
|
srva[rpc-server]---backend["Backend (CUDA,Metal,etc.)"]
|
||||||
|
end
|
||||||
|
subgraph host[Main Host]
|
||||||
|
ggml[llama.cpp]---rpcb[RPC backend]
|
||||||
|
end
|
||||||
|
style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5
|
||||||
|
```
|
||||||
|
|
||||||
|
Each host can run a different backend, e.g. one with CUDA and another with Metal.
|
||||||
|
You can also run multiple `rpc-server` instances on the same host, each with a different backend.
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
On each host, build the corresponding backend with `cmake` and add `-DLLAMA_RPC=ON` to the build options.
|
||||||
|
For example, to build the CUDA backend with RPC support:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
mkdir build-rpc-cuda
|
||||||
|
cd build-rpc-cuda
|
||||||
|
cmake .. -DLLAMA_CUDA=ON -DLLAMA_RPC=ON
|
||||||
|
cmake --build . --config Release
|
||||||
|
```
|
||||||
|
|
||||||
|
Then, start the `rpc-server` with the backend:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ bin/rpc-server -p 50052
|
||||||
|
create_backend: using CUDA backend
|
||||||
|
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
|
||||||
|
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
|
||||||
|
ggml_cuda_init: found 1 CUDA devices:
|
||||||
|
Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes
|
||||||
|
Starting RPC server on 0.0.0.0:50052
|
||||||
|
```
|
||||||
|
|
||||||
|
When using the CUDA backend, you can specify the device with the `CUDA_VISIBLE_DEVICES` environment variable, e.g.:
|
||||||
|
```bash
|
||||||
|
$ CUDA_VISIBLE_DEVICES=0 bin/rpc-server -p 50052
|
||||||
|
```
|
||||||
|
This way you can run multiple `rpc-server` instances on the same host, each with a different CUDA device.
|
||||||
|
|
||||||
|
|
||||||
|
On the main host build `llama.cpp` only with `-DLLAMA_RPC=ON`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
mkdir build-rpc
|
||||||
|
cd build-rpc
|
||||||
|
cmake .. -DLLAMA_RPC=ON
|
||||||
|
cmake --build . --config Release
|
||||||
|
```
|
||||||
|
|
||||||
|
Finally, use the `--rpc` option to specify the host and port of each `rpc-server`:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
$ bin/main -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99
|
||||||
|
```
|
134
examples/rpc/rpc-server.cpp
Normal file
134
examples/rpc/rpc-server.cpp
Normal file
@ -0,0 +1,134 @@
|
|||||||
|
#ifdef GGML_USE_CUDA
|
||||||
|
#include "ggml-cuda.h"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef GGML_USE_METAL
|
||||||
|
#include "ggml-metal.h"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include "ggml-rpc.h"
|
||||||
|
#ifdef _WIN32
|
||||||
|
# include <windows.h>
|
||||||
|
#else
|
||||||
|
# include <unistd.h>
|
||||||
|
#endif
|
||||||
|
#include <string>
|
||||||
|
#include <stdio.h>
|
||||||
|
|
||||||
|
struct rpc_server_params {
|
||||||
|
std::string host = "0.0.0.0";
|
||||||
|
int port = 50052;
|
||||||
|
size_t backend_mem = 0;
|
||||||
|
};
|
||||||
|
|
||||||
|
static void print_usage(int /*argc*/, char ** argv, rpc_server_params params) {
|
||||||
|
fprintf(stderr, "Usage: %s [options]\n\n", argv[0]);
|
||||||
|
fprintf(stderr, "options:\n");
|
||||||
|
fprintf(stderr, " -h, --help show this help message and exit\n");
|
||||||
|
fprintf(stderr, " -H HOST, --host HOST host to bind to (default: %s)\n", params.host.c_str());
|
||||||
|
fprintf(stderr, " -p PORT, --port PORT port to bind to (default: %d)\n", params.port);
|
||||||
|
fprintf(stderr, " -m MEM, --mem MEM backend memory size (in MB)\n");
|
||||||
|
fprintf(stderr, "\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool rpc_server_params_parse(int argc, char ** argv, rpc_server_params & params) {
|
||||||
|
std::string arg;
|
||||||
|
for (int i = 1; i < argc; i++) {
|
||||||
|
arg = argv[i];
|
||||||
|
if (arg == "-H" || arg == "--host") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
params.host = argv[i];
|
||||||
|
} else if (arg == "-p" || arg == "--port") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
params.port = std::stoi(argv[i]);
|
||||||
|
if (params.port <= 0 || params.port > 65535) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
} else if (arg == "-m" || arg == "--mem") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
params.backend_mem = std::stoul(argv[i]) * 1024 * 1024;
|
||||||
|
} else if (arg == "-h" || arg == "--help") {
|
||||||
|
print_usage(argc, argv, params);
|
||||||
|
exit(0);
|
||||||
|
} else {
|
||||||
|
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
||||||
|
print_usage(argc, argv, params);
|
||||||
|
exit(0);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
static ggml_backend_t create_backend() {
|
||||||
|
ggml_backend_t backend = NULL;
|
||||||
|
#ifdef GGML_USE_CUDA
|
||||||
|
fprintf(stderr, "%s: using CUDA backend\n", __func__);
|
||||||
|
backend = ggml_backend_cuda_init(0); // init device 0
|
||||||
|
if (!backend) {
|
||||||
|
fprintf(stderr, "%s: ggml_backend_cuda_init() failed\n", __func__);
|
||||||
|
}
|
||||||
|
#elif GGML_USE_METAL
|
||||||
|
fprintf(stderr, "%s: using Metal backend\n", __func__);
|
||||||
|
backend = ggml_backend_metal_init();
|
||||||
|
if (!backend) {
|
||||||
|
fprintf(stderr, "%s: ggml_backend_metal_init() failed\n", __func__);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// if there aren't GPU Backends fallback to CPU backend
|
||||||
|
if (!backend) {
|
||||||
|
fprintf(stderr, "%s: using CPU backend\n", __func__);
|
||||||
|
backend = ggml_backend_cpu_init();
|
||||||
|
}
|
||||||
|
return backend;
|
||||||
|
}
|
||||||
|
|
||||||
|
static void get_backend_memory(size_t * free_mem, size_t * total_mem) {
|
||||||
|
#ifdef GGML_USE_CUDA
|
||||||
|
ggml_backend_cuda_get_device_memory(0, free_mem, total_mem);
|
||||||
|
#else
|
||||||
|
#ifdef _WIN32
|
||||||
|
MEMORYSTATUSEX status;
|
||||||
|
status.dwLength = sizeof(status);
|
||||||
|
GlobalMemoryStatusEx(&status);
|
||||||
|
*total_mem = status.ullTotalPhys;
|
||||||
|
*free_mem = status.ullAvailPhys;
|
||||||
|
#else
|
||||||
|
long pages = sysconf(_SC_PHYS_PAGES);
|
||||||
|
long page_size = sysconf(_SC_PAGE_SIZE);
|
||||||
|
*total_mem = pages * page_size;
|
||||||
|
*free_mem = *total_mem;
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
int main(int argc, char * argv[]) {
|
||||||
|
rpc_server_params params;
|
||||||
|
if (!rpc_server_params_parse(argc, argv, params)) {
|
||||||
|
fprintf(stderr, "Invalid parameters\n");
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
ggml_backend_t backend = create_backend();
|
||||||
|
if (!backend) {
|
||||||
|
fprintf(stderr, "Failed to create backend\n");
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
std::string endpoint = params.host + ":" + std::to_string(params.port);
|
||||||
|
size_t free_mem, total_mem;
|
||||||
|
if (params.backend_mem > 0) {
|
||||||
|
free_mem = params.backend_mem;
|
||||||
|
total_mem = params.backend_mem;
|
||||||
|
} else {
|
||||||
|
get_backend_memory(&free_mem, &total_mem);
|
||||||
|
}
|
||||||
|
printf("Starting RPC server on %s, backend memory: %zu MB\n", endpoint.c_str(), free_mem / (1024 * 1024));
|
||||||
|
start_rpc_server(backend, endpoint.c_str(), free_mem, total_mem);
|
||||||
|
ggml_backend_free(backend);
|
||||||
|
return 0;
|
||||||
|
}
|
@ -17,8 +17,9 @@ The project is under active development, and we are [looking for feedback and co
|
|||||||
|
|
||||||
**Command line options:**
|
**Command line options:**
|
||||||
|
|
||||||
- `--threads N`, `-t N`: Set the number of threads to use during generation. Not used if model layers are offloaded to GPU. The server is using batching. This parameter is used only if one token is to be processed on CPU backend.
|
- `-v`, `--verbose`: Enable verbose server output. When using the `/completion` endpoint, this includes the tokenized prompt, the full request and the full response.
|
||||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation. Not used if model layers are offloaded to GPU.
|
- `-t N`, `--threads N`: Set the number of threads to use by CPU layers during generation. Not used by model layers that are offloaded to GPU. This option has no effect when using the maximum number of GPU layers. Default: `std::thread::hardware_concurrency()` (number of CPU cores).
|
||||||
|
- `-tb N, --threads-batch N`: Set the number of threads to use by CPU layers during batch and prompt processing (>= 32 tokens). This option has no effect if a GPU is available. Default: `--threads`.
|
||||||
- `--threads-http N`: Number of threads in the http server pool to process requests. Default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`
|
- `--threads-http N`: Number of threads in the http server pool to process requests. Default: `max(std::thread::hardware_concurrency() - 1, --parallel N + 2)`
|
||||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||||
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file. Default: unused
|
- `-mu MODEL_URL --model-url MODEL_URL`: Specify a remote http url to download the file. Default: unused
|
||||||
@ -36,9 +37,7 @@ The project is under active development, and we are [looking for feedback and co
|
|||||||
- `--numa STRATEGY`: Attempt one of the below optimization strategies that may help on some NUMA systems
|
- `--numa STRATEGY`: Attempt one of the below optimization strategies that may help on some NUMA systems
|
||||||
- `--numa distribute`: Spread execution evenly over all nodes
|
- `--numa distribute`: Spread execution evenly over all nodes
|
||||||
- `--numa isolate`: Only spawn threads on CPUs on the node that execution started on
|
- `--numa isolate`: Only spawn threads on CPUs on the node that execution started on
|
||||||
- `--numa numactl`: Use the CPU map provided by numactl. If run without this previously, it is recommended to drop the system
|
- `--numa numactl`: Use the CPU map provided by numactl. If run without this previously, it is recommended to drop the system page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/1437
|
||||||
page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/1437
|
|
||||||
|
|
||||||
- `--numa`: Attempt optimizations that may help on some NUMA systems.
|
- `--numa`: Attempt optimizations that may help on some NUMA systems.
|
||||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||||
@ -48,8 +47,8 @@ page cache before using this. See https://github.com/ggerganov/llama.cpp/issues/
|
|||||||
- `--path`: Path from which to serve static files. Default: disabled
|
- `--path`: Path from which to serve static files. Default: disabled
|
||||||
- `--api-key`: Set an api key for request authorization. By default, the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
- `--api-key`: Set an api key for request authorization. By default, the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||||
- `--api-key-file`: Path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`s.
|
- `--api-key-file`: Path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`s.
|
||||||
- `--embedding`: Enable embedding extraction. Default: disabled
|
- `--embeddings`: Enable embedding vector output and the OAI compatible endpoint /v1/embeddings. Physical batch size (`--ubatch-size`) must be carefully defined. Default: disabled
|
||||||
- `-np N`, `--parallel N`: Set the number of slots for process requests. Default: `1`
|
- `-np N`, `--parallel N`: Set the number of slots for process requests. Default: `1`. Values > 1 will allow for higher throughput with multiple parallel requests but the results will **not** be deterministic due to differences in rounding error.
|
||||||
- `-cb`, `--cont-batching`: Enable continuous batching (a.k.a dynamic batching). Default: disabled
|
- `-cb`, `--cont-batching`: Enable continuous batching (a.k.a dynamic batching). Default: disabled
|
||||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load a system prompt (initial prompt of all slots). This is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load a system prompt (initial prompt of all slots). This is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||||
|
52
examples/server/public_simplechat/index.html
Normal file
52
examples/server/public_simplechat/index.html
Normal file
@ -0,0 +1,52 @@
|
|||||||
|
<!DOCTYPE html>
|
||||||
|
<html lang="en">
|
||||||
|
<head>
|
||||||
|
<title>SimpleChat (LlamaCPP, ...) </title>
|
||||||
|
<meta charset="UTF-8" />
|
||||||
|
<meta name="viewport" content="width=device-width, initial-scale=1" />
|
||||||
|
<meta name="message" content="Save Nature Save Earth" />
|
||||||
|
<meta name="description" content="SimpleChat: trigger LLM web service endpoints /chat/completions and /completions, single/multi chat sessions" />
|
||||||
|
<meta name="author" content="by Humans for All" />
|
||||||
|
<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate" />
|
||||||
|
<script src="simplechat.js" defer></script>
|
||||||
|
<link rel="stylesheet" href="simplechat.css" />
|
||||||
|
</head>
|
||||||
|
<body>
|
||||||
|
<div class="samecolumn" id="fullbody">
|
||||||
|
|
||||||
|
<div class="sameline">
|
||||||
|
<p class="heading flex-grow" > <b> SimpleChat </b> </p>
|
||||||
|
<div class="sameline">
|
||||||
|
<label for="api-ep">Mode:</label>
|
||||||
|
<select name="api-ep" id="api-ep">
|
||||||
|
<option value="chat" selected>Chat</option>
|
||||||
|
<option value="completion">Completion</option>
|
||||||
|
</select>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div id="sessions-div" class="sameline"></div>
|
||||||
|
|
||||||
|
<hr>
|
||||||
|
<div class="sameline">
|
||||||
|
<label for="system-in">System</label>
|
||||||
|
<input type="text" name="system" id="system-in" class="flex-grow"/>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<hr>
|
||||||
|
<div id="chat-div">
|
||||||
|
<p> Enter the system prompt above, before entering/submitting any user query.</p>
|
||||||
|
<p> Enter your text to the ai assistant below.</p>
|
||||||
|
<p> Use shift+enter for inserting enter.</p>
|
||||||
|
<p> Refresh the page to start over fresh.</p>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<hr>
|
||||||
|
<div class="sameline">
|
||||||
|
<textarea id="user-in" class="flex-grow" rows="3"></textarea>
|
||||||
|
<button id="user-btn">submit</button>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
</div>
|
||||||
|
</body>
|
||||||
|
</html>
|
81
examples/server/public_simplechat/readme.md
Normal file
81
examples/server/public_simplechat/readme.md
Normal file
@ -0,0 +1,81 @@
|
|||||||
|
|
||||||
|
# SimpleChat
|
||||||
|
|
||||||
|
by Humans for All.
|
||||||
|
|
||||||
|
|
||||||
|
## overview
|
||||||
|
|
||||||
|
This simple web frontend, allows triggering/testing the server's /completions or /chat/completions endpoints
|
||||||
|
in a simple way with minimal code from a common code base. Inturn additionally it tries to allow single or
|
||||||
|
multiple independent back and forth chatting to an extent, with the ai llm model at a basic level, with their
|
||||||
|
own system prompts.
|
||||||
|
|
||||||
|
The UI follows a responsive web design so that the layout can adapt to available display space in a usable
|
||||||
|
enough manner, in general.
|
||||||
|
|
||||||
|
NOTE: Given that the idea is for basic minimal testing, it doesnt bother with any model context length and
|
||||||
|
culling of old messages from the chat.
|
||||||
|
|
||||||
|
NOTE: It doesnt set any parameters other than temperature for now. However if someone wants they can update
|
||||||
|
the js file as needed.
|
||||||
|
|
||||||
|
|
||||||
|
## usage
|
||||||
|
|
||||||
|
One could run this web frontend directly using server itself or if anyone is thinking of adding a built in web
|
||||||
|
frontend to configure the server over http(s) or so, then run this web frontend using something like python's
|
||||||
|
http module.
|
||||||
|
|
||||||
|
### running using examples/server
|
||||||
|
|
||||||
|
bin/server -m path/model.gguf --path ../examples/server/public_simplechat [--port PORT]
|
||||||
|
|
||||||
|
### running using python3's server module
|
||||||
|
|
||||||
|
first run examples/server
|
||||||
|
* bin/server -m path/model.gguf
|
||||||
|
|
||||||
|
next run this web front end in examples/server/public_simplechat
|
||||||
|
* cd ../examples/server/public_simplechat
|
||||||
|
* python3 -m http.server PORT
|
||||||
|
|
||||||
|
### using the front end
|
||||||
|
|
||||||
|
Open this simple web front end from your local browser
|
||||||
|
* http://127.0.0.1:PORT/index.html
|
||||||
|
|
||||||
|
Once inside
|
||||||
|
* Select between chat and completion mode. By default it is set to chat mode.
|
||||||
|
* If you want to provide a system prompt, then ideally enter it first, before entering any user query.
|
||||||
|
* if chat.add_system_begin is used
|
||||||
|
* you cant change the system prompt, after it is has been submitted once along with user query.
|
||||||
|
* you cant set a system prompt, after you have submitted any user query
|
||||||
|
* if chat.add_system_anytime is used
|
||||||
|
* one can change the system prompt any time during chat, by changing the contents of system prompt.
|
||||||
|
* inturn the updated/changed system prompt will be inserted into the chat session.
|
||||||
|
* this allows for the subsequent user chatting to be driven by the new system prompt set above.
|
||||||
|
* Enter your query and either press enter or click on the submit button.
|
||||||
|
If you want to insert enter (\n) as part of your chat/query to ai model, use shift+enter.
|
||||||
|
* Wait for the logic to communicate with the server and get the response.
|
||||||
|
* the user is not allowed to enter any fresh query during this time.
|
||||||
|
* the user input box will be disabled and a working message will be shown in it.
|
||||||
|
* just refresh the page, to reset wrt the chat history and or system prompt and start afresh.
|
||||||
|
* Using NewChat one can start independent chat sessions.
|
||||||
|
* two independent chat sessions are setup by default.
|
||||||
|
|
||||||
|
|
||||||
|
## Devel note
|
||||||
|
|
||||||
|
Sometimes the browser may be stuborn with caching of the file, so your updates to html/css/js
|
||||||
|
may not be visible. Also remember that just refreshing/reloading page in browser or for that
|
||||||
|
matter clearing site data, dont directly override site caching in all cases. Worst case you may
|
||||||
|
have to change port. Or in dev tools of browser, you may be able to disable caching fully.
|
||||||
|
|
||||||
|
Concept of multiple chat sessions with different servers, as well as saving and restoring of
|
||||||
|
those across browser usage sessions, can be woven around the SimpleChat/MultiChatUI class and
|
||||||
|
its instances relatively easily, however given the current goal of keeping this simple, it has
|
||||||
|
not been added, for now.
|
||||||
|
|
||||||
|
By switching between chat.add_system_begin/anytime, one can control whether one can change
|
||||||
|
the system prompt, anytime during the conversation or only at the beginning.
|
61
examples/server/public_simplechat/simplechat.css
Normal file
61
examples/server/public_simplechat/simplechat.css
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
/**
|
||||||
|
* the styling of the simplechat web frontend
|
||||||
|
* by Humans for All
|
||||||
|
*/
|
||||||
|
|
||||||
|
#fullbody {
|
||||||
|
height: 98vh;
|
||||||
|
}
|
||||||
|
|
||||||
|
.heading {
|
||||||
|
background-color: lightgray;
|
||||||
|
}
|
||||||
|
|
||||||
|
.session-selected {
|
||||||
|
background-color: lightblue;
|
||||||
|
}
|
||||||
|
|
||||||
|
.role-system {
|
||||||
|
background-color: lightblue;
|
||||||
|
}
|
||||||
|
.role-user {
|
||||||
|
background-color: lightgray;
|
||||||
|
}
|
||||||
|
|
||||||
|
.flex-grow {
|
||||||
|
flex-grow: 1;
|
||||||
|
}
|
||||||
|
.float-right {
|
||||||
|
float: right;
|
||||||
|
}
|
||||||
|
|
||||||
|
#chat-div {
|
||||||
|
overflow: scroll;
|
||||||
|
flex-grow: 1;
|
||||||
|
flex-shrink: 1;
|
||||||
|
min-height: 40vh;
|
||||||
|
}
|
||||||
|
button {
|
||||||
|
min-width: 8vw;
|
||||||
|
}
|
||||||
|
|
||||||
|
.sameline {
|
||||||
|
display: flex;
|
||||||
|
flex-direction: row;
|
||||||
|
}
|
||||||
|
.samecolumn {
|
||||||
|
display: flex;
|
||||||
|
flex-direction: column;
|
||||||
|
}
|
||||||
|
|
||||||
|
* {
|
||||||
|
margin: 0.6vmin;
|
||||||
|
}
|
||||||
|
|
||||||
|
@media print {
|
||||||
|
|
||||||
|
#fullbody {
|
||||||
|
height: auto;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
478
examples/server/public_simplechat/simplechat.js
Normal file
478
examples/server/public_simplechat/simplechat.js
Normal file
@ -0,0 +1,478 @@
|
|||||||
|
// @ts-check
|
||||||
|
// A simple completions and chat/completions test related web front end logic
|
||||||
|
// by Humans for All
|
||||||
|
|
||||||
|
class Roles {
|
||||||
|
static System = "system";
|
||||||
|
static User = "user";
|
||||||
|
static Assistant = "assistant";
|
||||||
|
}
|
||||||
|
|
||||||
|
class ApiEP {
|
||||||
|
static Chat = "chat";
|
||||||
|
static Completion = "completion";
|
||||||
|
}
|
||||||
|
|
||||||
|
let gUsageMsg = `
|
||||||
|
<p> Enter the system prompt above, before entering/submitting any user query.</p>
|
||||||
|
<p> Enter your text to the ai assistant below.</p>
|
||||||
|
<p> Use shift+enter for inserting enter.</p>
|
||||||
|
<p> Refresh the page to start over fresh.</p>
|
||||||
|
`;
|
||||||
|
|
||||||
|
class SimpleChat {
|
||||||
|
|
||||||
|
constructor() {
|
||||||
|
/**
|
||||||
|
* Maintain in a form suitable for common LLM web service chat/completions' messages entry
|
||||||
|
* @type {{role: string, content: string}[]}
|
||||||
|
*/
|
||||||
|
this.xchat = [];
|
||||||
|
this.iLastSys = -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add an entry into xchat
|
||||||
|
* @param {string} role
|
||||||
|
* @param {string|undefined|null} content
|
||||||
|
*/
|
||||||
|
add(role, content) {
|
||||||
|
if ((content == undefined) || (content == null) || (content == "")) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
this.xchat.push( {role: role, content: content} );
|
||||||
|
if (role == Roles.System) {
|
||||||
|
this.iLastSys = this.xchat.length - 1;
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Show the contents in the specified div
|
||||||
|
* @param {HTMLDivElement} div
|
||||||
|
* @param {boolean} bClear
|
||||||
|
*/
|
||||||
|
show(div, bClear=true) {
|
||||||
|
if (bClear) {
|
||||||
|
div.replaceChildren();
|
||||||
|
}
|
||||||
|
let last = undefined;
|
||||||
|
for(const x of this.xchat) {
|
||||||
|
let entry = document.createElement("p");
|
||||||
|
entry.className = `role-${x.role}`;
|
||||||
|
entry.innerText = `${x.role}: ${x.content}`;
|
||||||
|
div.appendChild(entry);
|
||||||
|
last = entry;
|
||||||
|
}
|
||||||
|
if (last !== undefined) {
|
||||||
|
last.scrollIntoView(false);
|
||||||
|
} else {
|
||||||
|
if (bClear) {
|
||||||
|
div.innerHTML = gUsageMsg;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Add needed fields wrt json object to be sent wrt LLM web services completions endpoint
|
||||||
|
* Convert the json into string.
|
||||||
|
* @param {Object} obj
|
||||||
|
*/
|
||||||
|
request_jsonstr(obj) {
|
||||||
|
obj["temperature"] = 0.7;
|
||||||
|
return JSON.stringify(obj);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return a string form of json object suitable for chat/completions
|
||||||
|
*/
|
||||||
|
request_messages_jsonstr() {
|
||||||
|
let req = {
|
||||||
|
messages: this.xchat,
|
||||||
|
}
|
||||||
|
return this.request_jsonstr(req);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Return a string form of json object suitable for /completions
|
||||||
|
*/
|
||||||
|
request_prompt_jsonstr() {
|
||||||
|
let prompt = "";
|
||||||
|
for(const chat of this.xchat) {
|
||||||
|
prompt += `${chat.role}: ${chat.content}\n`;
|
||||||
|
}
|
||||||
|
let req = {
|
||||||
|
prompt: prompt,
|
||||||
|
}
|
||||||
|
return this.request_jsonstr(req);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Allow setting of system prompt, but only at begining.
|
||||||
|
* @param {string} sysPrompt
|
||||||
|
* @param {string} msgTag
|
||||||
|
*/
|
||||||
|
add_system_begin(sysPrompt, msgTag) {
|
||||||
|
if (this.xchat.length == 0) {
|
||||||
|
if (sysPrompt.length > 0) {
|
||||||
|
return this.add(Roles.System, sysPrompt);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
if (sysPrompt.length > 0) {
|
||||||
|
if (this.xchat[0].role !== Roles.System) {
|
||||||
|
console.error(`ERRR:SimpleChat:SC:${msgTag}:You need to specify system prompt before any user query, ignoring...`);
|
||||||
|
} else {
|
||||||
|
if (this.xchat[0].content !== sysPrompt) {
|
||||||
|
console.error(`ERRR:SimpleChat:SC:${msgTag}:You cant change system prompt, mid way through, ignoring...`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Allow setting of system prompt, at any time.
|
||||||
|
* @param {string} sysPrompt
|
||||||
|
* @param {string} msgTag
|
||||||
|
*/
|
||||||
|
add_system_anytime(sysPrompt, msgTag) {
|
||||||
|
if (sysPrompt.length <= 0) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (this.iLastSys < 0) {
|
||||||
|
return this.add(Roles.System, sysPrompt);
|
||||||
|
}
|
||||||
|
|
||||||
|
let lastSys = this.xchat[this.iLastSys].content;
|
||||||
|
if (lastSys !== sysPrompt) {
|
||||||
|
return this.add(Roles.System, sysPrompt);
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Retrieve the latest system prompt.
|
||||||
|
*/
|
||||||
|
get_system_latest() {
|
||||||
|
if (this.iLastSys == -1) {
|
||||||
|
return "";
|
||||||
|
}
|
||||||
|
let sysPrompt = this.xchat[this.iLastSys].content;
|
||||||
|
return sysPrompt;
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
let gBaseURL = "http://127.0.0.1:8080";
|
||||||
|
let gChatURL = {
|
||||||
|
'chat': `${gBaseURL}/chat/completions`,
|
||||||
|
'completion': `${gBaseURL}/completions`,
|
||||||
|
}
|
||||||
|
const gbCompletionFreshChatAlways = true;
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Set the class of the children, based on whether it is the idSelected or not.
|
||||||
|
* @param {HTMLDivElement} elBase
|
||||||
|
* @param {string} idSelected
|
||||||
|
* @param {string} classSelected
|
||||||
|
* @param {string} classUnSelected
|
||||||
|
*/
|
||||||
|
function el_children_config_class(elBase, idSelected, classSelected, classUnSelected="") {
|
||||||
|
for(let child of elBase.children) {
|
||||||
|
if (child.id == idSelected) {
|
||||||
|
child.className = classSelected;
|
||||||
|
} else {
|
||||||
|
child.className = classUnSelected;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Create button and set it up.
|
||||||
|
* @param {string} id
|
||||||
|
* @param {(this: HTMLButtonElement, ev: MouseEvent) => any} callback
|
||||||
|
* @param {string | undefined} name
|
||||||
|
* @param {string | undefined} innerText
|
||||||
|
*/
|
||||||
|
function el_create_button(id, callback, name=undefined, innerText=undefined) {
|
||||||
|
if (!name) {
|
||||||
|
name = id;
|
||||||
|
}
|
||||||
|
if (!innerText) {
|
||||||
|
innerText = id;
|
||||||
|
}
|
||||||
|
let btn = document.createElement("button");
|
||||||
|
btn.id = id;
|
||||||
|
btn.name = name;
|
||||||
|
btn.innerText = innerText;
|
||||||
|
btn.addEventListener("click", callback);
|
||||||
|
return btn;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class MultiChatUI {
|
||||||
|
|
||||||
|
constructor() {
|
||||||
|
/** @type {Object<string, SimpleChat>} */
|
||||||
|
this.simpleChats = {};
|
||||||
|
/** @type {string} */
|
||||||
|
this.curChatId = "";
|
||||||
|
|
||||||
|
// the ui elements
|
||||||
|
this.elInSystem = /** @type{HTMLInputElement} */(document.getElementById("system-in"));
|
||||||
|
this.elDivChat = /** @type{HTMLDivElement} */(document.getElementById("chat-div"));
|
||||||
|
this.elBtnUser = /** @type{HTMLButtonElement} */(document.getElementById("user-btn"));
|
||||||
|
this.elInUser = /** @type{HTMLInputElement} */(document.getElementById("user-in"));
|
||||||
|
this.elSelectApiEP = /** @type{HTMLSelectElement} */(document.getElementById("api-ep"));
|
||||||
|
this.elDivSessions = /** @type{HTMLDivElement} */(document.getElementById("sessions-div"));
|
||||||
|
|
||||||
|
this.validate_element(this.elInSystem, "system-in");
|
||||||
|
this.validate_element(this.elDivChat, "chat-div");
|
||||||
|
this.validate_element(this.elInUser, "user-in");
|
||||||
|
this.validate_element(this.elSelectApiEP, "api-ep");
|
||||||
|
this.validate_element(this.elDivChat, "sessions-div");
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if the element got
|
||||||
|
* @param {HTMLElement | null} el
|
||||||
|
* @param {string} msgTag
|
||||||
|
*/
|
||||||
|
validate_element(el, msgTag) {
|
||||||
|
if (el == null) {
|
||||||
|
throw Error(`ERRR:SimpleChat:MCUI:${msgTag} element missing in html...`);
|
||||||
|
} else {
|
||||||
|
console.debug(`INFO:SimpleChat:MCUI:${msgTag} Id[${el.id}] Name[${el["name"]}]`);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Reset user input ui.
|
||||||
|
* * clear user input
|
||||||
|
* * enable user input
|
||||||
|
* * set focus to user input
|
||||||
|
*/
|
||||||
|
ui_reset_userinput() {
|
||||||
|
this.elInUser.value = "";
|
||||||
|
this.elInUser.disabled = false;
|
||||||
|
this.elInUser.focus();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Setup the needed callbacks wrt UI, curChatId to defaultChatId and
|
||||||
|
* optionally switch to specified defaultChatId.
|
||||||
|
* @param {string} defaultChatId
|
||||||
|
* @param {boolean} bSwitchSession
|
||||||
|
*/
|
||||||
|
setup_ui(defaultChatId, bSwitchSession=false) {
|
||||||
|
|
||||||
|
this.curChatId = defaultChatId;
|
||||||
|
if (bSwitchSession) {
|
||||||
|
this.handle_session_switch(this.curChatId);
|
||||||
|
}
|
||||||
|
|
||||||
|
this.elBtnUser.addEventListener("click", (ev)=>{
|
||||||
|
if (this.elInUser.disabled) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
this.handle_user_submit(this.curChatId, this.elSelectApiEP.value).catch((/** @type{Error} */reason)=>{
|
||||||
|
let msg = `ERRR:SimpleChat\nMCUI:HandleUserSubmit:${this.curChatId}\n${reason.name}:${reason.message}`;
|
||||||
|
console.debug(msg.replace("\n", ":"));
|
||||||
|
alert(msg);
|
||||||
|
this.ui_reset_userinput();
|
||||||
|
});
|
||||||
|
});
|
||||||
|
|
||||||
|
this.elInUser.addEventListener("keyup", (ev)=> {
|
||||||
|
// allow user to insert enter into their message using shift+enter.
|
||||||
|
// while just pressing enter key will lead to submitting.
|
||||||
|
if ((ev.key === "Enter") && (!ev.shiftKey)) {
|
||||||
|
this.elBtnUser.click();
|
||||||
|
ev.preventDefault();
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
this.elInSystem.addEventListener("keyup", (ev)=> {
|
||||||
|
// allow user to insert enter into the system prompt using shift+enter.
|
||||||
|
// while just pressing enter key will lead to setting the system prompt.
|
||||||
|
if ((ev.key === "Enter") && (!ev.shiftKey)) {
|
||||||
|
let chat = this.simpleChats[this.curChatId];
|
||||||
|
chat.add_system_anytime(this.elInSystem.value, this.curChatId);
|
||||||
|
chat.show(this.elDivChat);
|
||||||
|
ev.preventDefault();
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Setup a new chat session and optionally switch to it.
|
||||||
|
* @param {string} chatId
|
||||||
|
* @param {boolean} bSwitchSession
|
||||||
|
*/
|
||||||
|
new_chat_session(chatId, bSwitchSession=false) {
|
||||||
|
this.simpleChats[chatId] = new SimpleChat();
|
||||||
|
if (bSwitchSession) {
|
||||||
|
this.handle_session_switch(chatId);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Handle user query submit request, wrt specified chat session.
|
||||||
|
* @param {string} chatId
|
||||||
|
* @param {string} apiEP
|
||||||
|
*/
|
||||||
|
async handle_user_submit(chatId, apiEP) {
|
||||||
|
|
||||||
|
let chat = this.simpleChats[chatId];
|
||||||
|
|
||||||
|
chat.add_system_anytime(this.elInSystem.value, chatId);
|
||||||
|
|
||||||
|
let content = this.elInUser.value;
|
||||||
|
if (!chat.add(Roles.User, content)) {
|
||||||
|
console.debug(`WARN:SimpleChat:MCUI:${chatId}:HandleUserSubmit:Ignoring empty user input...`);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
chat.show(this.elDivChat);
|
||||||
|
|
||||||
|
let theBody;
|
||||||
|
let theUrl = gChatURL[apiEP]
|
||||||
|
if (apiEP == ApiEP.Chat) {
|
||||||
|
theBody = chat.request_messages_jsonstr();
|
||||||
|
} else {
|
||||||
|
theBody = chat.request_prompt_jsonstr();
|
||||||
|
}
|
||||||
|
|
||||||
|
this.elInUser.value = "working...";
|
||||||
|
this.elInUser.disabled = true;
|
||||||
|
console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:${theUrl}:ReqBody:${theBody}`);
|
||||||
|
let resp = await fetch(theUrl, {
|
||||||
|
method: "POST",
|
||||||
|
headers: {
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
},
|
||||||
|
body: theBody,
|
||||||
|
});
|
||||||
|
|
||||||
|
let respBody = await resp.json();
|
||||||
|
console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:RespBody:${JSON.stringify(respBody)}`);
|
||||||
|
let assistantMsg;
|
||||||
|
if (apiEP == ApiEP.Chat) {
|
||||||
|
assistantMsg = respBody["choices"][0]["message"]["content"];
|
||||||
|
} else {
|
||||||
|
try {
|
||||||
|
assistantMsg = respBody["choices"][0]["text"];
|
||||||
|
} catch {
|
||||||
|
assistantMsg = respBody["content"];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
chat.add(Roles.Assistant, assistantMsg);
|
||||||
|
if (chatId == this.curChatId) {
|
||||||
|
chat.show(this.elDivChat);
|
||||||
|
} else {
|
||||||
|
console.debug(`DBUG:SimpleChat:MCUI:HandleUserSubmit:ChatId has changed:[${chatId}] [${this.curChatId}]`);
|
||||||
|
}
|
||||||
|
// Purposefully clear at end rather than begin of this function
|
||||||
|
// so that one can switch from chat to completion mode and sequece
|
||||||
|
// in a completion mode with multiple user-assistant chat data
|
||||||
|
// from before to be sent/occur once.
|
||||||
|
if ((apiEP == ApiEP.Completion) && (gbCompletionFreshChatAlways)) {
|
||||||
|
chat.xchat.length = 0;
|
||||||
|
}
|
||||||
|
this.ui_reset_userinput();
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Show buttons for NewChat and available chat sessions, in the passed elDiv.
|
||||||
|
* If elDiv is undefined/null, then use this.elDivSessions.
|
||||||
|
* Take care of highlighting the selected chat-session's btn.
|
||||||
|
* @param {HTMLDivElement | undefined} elDiv
|
||||||
|
*/
|
||||||
|
show_sessions(elDiv=undefined) {
|
||||||
|
if (!elDiv) {
|
||||||
|
elDiv = this.elDivSessions;
|
||||||
|
}
|
||||||
|
elDiv.replaceChildren();
|
||||||
|
// Btn for creating new chat session
|
||||||
|
let btnNew = el_create_button("New CHAT", (ev)=> {
|
||||||
|
if (this.elInUser.disabled) {
|
||||||
|
console.error(`ERRR:SimpleChat:MCUI:NewChat:Current session [${this.curChatId}] awaiting response, ignoring request...`);
|
||||||
|
alert("ERRR:SimpleChat\nMCUI:NewChat\nWait for response to pending query, before starting new chat session");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
let chatId = `Chat${Object.keys(this.simpleChats).length}`;
|
||||||
|
let chatIdGot = prompt("INFO:SimpleChat\nMCUI:NewChat\nEnter id for new chat session", chatId);
|
||||||
|
if (!chatIdGot) {
|
||||||
|
console.error("ERRR:SimpleChat:MCUI:NewChat:Skipping based on user request...");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
this.new_chat_session(chatIdGot, true);
|
||||||
|
this.create_session_btn(elDiv, chatIdGot);
|
||||||
|
el_children_config_class(elDiv, chatIdGot, "session-selected", "");
|
||||||
|
});
|
||||||
|
elDiv.appendChild(btnNew);
|
||||||
|
// Btns for existing chat sessions
|
||||||
|
let chatIds = Object.keys(this.simpleChats);
|
||||||
|
for(let cid of chatIds) {
|
||||||
|
let btn = this.create_session_btn(elDiv, cid);
|
||||||
|
if (cid == this.curChatId) {
|
||||||
|
btn.className = "session-selected";
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
create_session_btn(elDiv, cid) {
|
||||||
|
let btn = el_create_button(cid, (ev)=>{
|
||||||
|
let target = /** @type{HTMLButtonElement} */(ev.target);
|
||||||
|
console.debug(`DBUG:SimpleChat:MCUI:SessionClick:${target.id}`);
|
||||||
|
if (this.elInUser.disabled) {
|
||||||
|
console.error(`ERRR:SimpleChat:MCUI:SessionClick:${target.id}:Current session [${this.curChatId}] awaiting response, ignoring switch...`);
|
||||||
|
alert("ERRR:SimpleChat\nMCUI:SessionClick\nWait for response to pending query, before switching");
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
this.handle_session_switch(target.id);
|
||||||
|
el_children_config_class(elDiv, target.id, "session-selected", "");
|
||||||
|
});
|
||||||
|
elDiv.appendChild(btn);
|
||||||
|
return btn;
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Switch ui to the specified chatId and set curChatId to same.
|
||||||
|
* @param {string} chatId
|
||||||
|
*/
|
||||||
|
async handle_session_switch(chatId) {
|
||||||
|
let chat = this.simpleChats[chatId];
|
||||||
|
if (chat == undefined) {
|
||||||
|
console.error(`ERRR:SimpleChat:MCUI:HandleSessionSwitch:${chatId} missing...`);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
this.elInSystem.value = chat.get_system_latest();
|
||||||
|
this.elInUser.value = "";
|
||||||
|
chat.show(this.elDivChat);
|
||||||
|
this.elInUser.focus();
|
||||||
|
this.curChatId = chatId;
|
||||||
|
console.log(`INFO:SimpleChat:MCUI:HandleSessionSwitch:${chatId} entered...`);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
let gMuitChat;
|
||||||
|
const gChatIds = [ "Default", "Other" ];
|
||||||
|
|
||||||
|
function startme() {
|
||||||
|
console.log("INFO:SimpleChat:StartMe:Starting...");
|
||||||
|
gMuitChat = new MultiChatUI();
|
||||||
|
for (let cid of gChatIds) {
|
||||||
|
gMuitChat.new_chat_session(cid);
|
||||||
|
}
|
||||||
|
gMuitChat.setup_ui(gChatIds[0]);
|
||||||
|
gMuitChat.show_sessions();
|
||||||
|
}
|
||||||
|
|
||||||
|
document.addEventListener("DOMContentLoaded", startme);
|
@ -102,7 +102,6 @@ struct slot_params {
|
|||||||
bool stream = true;
|
bool stream = true;
|
||||||
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
|
||||||
|
|
||||||
uint32_t seed = -1; // RNG seed
|
|
||||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||||
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
|
||||||
int32_t n_predict = -1; // new tokens to predict
|
int32_t n_predict = -1; // new tokens to predict
|
||||||
@ -671,6 +670,13 @@ struct server_context {
|
|||||||
model = nullptr;
|
model = nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Clear any sampling context
|
||||||
|
for (server_slot & slot : slots) {
|
||||||
|
if (slot.ctx_sampling != nullptr) {
|
||||||
|
llama_sampling_free(slot.ctx_sampling);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
llama_batch_free(batch);
|
llama_batch_free(batch);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1013,7 +1019,7 @@ struct server_context {
|
|||||||
sampler_names.emplace_back(sampler_name);
|
sampler_names.emplace_back(sampler_name);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
slot.sparams.samplers_sequence = sampler_types_from_names(sampler_names, false);
|
slot.sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
|
||||||
} else {
|
} else {
|
||||||
slot.sparams.samplers_sequence = default_sparams.samplers_sequence;
|
slot.sparams.samplers_sequence = default_sparams.samplers_sequence;
|
||||||
}
|
}
|
||||||
@ -1250,14 +1256,14 @@ struct server_context {
|
|||||||
std::vector<std::string> samplers_sequence;
|
std::vector<std::string> samplers_sequence;
|
||||||
samplers_sequence.reserve(slot.sparams.samplers_sequence.size());
|
samplers_sequence.reserve(slot.sparams.samplers_sequence.size());
|
||||||
for (const auto & sampler_type : slot.sparams.samplers_sequence) {
|
for (const auto & sampler_type : slot.sparams.samplers_sequence) {
|
||||||
samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type));
|
samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
|
||||||
}
|
}
|
||||||
|
|
||||||
return json {
|
return json {
|
||||||
{"n_ctx", slot.n_ctx},
|
{"n_ctx", slot.n_ctx},
|
||||||
{"n_predict", slot.n_predict},
|
{"n_predict", slot.n_predict},
|
||||||
{"model", params.model_alias},
|
{"model", params.model_alias},
|
||||||
{"seed", slot.params.seed},
|
{"seed", slot.sparams.seed},
|
||||||
{"temperature", slot.sparams.temp},
|
{"temperature", slot.sparams.temp},
|
||||||
{"dynatemp_range", slot.sparams.dynatemp_range},
|
{"dynatemp_range", slot.sparams.dynatemp_range},
|
||||||
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
|
||||||
@ -1975,8 +1981,7 @@ struct server_context {
|
|||||||
slot.state = SLOT_STATE_PROCESSING;
|
slot.state = SLOT_STATE_PROCESSING;
|
||||||
slot.command = SLOT_COMMAND_NONE;
|
slot.command = SLOT_COMMAND_NONE;
|
||||||
slot.release();
|
slot.release();
|
||||||
slot.print_timings();
|
send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
|
||||||
send_final_response(slot);
|
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
@ -2380,6 +2385,7 @@ static void server_print_usage(const char * argv0, const gpt_params & params, co
|
|||||||
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||||
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
||||||
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
||||||
|
printf(" --rpc SERVERS comma separated list of RPC servers\n");
|
||||||
printf(" --path PUBLIC_PATH path from which to serve static files (default: disabled)\n");
|
printf(" --path PUBLIC_PATH path from which to serve static files (default: disabled)\n");
|
||||||
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
||||||
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
|
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
|
||||||
@ -2432,6 +2438,12 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
|||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
sparams.port = std::stoi(argv[i]);
|
sparams.port = std::stoi(argv[i]);
|
||||||
|
} else if (arg == "--rpc") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.rpc_servers = argv[i];
|
||||||
} else if (arg == "--host") {
|
} else if (arg == "--host") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
@ -2840,7 +2852,7 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
|||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
if (!parse_kv_override(argv[i], params.kv_overrides)) {
|
if (!string_parse_kv_override(argv[i], params.kv_overrides)) {
|
||||||
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
|
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
@ -3298,7 +3310,7 @@ int main(int argc, char ** argv) {
|
|||||||
const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
||||||
json request_data = json::parse(req.body);
|
json request_data = json::parse(req.body);
|
||||||
std::string filename = request_data.at("filename");
|
std::string filename = request_data.at("filename");
|
||||||
if (!validate_file_name(filename)) {
|
if (!fs_validate_filename(filename)) {
|
||||||
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
@ -3328,7 +3340,7 @@ int main(int argc, char ** argv) {
|
|||||||
const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
|
||||||
json request_data = json::parse(req.body);
|
json request_data = json::parse(req.body);
|
||||||
std::string filename = request_data.at("filename");
|
std::string filename = request_data.at("filename");
|
||||||
if (!validate_file_name(filename)) {
|
if (!fs_validate_filename(filename)) {
|
||||||
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
@ -13,6 +13,7 @@ Feature: Results
|
|||||||
|
|
||||||
Scenario Outline: consistent results with same seed
|
Scenario Outline: consistent results with same seed
|
||||||
Given <n_slots> slots
|
Given <n_slots> slots
|
||||||
|
And 1.0 temperature
|
||||||
Then the server is starting
|
Then the server is starting
|
||||||
Then the server is healthy
|
Then the server is healthy
|
||||||
|
|
||||||
@ -26,10 +27,12 @@ Feature: Results
|
|||||||
Examples:
|
Examples:
|
||||||
| n_slots |
|
| n_slots |
|
||||||
| 1 |
|
| 1 |
|
||||||
| 2 |
|
# FIXME: unified KV cache nondeterminism
|
||||||
|
# | 2 |
|
||||||
|
|
||||||
Scenario Outline: different results with different seed
|
Scenario Outline: different results with different seed
|
||||||
Given <n_slots> slots
|
Given <n_slots> slots
|
||||||
|
And 1.0 temperature
|
||||||
Then the server is starting
|
Then the server is starting
|
||||||
Then the server is healthy
|
Then the server is healthy
|
||||||
|
|
||||||
@ -71,11 +74,45 @@ Feature: Results
|
|||||||
Examples:
|
Examples:
|
||||||
| n_parallel | temp |
|
| n_parallel | temp |
|
||||||
| 1 | 0.0 |
|
| 1 | 0.0 |
|
||||||
| 2 | 0.0 |
|
|
||||||
| 4 | 0.0 |
|
|
||||||
| 1 | 1.0 |
|
| 1 | 1.0 |
|
||||||
# FIXME: These tests fail on master. The problem seems to be the unified KV cache.
|
# FIXME: unified KV cache nondeterminism
|
||||||
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
|
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
|
||||||
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574 .
|
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574
|
||||||
|
# and https://github.com/ggerganov/llama.cpp/pull/7347 .
|
||||||
|
# | 2 | 0.0 |
|
||||||
|
# | 4 | 0.0 |
|
||||||
# | 2 | 1.0 |
|
# | 2 | 1.0 |
|
||||||
# | 4 | 1.0 |
|
# | 4 | 1.0 |
|
||||||
|
|
||||||
|
Scenario Outline: consistent token probs with same seed and prompt
|
||||||
|
Given <n_slots> slots
|
||||||
|
And <n_kv> KV cache size
|
||||||
|
And 1.0 temperature
|
||||||
|
And <n_predict> max tokens to predict
|
||||||
|
Then the server is starting
|
||||||
|
Then the server is healthy
|
||||||
|
|
||||||
|
Given 1 prompts "The meaning of life is" with seed 42
|
||||||
|
And concurrent completion requests
|
||||||
|
# Then the server is busy # Not all slots will be utilized.
|
||||||
|
Then the server is idle
|
||||||
|
And all slots are idle
|
||||||
|
|
||||||
|
Given <n_parallel> prompts "The meaning of life is" with seed 42
|
||||||
|
And concurrent completion requests
|
||||||
|
# Then the server is busy # Not all slots will be utilized.
|
||||||
|
Then the server is idle
|
||||||
|
And all slots are idle
|
||||||
|
|
||||||
|
Then all token probabilities are equal
|
||||||
|
Examples:
|
||||||
|
| n_slots | n_kv | n_predict | n_parallel |
|
||||||
|
| 4 | 1024 | 1 | 1 |
|
||||||
|
# FIXME: unified KV cache nondeterminism
|
||||||
|
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
|
||||||
|
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574
|
||||||
|
# and https://github.com/ggerganov/llama.cpp/pull/7347 .
|
||||||
|
# | 4 | 1024 | 1 | 4 |
|
||||||
|
# | 4 | 1024 | 100 | 1 |
|
||||||
|
# This test still fails even the above patches; the first token probabilities are already different.
|
||||||
|
# | 4 | 1024 | 100 | 4 |
|
||||||
|
@ -23,6 +23,7 @@ from prometheus_client import parser
|
|||||||
def step_server_config(context, server_fqdn, server_port):
|
def step_server_config(context, server_fqdn, server_port):
|
||||||
context.server_fqdn = server_fqdn
|
context.server_fqdn = server_fqdn
|
||||||
context.server_port = int(server_port)
|
context.server_port = int(server_port)
|
||||||
|
context.n_threads = None
|
||||||
context.n_gpu_layer = None
|
context.n_gpu_layer = None
|
||||||
if 'PORT' in os.environ:
|
if 'PORT' in os.environ:
|
||||||
context.server_port = int(os.environ['PORT'])
|
context.server_port = int(os.environ['PORT'])
|
||||||
@ -109,6 +110,11 @@ def step_n_gpu_layer(context, ngl):
|
|||||||
context.n_gpu_layer = ngl
|
context.n_gpu_layer = ngl
|
||||||
|
|
||||||
|
|
||||||
|
@step('{n_threads:d} threads')
|
||||||
|
def step_n_threads(context, n_threads):
|
||||||
|
context.n_thread = n_threads
|
||||||
|
|
||||||
|
|
||||||
@step('{draft:d} as draft')
|
@step('{draft:d} as draft')
|
||||||
def step_draft(context, draft):
|
def step_draft(context, draft):
|
||||||
context.draft = draft
|
context.draft = draft
|
||||||
@ -193,7 +199,7 @@ async def step_wait_for_the_server_to_be_started(context, expecting_status):
|
|||||||
|
|
||||||
case 'ready' | 'idle':
|
case 'ready' | 'idle':
|
||||||
await wait_for_health_status(context, context.base_url, 200, 'ok',
|
await wait_for_health_status(context, context.base_url, 200, 'ok',
|
||||||
timeout=10,
|
timeout=30,
|
||||||
params={'fail_on_no_slot': 0, 'include_slots': 0},
|
params={'fail_on_no_slot': 0, 'include_slots': 0},
|
||||||
slots_idle=context.n_slots,
|
slots_idle=context.n_slots,
|
||||||
slots_processing=0,
|
slots_processing=0,
|
||||||
@ -274,13 +280,22 @@ async def step_predictions_equal(context):
|
|||||||
|
|
||||||
@step('all predictions are different')
|
@step('all predictions are different')
|
||||||
@async_run_until_complete
|
@async_run_until_complete
|
||||||
async def step_predictions_equal(context):
|
async def step_predictions_different(context):
|
||||||
n_completions = await gather_tasks_results(context)
|
n_completions = await gather_tasks_results(context)
|
||||||
assert n_completions >= 2, "need at least 2 completions"
|
assert n_completions >= 2, "need at least 2 completions"
|
||||||
assert_all_predictions_different(context.tasks_result)
|
assert_all_predictions_different(context.tasks_result)
|
||||||
context.tasks_result = []
|
context.tasks_result = []
|
||||||
|
|
||||||
|
|
||||||
|
@step('all token probabilities are equal')
|
||||||
|
@async_run_until_complete
|
||||||
|
async def step_token_probabilities_equal(context):
|
||||||
|
n_completions = await gather_tasks_results(context)
|
||||||
|
assert n_completions >= 2, "need at least 2 completions"
|
||||||
|
assert_all_token_probabilities_equal(context.tasks_result)
|
||||||
|
context.tasks_result = []
|
||||||
|
|
||||||
|
|
||||||
@step('the completion is truncated')
|
@step('the completion is truncated')
|
||||||
def step_assert_completion_truncated(context):
|
def step_assert_completion_truncated(context):
|
||||||
step_assert_completion_truncated(context, '')
|
step_assert_completion_truncated(context, '')
|
||||||
@ -868,7 +883,8 @@ async def request_completion(prompt,
|
|||||||
"cache_prompt": cache_prompt,
|
"cache_prompt": cache_prompt,
|
||||||
"id_slot": id_slot,
|
"id_slot": id_slot,
|
||||||
"seed": seed if seed is not None else 42,
|
"seed": seed if seed is not None else 42,
|
||||||
"temperature": temperature if temperature is not None else "0.8f",
|
"temperature": temperature if temperature is not None else 0.8,
|
||||||
|
"n_probs": 2,
|
||||||
},
|
},
|
||||||
headers=headers,
|
headers=headers,
|
||||||
timeout=3600) as response:
|
timeout=3600) as response:
|
||||||
@ -887,6 +903,7 @@ async def oai_chat_completions(user_prompt,
|
|||||||
base_path,
|
base_path,
|
||||||
async_client,
|
async_client,
|
||||||
debug=False,
|
debug=False,
|
||||||
|
temperature=None,
|
||||||
model=None,
|
model=None,
|
||||||
n_predict=None,
|
n_predict=None,
|
||||||
enable_streaming=None,
|
enable_streaming=None,
|
||||||
@ -913,7 +930,8 @@ async def oai_chat_completions(user_prompt,
|
|||||||
"model": model,
|
"model": model,
|
||||||
"max_tokens": n_predict,
|
"max_tokens": n_predict,
|
||||||
"stream": enable_streaming,
|
"stream": enable_streaming,
|
||||||
"seed": seed
|
"temperature": temperature if temperature is not None else 0.0,
|
||||||
|
"seed": seed,
|
||||||
}
|
}
|
||||||
if response_format is not None:
|
if response_format is not None:
|
||||||
payload['response_format'] = response_format
|
payload['response_format'] = response_format
|
||||||
@ -978,7 +996,8 @@ async def oai_chat_completions(user_prompt,
|
|||||||
max_tokens=n_predict,
|
max_tokens=n_predict,
|
||||||
stream=enable_streaming,
|
stream=enable_streaming,
|
||||||
response_format=payload.get('response_format'),
|
response_format=payload.get('response_format'),
|
||||||
seed=seed
|
seed=seed,
|
||||||
|
temperature=payload['temperature']
|
||||||
)
|
)
|
||||||
except openai.error.AuthenticationError as e:
|
except openai.error.AuthenticationError as e:
|
||||||
if expect_api_error is not None and expect_api_error:
|
if expect_api_error is not None and expect_api_error:
|
||||||
@ -1120,6 +1139,23 @@ def assert_all_predictions_different(completion_responses):
|
|||||||
assert content_i != content_j, "contents not different"
|
assert content_i != content_j, "contents not different"
|
||||||
|
|
||||||
|
|
||||||
|
def assert_all_token_probabilities_equal(completion_responses):
|
||||||
|
n_predict = len(completion_responses[0]['completion_probabilities'])
|
||||||
|
if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
|
||||||
|
for pos in range(n_predict):
|
||||||
|
for i, response_i in enumerate(completion_responses):
|
||||||
|
probs_i = response_i['completion_probabilities'][pos]['probs']
|
||||||
|
print(f"pos {pos}, probs {i}: {probs_i}")
|
||||||
|
for pos in range(n_predict):
|
||||||
|
for i, response_i in enumerate(completion_responses):
|
||||||
|
probs_i = response_i['completion_probabilities'][pos]['probs']
|
||||||
|
for j, response_j in enumerate(completion_responses):
|
||||||
|
if i == j:
|
||||||
|
continue
|
||||||
|
probs_j = response_j['completion_probabilities'][pos]['probs']
|
||||||
|
assert probs_i == probs_j, "contents not equal"
|
||||||
|
|
||||||
|
|
||||||
async def gather_tasks_results(context):
|
async def gather_tasks_results(context):
|
||||||
n_tasks = len(context.concurrent_tasks)
|
n_tasks = len(context.concurrent_tasks)
|
||||||
if context.debug:
|
if context.debug:
|
||||||
@ -1258,6 +1294,8 @@ def start_server_background(context):
|
|||||||
server_args.extend(['--batch-size', context.n_batch])
|
server_args.extend(['--batch-size', context.n_batch])
|
||||||
if context.n_ubatch:
|
if context.n_ubatch:
|
||||||
server_args.extend(['--ubatch-size', context.n_ubatch])
|
server_args.extend(['--ubatch-size', context.n_ubatch])
|
||||||
|
if context.n_threads:
|
||||||
|
server_args.extend(['--threads', context.threads])
|
||||||
if context.n_gpu_layer:
|
if context.n_gpu_layer:
|
||||||
server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
|
server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
|
||||||
if context.draft is not None:
|
if context.draft is not None:
|
||||||
|
@ -371,7 +371,7 @@ static json oaicompat_completion_params_parse(
|
|||||||
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
|
||||||
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
|
llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
|
||||||
llama_params["stream"] = json_value(body, "stream", false);
|
llama_params["stream"] = json_value(body, "stream", false);
|
||||||
llama_params["temperature"] = json_value(body, "temperature", 0.0);
|
llama_params["temperature"] = json_value(body, "temperature", 1.0);
|
||||||
llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
llama_params["top_p"] = json_value(body, "top_p", 1.0);
|
||||||
|
|
||||||
// Apply chat template to the list of messages
|
// Apply chat template to the list of messages
|
||||||
|
@ -301,8 +301,8 @@ static struct ggml_tensor * llama_build_train_graphs(
|
|||||||
// not capturing these, to silcence warnings
|
// not capturing these, to silcence warnings
|
||||||
const int rope_mode = 0;
|
const int rope_mode = 0;
|
||||||
|
|
||||||
return ggml_rope_custom(
|
return ggml_rope_ext(
|
||||||
ctx, t, KQ_pos, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
|
ctx, t, KQ_pos, nullptr, n_rot, rope_mode, n_ctx, 0, rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
|
||||||
);
|
);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -1895,7 +1895,6 @@ void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * t
|
|||||||
|
|
||||||
tensor->buffer = buffer;
|
tensor->buffer = buffer;
|
||||||
tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
|
tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
|
||||||
tensor->backend = tensor->view_src->backend;
|
|
||||||
ggml_backend_buffer_init_tensor(buffer, tensor);
|
ggml_backend_buffer_init_tensor(buffer, tensor);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
104
ggml-cuda.cu
104
ggml-cuda.cu
@ -43,19 +43,59 @@
|
|||||||
#include <mutex>
|
#include <mutex>
|
||||||
#include <stdint.h>
|
#include <stdint.h>
|
||||||
#include <stdio.h>
|
#include <stdio.h>
|
||||||
|
#include <stdarg.h>
|
||||||
|
#include <stdlib.h>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
|
||||||
|
|
||||||
|
static void ggml_cuda_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) {
|
||||||
|
GGML_UNUSED(level);
|
||||||
|
GGML_UNUSED(user_data);
|
||||||
|
fprintf(stderr, "%s", msg);
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_log_callback ggml_cuda_log_callback = ggml_cuda_default_log_callback;
|
||||||
|
void * ggml_cuda_log_user_data = NULL;
|
||||||
|
|
||||||
|
GGML_API void ggml_backend_cuda_log_set_callback(ggml_log_callback log_callback, void * user_data) {
|
||||||
|
ggml_cuda_log_callback = log_callback;
|
||||||
|
ggml_cuda_log_user_data = user_data;
|
||||||
|
}
|
||||||
|
|
||||||
|
#define GGML_CUDA_LOG_INFO(...) ggml_cuda_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
|
||||||
|
#define GGML_CUDA_LOG_WARN(...) ggml_cuda_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
|
||||||
|
#define GGML_CUDA_LOG_ERROR(...) ggml_cuda_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
|
||||||
|
|
||||||
|
GGML_ATTRIBUTE_FORMAT(2, 3)
|
||||||
|
static void ggml_cuda_log(enum ggml_log_level level, const char * format, ...) {
|
||||||
|
if (ggml_cuda_log_callback != NULL) {
|
||||||
|
va_list args;
|
||||||
|
va_start(args, format);
|
||||||
|
char buffer[128];
|
||||||
|
int len = vsnprintf(buffer, 128, format, args);
|
||||||
|
if (len < 128) {
|
||||||
|
ggml_cuda_log_callback(level, buffer, ggml_cuda_log_user_data);
|
||||||
|
} else {
|
||||||
|
std::vector<char> buffer2(len + 1); // vsnprintf adds a null terminator
|
||||||
|
va_end(args);
|
||||||
|
va_start(args, format);
|
||||||
|
vsnprintf(&buffer2[0], buffer2.size(), format, args);
|
||||||
|
ggml_cuda_log_callback(level, buffer2.data(), ggml_cuda_log_user_data);
|
||||||
|
}
|
||||||
|
va_end(args);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
[[noreturn]]
|
[[noreturn]]
|
||||||
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
|
void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
|
||||||
int id = -1; // in case cudaGetDevice fails
|
int id = -1; // in case cudaGetDevice fails
|
||||||
cudaGetDevice(&id);
|
cudaGetDevice(&id);
|
||||||
|
|
||||||
fprintf(stderr, "CUDA error: %s\n", msg);
|
GGML_CUDA_LOG_ERROR("CUDA error: %s\n", msg);
|
||||||
fprintf(stderr, " current device: %d, in function %s at %s:%d\n", id, func, file, line);
|
GGML_CUDA_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
|
||||||
fprintf(stderr, " %s\n", stmt);
|
GGML_CUDA_LOG_ERROR(" %s\n", stmt);
|
||||||
// abort with GGML_ASSERT to get a stack trace
|
// abort with GGML_ASSERT to get a stack trace
|
||||||
GGML_ASSERT(!"CUDA error");
|
GGML_ASSERT(!"CUDA error");
|
||||||
}
|
}
|
||||||
@ -91,7 +131,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
|||||||
|
|
||||||
cudaError_t err = cudaGetDeviceCount(&info.device_count);
|
cudaError_t err = cudaGetDeviceCount(&info.device_count);
|
||||||
if (err != cudaSuccess) {
|
if (err != cudaSuccess) {
|
||||||
fprintf(stderr, "%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
|
GGML_CUDA_LOG_ERROR("%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
|
||||||
return info;
|
return info;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -99,16 +139,16 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
|||||||
|
|
||||||
int64_t total_vram = 0;
|
int64_t total_vram = 0;
|
||||||
#if defined(GGML_CUDA_FORCE_MMQ)
|
#if defined(GGML_CUDA_FORCE_MMQ)
|
||||||
fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
|
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
|
||||||
#else
|
#else
|
||||||
fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
|
GGML_CUDA_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
|
||||||
#endif
|
#endif
|
||||||
#if defined(CUDA_USE_TENSOR_CORES)
|
#if defined(CUDA_USE_TENSOR_CORES)
|
||||||
fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
|
GGML_CUDA_LOG_INFO("%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
|
||||||
#else
|
#else
|
||||||
fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
|
GGML_CUDA_LOG_INFO("%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
|
||||||
#endif
|
#endif
|
||||||
fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
|
GGML_CUDA_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
|
||||||
for (int id = 0; id < info.device_count; ++id) {
|
for (int id = 0; id < info.device_count; ++id) {
|
||||||
int device_vmm = 0;
|
int device_vmm = 0;
|
||||||
|
|
||||||
@ -129,7 +169,7 @@ static ggml_cuda_device_info ggml_cuda_init() {
|
|||||||
|
|
||||||
cudaDeviceProp prop;
|
cudaDeviceProp prop;
|
||||||
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
|
CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
|
||||||
fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
|
GGML_CUDA_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
|
||||||
|
|
||||||
info.default_tensor_split[id] = total_vram;
|
info.default_tensor_split[id] = total_vram;
|
||||||
total_vram += prop.totalGlobalMem;
|
total_vram += prop.totalGlobalMem;
|
||||||
@ -235,8 +275,8 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
|||||||
*actual_size = look_ahead_size;
|
*actual_size = look_ahead_size;
|
||||||
pool_size += look_ahead_size;
|
pool_size += look_ahead_size;
|
||||||
#ifdef DEBUG_CUDA_MALLOC
|
#ifdef DEBUG_CUDA_MALLOC
|
||||||
fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
|
GGML_CUDA_LOG_INFO("%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
|
||||||
(uint32_t)(max_size/1024/1024), (uint32_t)(pool_size/1024/1024), (uint32_t)(size/1024/1024));
|
(uint32_t)(max_size / 1024 / 1024), (uint32_t)(pool_size / 1024 / 1024), (uint32_t)(size / 1024 / 1024));
|
||||||
#endif
|
#endif
|
||||||
return ptr;
|
return ptr;
|
||||||
}
|
}
|
||||||
@ -250,7 +290,7 @@ struct ggml_cuda_pool_leg : public ggml_cuda_pool {
|
|||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
|
GGML_CUDA_LOG_WARN("Cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
|
||||||
ggml_cuda_set_device(device);
|
ggml_cuda_set_device(device);
|
||||||
CUDA_CHECK(cudaFree(ptr));
|
CUDA_CHECK(cudaFree(ptr));
|
||||||
pool_size -= size;
|
pool_size -= size;
|
||||||
@ -499,7 +539,9 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffe
|
|||||||
void * dev_ptr;
|
void * dev_ptr;
|
||||||
cudaError_t err = cudaMalloc(&dev_ptr, size);
|
cudaError_t err = cudaMalloc(&dev_ptr, size);
|
||||||
if (err != cudaSuccess) {
|
if (err != cudaSuccess) {
|
||||||
fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
|
// clear the error
|
||||||
|
cudaGetLastError();
|
||||||
|
GGML_CUDA_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err));
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -1002,8 +1044,8 @@ static void * ggml_cuda_host_malloc(size_t size) {
|
|||||||
if (err != cudaSuccess) {
|
if (err != cudaSuccess) {
|
||||||
// clear the error
|
// clear the error
|
||||||
cudaGetLastError();
|
cudaGetLastError();
|
||||||
fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
|
GGML_CUDA_LOG_WARN("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
|
||||||
size/1024.0/1024.0, cudaGetErrorString(err));
|
size / 1024.0 / 1024.0, cudaGetErrorString(err));
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2246,7 +2288,7 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||||||
break;
|
break;
|
||||||
case GGML_OP_MUL_MAT:
|
case GGML_OP_MUL_MAT:
|
||||||
if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
|
if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
|
||||||
fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
|
GGML_CUDA_LOG_ERROR("%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
|
||||||
return false;
|
return false;
|
||||||
} else {
|
} else {
|
||||||
ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
|
ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
|
||||||
@ -2300,7 +2342,7 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg
|
|||||||
|
|
||||||
cudaError_t err = cudaGetLastError();
|
cudaError_t err = cudaGetLastError();
|
||||||
if (err != cudaSuccess) {
|
if (err != cudaSuccess) {
|
||||||
fprintf(stderr, "%s: %s failed\n", __func__, ggml_op_desc(dst));
|
GGML_CUDA_LOG_ERROR("%s: %s failed\n", __func__, ggml_op_desc(dst));
|
||||||
CUDA_CHECK(err);
|
CUDA_CHECK(err);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2476,7 +2518,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||||||
if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
|
if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
|
||||||
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
|
cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
fprintf(stderr, "%s: disabling CUDA graphs due to GPU architecture\n", __func__);
|
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -2523,14 +2565,14 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||||||
if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
|
if (node->src[0] && ggml_backend_buffer_is_cuda_split(node->src[0]->buffer)) {
|
||||||
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
|
use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
fprintf(stderr, "%s: disabling CUDA graphs due to split buffer\n", __func__);
|
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to split buffer\n", __func__);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
if (node->op == GGML_OP_MUL_MAT_ID) {
|
if (node->op == GGML_OP_MUL_MAT_ID) {
|
||||||
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
|
use_cuda_graph = false; // This node type is not supported by CUDA graph capture
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
fprintf(stderr, "%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
|
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2539,7 +2581,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||||||
// Changes in batch size or context size can cause changes to the grid size of some kernels.
|
// Changes in batch size or context size can cause changes to the grid size of some kernels.
|
||||||
use_cuda_graph = false;
|
use_cuda_graph = false;
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
fprintf(stderr, "%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
|
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2558,7 +2600,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
|
// Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
|
||||||
if (cuda_graph_update_required) {
|
if (use_cuda_graph && cuda_graph_update_required) {
|
||||||
cuda_ctx->cuda_graph->number_consecutive_updates++;
|
cuda_ctx->cuda_graph->number_consecutive_updates++;
|
||||||
} else {
|
} else {
|
||||||
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
|
cuda_ctx->cuda_graph->number_consecutive_updates = 0;
|
||||||
@ -2567,7 +2609,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||||||
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
|
if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
|
||||||
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
|
cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
fprintf(stderr, "%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
|
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -2605,7 +2647,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||||||
|
|
||||||
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
|
bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
|
||||||
if (!ok) {
|
if (!ok) {
|
||||||
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
GGML_CUDA_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
||||||
}
|
}
|
||||||
GGML_ASSERT(ok);
|
GGML_ASSERT(ok);
|
||||||
}
|
}
|
||||||
@ -2624,7 +2666,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||||||
use_cuda_graph = false;
|
use_cuda_graph = false;
|
||||||
cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
|
cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
fprintf(stderr, "%s: disabling CUDA graphs due to failed graph capture\n", __func__);
|
GGML_CUDA_LOG_WARN("%s: disabling CUDA graphs due to failed graph capture\n", __func__);
|
||||||
#endif
|
#endif
|
||||||
} else {
|
} else {
|
||||||
graph_evaluated_or_captured = true; // CUDA graph has been captured
|
graph_evaluated_or_captured = true; // CUDA graph has been captured
|
||||||
@ -2691,7 +2733,7 @@ GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t
|
|||||||
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
|
cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
|
||||||
if (stat == cudaErrorGraphExecUpdateFailure) {
|
if (stat == cudaErrorGraphExecUpdateFailure) {
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
fprintf(stderr, "%s: CUDA graph update failed\n", __func__);
|
GGML_CUDA_LOG_ERROR("%s: CUDA graph update failed\n", __func__);
|
||||||
#endif
|
#endif
|
||||||
// The pre-existing graph exec cannot be updated due to violated constraints
|
// The pre-existing graph exec cannot be updated due to violated constraints
|
||||||
// so instead clear error and re-instantiate
|
// so instead clear error and re-instantiate
|
||||||
@ -2948,13 +2990,13 @@ static ggml_guid_t ggml_backend_cuda_guid() {
|
|||||||
|
|
||||||
GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
|
GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
|
||||||
if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
|
if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
|
||||||
fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
|
GGML_CUDA_LOG_ERROR("%s: invalid device %d\n", __func__, device);
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
|
ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
|
||||||
if (ctx == nullptr) {
|
if (ctx == nullptr) {
|
||||||
fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
|
GGML_CUDA_LOG_ERROR("%s: failed to allocate context\n", __func__);
|
||||||
return nullptr;
|
return nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2998,8 +3040,8 @@ GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size
|
|||||||
// clear the error
|
// clear the error
|
||||||
cudaGetLastError();
|
cudaGetLastError();
|
||||||
|
|
||||||
fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__,
|
GGML_CUDA_LOG_WARN("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
|
||||||
size/1024.0/1024.0, cudaGetErrorString(err));
|
size / 1024.0 / 1024.0, cudaGetErrorString(err));
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
return true;
|
return true;
|
||||||
|
@ -38,6 +38,7 @@ GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t *
|
|||||||
GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size);
|
||||||
GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer);
|
||||||
|
|
||||||
|
GGML_API void ggml_backend_cuda_log_set_callback(ggml_log_callback log_callback, void * user_data);
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
@ -315,6 +315,20 @@ static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
|||||||
#endif
|
#endif
|
||||||
return c;
|
return c;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
|
||||||
|
// __shfl_xor() for half2 was added in ROCm 5.6
|
||||||
|
static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int width) {
|
||||||
|
typedef union half2_b32 {
|
||||||
|
half2 val;
|
||||||
|
int b32;
|
||||||
|
} half2_b32_t;
|
||||||
|
half2_b32_t tmp;
|
||||||
|
tmp.val = var;
|
||||||
|
tmp.b32 = __shfl_xor(tmp.b32, laneMask, width);
|
||||||
|
return tmp.val;
|
||||||
|
}
|
||||||
|
#endif // defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
|
||||||
#endif // defined(GGML_USE_HIPBLAS)
|
#endif // defined(GGML_USE_HIPBLAS)
|
||||||
|
|
||||||
#define FP16_AVAILABLE (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
#define FP16_AVAILABLE (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
|
||||||
@ -463,6 +477,17 @@ static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -
|
|||||||
|
|
||||||
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
|
typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
|
||||||
|
|
||||||
|
static __device__ __forceinline__ float get_alibi_slope(
|
||||||
|
const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
|
||||||
|
) {
|
||||||
|
if (max_bias <= 0.0f) {
|
||||||
|
return 1.0f;
|
||||||
|
}
|
||||||
|
const float base = h < n_head_log2 ? m0 : m1;
|
||||||
|
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||||
|
|
||||||
|
return powf(base, exph);
|
||||||
|
}
|
||||||
|
|
||||||
//////////////////////
|
//////////////////////
|
||||||
|
|
||||||
|
@ -1,7 +1,44 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
#include <cstdint>
|
||||||
|
|
||||||
#define FATTN_KQ_STRIDE 256
|
#define FATTN_KQ_STRIDE 256
|
||||||
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
|
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
|
||||||
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
|
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
|
||||||
|
|
||||||
|
typedef void (* fattn_kernel_t)(
|
||||||
|
const char * __restrict__ Q,
|
||||||
|
const char * __restrict__ K,
|
||||||
|
const char * __restrict__ V,
|
||||||
|
const char * __restrict__ mask,
|
||||||
|
float * __restrict__ dst,
|
||||||
|
float2 * __restrict__ dst_meta,
|
||||||
|
const float scale,
|
||||||
|
const float max_bias,
|
||||||
|
const float m0,
|
||||||
|
const float m1,
|
||||||
|
const uint32_t n_head_log2,
|
||||||
|
const int ne00,
|
||||||
|
const int ne01,
|
||||||
|
const int ne02,
|
||||||
|
const int ne03,
|
||||||
|
const int ne10,
|
||||||
|
const int ne11,
|
||||||
|
const int ne12,
|
||||||
|
const int ne13,
|
||||||
|
const int ne31,
|
||||||
|
const int nb31,
|
||||||
|
const int nb01,
|
||||||
|
const int nb02,
|
||||||
|
const int nb03,
|
||||||
|
const int nb11,
|
||||||
|
const int nb12,
|
||||||
|
const int nb13,
|
||||||
|
const int ne0,
|
||||||
|
const int ne1,
|
||||||
|
const int ne2,
|
||||||
|
const int ne3);
|
||||||
|
|
||||||
template<int D, int parallel_blocks> // D == head size
|
template<int D, int parallel_blocks> // D == head size
|
||||||
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
__launch_bounds__(D, 1)
|
__launch_bounds__(D, 1)
|
||||||
@ -45,3 +82,81 @@ static __global__ void flash_attn_combine_results(
|
|||||||
|
|
||||||
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <int D, int parallel_blocks>
|
||||||
|
void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) {
|
||||||
|
const ggml_tensor * Q = dst->src[0];
|
||||||
|
const ggml_tensor * K = dst->src[1];
|
||||||
|
const ggml_tensor * V = dst->src[2];
|
||||||
|
|
||||||
|
const ggml_tensor * mask = dst->src[3];
|
||||||
|
|
||||||
|
ggml_tensor * KQV = dst;
|
||||||
|
|
||||||
|
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
||||||
|
GGML_ASSERT(K->type == GGML_TYPE_F16);
|
||||||
|
GGML_ASSERT(V->type == GGML_TYPE_F16);
|
||||||
|
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
|
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
||||||
|
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
|
||||||
|
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
|
||||||
|
|
||||||
|
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
|
||||||
|
|
||||||
|
ggml_cuda_pool & pool = ctx.pool();
|
||||||
|
cudaStream_t main_stream = ctx.stream();
|
||||||
|
|
||||||
|
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
||||||
|
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
||||||
|
|
||||||
|
if (parallel_blocks > 1) {
|
||||||
|
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
||||||
|
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
||||||
|
}
|
||||||
|
|
||||||
|
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
||||||
|
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
||||||
|
const int shmem = 0;
|
||||||
|
|
||||||
|
float scale = 1.0f;
|
||||||
|
float max_bias = 0.0f;
|
||||||
|
|
||||||
|
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
||||||
|
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
||||||
|
|
||||||
|
const uint32_t n_head = Q->ne[2];
|
||||||
|
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
||||||
|
|
||||||
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||||
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||||
|
|
||||||
|
fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
|
||||||
|
(const char *) Q->data,
|
||||||
|
(const char *) K->data,
|
||||||
|
(const char *) V->data,
|
||||||
|
mask ? ((const char *) mask->data) : nullptr,
|
||||||
|
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
||||||
|
scale, max_bias, m0, m1, n_head_log2,
|
||||||
|
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
||||||
|
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
||||||
|
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
||||||
|
Q->nb[1], Q->nb[2], Q->nb[3],
|
||||||
|
K->nb[1], K->nb[2], K->nb[3],
|
||||||
|
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
||||||
|
);
|
||||||
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
|
||||||
|
if ((parallel_blocks) == 1) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const dim3 block_dim_combine(D, 1, 1);
|
||||||
|
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
||||||
|
const int shmem_combine = 0;
|
||||||
|
|
||||||
|
flash_attn_combine_results<D, parallel_blocks>
|
||||||
|
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
||||||
|
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
||||||
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
}
|
||||||
|
316
ggml-cuda/fattn-tile-f16.cu
Normal file
316
ggml-cuda/fattn-tile-f16.cu
Normal file
@ -0,0 +1,316 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
#include "fattn-common.cuh"
|
||||||
|
#include "fattn-tile-f16.cuh"
|
||||||
|
|
||||||
|
#define FATTN_KQ_STRIDE_TILE_F16 64
|
||||||
|
|
||||||
|
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
static __global__ void flash_attn_tile_ext_f16(
|
||||||
|
const char * __restrict__ Q,
|
||||||
|
const char * __restrict__ K,
|
||||||
|
const char * __restrict__ V,
|
||||||
|
const char * __restrict__ mask,
|
||||||
|
float * __restrict__ dst,
|
||||||
|
float2 * __restrict__ dst_meta,
|
||||||
|
const float scale,
|
||||||
|
const float max_bias,
|
||||||
|
const float m0,
|
||||||
|
const float m1,
|
||||||
|
const uint32_t n_head_log2,
|
||||||
|
const int ne00,
|
||||||
|
const int ne01,
|
||||||
|
const int ne02,
|
||||||
|
const int ne03,
|
||||||
|
const int ne10,
|
||||||
|
const int ne11,
|
||||||
|
const int ne12,
|
||||||
|
const int ne13,
|
||||||
|
const int ne31,
|
||||||
|
const int nb31,
|
||||||
|
const int nb01,
|
||||||
|
const int nb02,
|
||||||
|
const int nb03,
|
||||||
|
const int nb11,
|
||||||
|
const int nb12,
|
||||||
|
const int nb13,
|
||||||
|
const int ne0,
|
||||||
|
const int ne1,
|
||||||
|
const int ne2,
|
||||||
|
const int ne3) {
|
||||||
|
#if FP16_AVAILABLE
|
||||||
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||||
|
|
||||||
|
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||||
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||||
|
|
||||||
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||||
|
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||||
|
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||||
|
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||||
|
const half * maskh = (const half *) mask + ne11*ic0;
|
||||||
|
|
||||||
|
const int stride_KV2 = nb11 / sizeof(half2);
|
||||||
|
|
||||||
|
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||||
|
const half slopeh = __float2half(slopef);
|
||||||
|
|
||||||
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||||
|
|
||||||
|
__shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16];
|
||||||
|
half2 * KQ2 = (half2 *) KQ;
|
||||||
|
|
||||||
|
__shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts.
|
||||||
|
|
||||||
|
half kqmax[ncols/nwarps];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
kqmax[j0/nwarps] = -HALF_MAX_HALF;
|
||||||
|
}
|
||||||
|
half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}};
|
||||||
|
|
||||||
|
half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
||||||
|
|
||||||
|
// Convert Q to half2 and store in registers:
|
||||||
|
__shared__ half2 Q_h2[ncols][D/2];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
|
||||||
|
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F16;
|
||||||
|
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F16) {
|
||||||
|
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||||
|
|
||||||
|
half kqmax_new[ncols/nwarps];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||||
|
kqmax_new[j] = kqmax[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) {
|
||||||
|
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
|
||||||
|
const int k_KQ = k_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
KV_tmp[i_KQ][k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}};
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) {
|
||||||
|
half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE];
|
||||||
|
half2 Q_k[ncols/nwarps];
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||||
|
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||||
|
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||||
|
sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
|
||||||
|
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||||
|
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
half sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||||
|
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
|
||||||
|
|
||||||
|
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
|
||||||
|
|
||||||
|
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
||||||
|
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]));
|
||||||
|
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]);
|
||||||
|
const half2 val = h2exp(diff);
|
||||||
|
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val;
|
||||||
|
KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val;
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) {
|
||||||
|
const int k = k0 + threadIdx.y;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
KV_tmp[k][i] = V_h2[(k_VKQ_0 + k)*stride_KV2 + i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) {
|
||||||
|
half2 V_k[(D/2)/WARP_SIZE][2];
|
||||||
|
half2 KQ_k[ncols/nwarps];
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i];
|
||||||
|
V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i];
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]);
|
||||||
|
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||||
|
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
if (ic0 + j_VKQ >= ne01) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
|
||||||
|
kqsum_j = warp_reduce_sum(kqsum_j);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
|
||||||
|
const int i0 = i00 + 2*threadIdx.x;
|
||||||
|
|
||||||
|
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
|
||||||
|
if (parallel_blocks == 1) {
|
||||||
|
dst_val /= __half2half2(kqsum_j);
|
||||||
|
}
|
||||||
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||||
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = __low2float(dst_val);
|
||||||
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = __high2float(dst_val);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (parallel_blocks != 1 && threadIdx.x == 0) {
|
||||||
|
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
NO_DEVICE_CODE;
|
||||||
|
#endif // FP16_AVAILABLE
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int cols_per_block, int parallel_blocks>
|
||||||
|
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * Q = dst->src[0];
|
||||||
|
switch (Q->ne[0]) {
|
||||||
|
case 64: {
|
||||||
|
constexpr int D = 64;
|
||||||
|
constexpr int nwarps = 8;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
} break;
|
||||||
|
case 128: {
|
||||||
|
constexpr int D = 128;
|
||||||
|
constexpr int nwarps = 8;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
} break;
|
||||||
|
default: {
|
||||||
|
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||||
|
} break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * KQV = dst;
|
||||||
|
const ggml_tensor * Q = dst->src[0];
|
||||||
|
|
||||||
|
const int32_t precision = KQV->op_params[2];
|
||||||
|
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 16) {
|
||||||
|
constexpr int cols_per_block = 16;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 32) {
|
||||||
|
constexpr int cols_per_block = 32;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr int cols_per_block = 32;
|
||||||
|
constexpr int parallel_blocks = 1;
|
||||||
|
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
|
}
|
3
ggml-cuda/fattn-tile-f16.cuh
Normal file
3
ggml-cuda/fattn-tile-f16.cuh
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
309
ggml-cuda/fattn-tile-f32.cu
Normal file
309
ggml-cuda/fattn-tile-f32.cu
Normal file
@ -0,0 +1,309 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
#include "fattn-common.cuh"
|
||||||
|
#include "fattn-tile-f32.cuh"
|
||||||
|
|
||||||
|
#define FATTN_KQ_STRIDE_TILE_F32 32
|
||||||
|
|
||||||
|
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
|
||||||
|
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
__launch_bounds__(nwarps*WARP_SIZE, 1)
|
||||||
|
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
|
||||||
|
static __global__ void flash_attn_tile_ext_f32(
|
||||||
|
const char * __restrict__ Q,
|
||||||
|
const char * __restrict__ K,
|
||||||
|
const char * __restrict__ V,
|
||||||
|
const char * __restrict__ mask,
|
||||||
|
float * __restrict__ dst,
|
||||||
|
float2 * __restrict__ dst_meta,
|
||||||
|
const float scale,
|
||||||
|
const float max_bias,
|
||||||
|
const float m0,
|
||||||
|
const float m1,
|
||||||
|
const uint32_t n_head_log2,
|
||||||
|
const int ne00,
|
||||||
|
const int ne01,
|
||||||
|
const int ne02,
|
||||||
|
const int ne03,
|
||||||
|
const int ne10,
|
||||||
|
const int ne11,
|
||||||
|
const int ne12,
|
||||||
|
const int ne13,
|
||||||
|
const int ne31,
|
||||||
|
const int nb31,
|
||||||
|
const int nb01,
|
||||||
|
const int nb02,
|
||||||
|
const int nb03,
|
||||||
|
const int nb11,
|
||||||
|
const int nb12,
|
||||||
|
const int nb13,
|
||||||
|
const int ne0,
|
||||||
|
const int ne1,
|
||||||
|
const int ne2,
|
||||||
|
const int ne3) {
|
||||||
|
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
|
||||||
|
|
||||||
|
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
|
||||||
|
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
|
||||||
|
|
||||||
|
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
|
||||||
|
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
|
||||||
|
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
|
||||||
|
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
|
||||||
|
const half * maskh = (const half *) mask + ne11*ic0;
|
||||||
|
|
||||||
|
const int stride_KV2 = nb11 / sizeof(half2);
|
||||||
|
|
||||||
|
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||||
|
|
||||||
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||||
|
|
||||||
|
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
|
||||||
|
|
||||||
|
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
|
||||||
|
float2 * KV_tmp2 = (float2 *) KV_tmp;
|
||||||
|
|
||||||
|
float kqmax[ncols/nwarps];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
|
||||||
|
}
|
||||||
|
float kqsum[ncols/nwarps] = {0.0f};
|
||||||
|
|
||||||
|
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
|
||||||
|
|
||||||
|
// Convert Q to half2 and store in registers:
|
||||||
|
__shared__ float Q_f[ncols][D];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
|
||||||
|
float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x];
|
||||||
|
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
|
||||||
|
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F32;
|
||||||
|
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F32) {
|
||||||
|
// Calculate KQ tile and keep track of new maximum KQ values:
|
||||||
|
|
||||||
|
float kqmax_new[ncols/nwarps];
|
||||||
|
#pragma unroll
|
||||||
|
for (int j = 0; j < ncols/nwarps; ++j) {
|
||||||
|
kqmax_new[j] = kqmax[j];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) {
|
||||||
|
const int i_KQ = i_KQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
|
||||||
|
const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
|
||||||
|
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
|
||||||
|
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
|
||||||
|
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
|
||||||
|
float Q_k[ncols/nwarps];
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||||
|
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||||
|
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||||
|
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
|
||||||
|
const int i_KQ = i_KQ_0 + threadIdx.x;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
|
||||||
|
const int j_KQ = j_KQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
|
||||||
|
|
||||||
|
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
|
||||||
|
|
||||||
|
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
|
||||||
|
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
|
||||||
|
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
|
||||||
|
|
||||||
|
float kqsum_add = 0.0f;
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps];
|
||||||
|
const float val = expf(diff);
|
||||||
|
kqsum_add += val;
|
||||||
|
KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val;
|
||||||
|
}
|
||||||
|
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
|
||||||
|
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) {
|
||||||
|
const int k = k0 + threadIdx.y;
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
|
||||||
|
KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
|
||||||
|
float2 V_k[(D/2)/WARP_SIZE];
|
||||||
|
float KQ_k[ncols/nwarps];
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
const int i = i0 + threadIdx.x;
|
||||||
|
|
||||||
|
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
|
||||||
|
}
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
const int j = j0 + threadIdx.y;
|
||||||
|
|
||||||
|
KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k];
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
|
||||||
|
#pragma unroll
|
||||||
|
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
|
||||||
|
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
|
||||||
|
VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
__syncthreads();
|
||||||
|
}
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
|
||||||
|
const int j_VKQ = j_VKQ_0 + threadIdx.y;
|
||||||
|
|
||||||
|
if (ic0 + j_VKQ >= ne01) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
float kqsum_j = kqsum[j_VKQ_0/nwarps];
|
||||||
|
kqsum_j = warp_reduce_sum(kqsum_j);
|
||||||
|
|
||||||
|
#pragma unroll
|
||||||
|
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
|
||||||
|
const int i0 = i00 + 2*threadIdx.x;
|
||||||
|
|
||||||
|
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
|
||||||
|
if (parallel_blocks == 1) {
|
||||||
|
dst_val.x /= kqsum_j;
|
||||||
|
dst_val.y /= kqsum_j;
|
||||||
|
}
|
||||||
|
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
|
||||||
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x;
|
||||||
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (parallel_blocks != 1 && threadIdx.x == 0) {
|
||||||
|
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <int cols_per_block, int parallel_blocks>
|
||||||
|
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * Q = dst->src[0];
|
||||||
|
switch (Q->ne[0]) {
|
||||||
|
case 64: {
|
||||||
|
constexpr int D = 64;
|
||||||
|
constexpr int nwarps = 8;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
} break;
|
||||||
|
case 128: {
|
||||||
|
constexpr int D = 128;
|
||||||
|
constexpr int nwarps = 8;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
} break;
|
||||||
|
default: {
|
||||||
|
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||||
|
} break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * Q = dst->src[0];
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 16) {
|
||||||
|
constexpr int cols_per_block = 16;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (Q->ne[1] <= 32) {
|
||||||
|
constexpr int cols_per_block = 32;
|
||||||
|
constexpr int parallel_blocks = 4;
|
||||||
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
constexpr int cols_per_block = 32;
|
||||||
|
constexpr int parallel_blocks = 1;
|
||||||
|
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
|
}
|
3
ggml-cuda/fattn-tile-f32.cuh
Normal file
3
ggml-cuda/fattn-tile-f32.cuh
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
#include "common.cuh"
|
||||||
|
|
||||||
|
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
|
@ -53,17 +53,8 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||||||
const int stride_KV = nb11 / sizeof(half);
|
const int stride_KV = nb11 / sizeof(half);
|
||||||
const int stride_KV2 = nb11 / sizeof(half2);
|
const int stride_KV2 = nb11 / sizeof(half2);
|
||||||
|
|
||||||
half slopeh = __float2half(1.0f);
|
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||||
|
const half slopeh = __float2half(slopef);
|
||||||
// ALiBi
|
|
||||||
if (max_bias > 0.0f) {
|
|
||||||
const int h = blockIdx.y;
|
|
||||||
|
|
||||||
const float base = h < n_head_log2 ? m0 : m1;
|
|
||||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
|
||||||
|
|
||||||
slopeh = __float2half(powf(base, exph));
|
|
||||||
}
|
|
||||||
|
|
||||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||||
constexpr int nwarps = D / WARP_SIZE;
|
constexpr int nwarps = D / WARP_SIZE;
|
||||||
@ -221,6 +212,10 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||||
|
if (ic0 + j_VKQ >= ne01) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||||
|
|
||||||
@ -232,85 +227,17 @@ static __global__ void flash_attn_vec_ext_f16(
|
|||||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (parallel_blocks != 1 && tid != 0) {
|
if (parallel_blocks != 1 && tid < ncols && ic0 + tid < ne01) {
|
||||||
#pragma unroll
|
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
NO_DEVICE_CODE;
|
NO_DEVICE_CODE;
|
||||||
#endif // FP16_AVAILABLE
|
#endif // FP16_AVAILABLE
|
||||||
}
|
}
|
||||||
|
|
||||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f16(
|
|
||||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
|
||||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
|
||||||
) {
|
|
||||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
|
||||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
|
||||||
|
|
||||||
if (parallel_blocks > 1) {
|
|
||||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
|
||||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
|
||||||
}
|
|
||||||
|
|
||||||
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
|
||||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
|
||||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
|
||||||
const int shmem = 0;
|
|
||||||
|
|
||||||
float scale = 1.0f;
|
|
||||||
float max_bias = 0.0f;
|
|
||||||
|
|
||||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
|
||||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
|
||||||
|
|
||||||
const uint32_t n_head = Q->ne[2];
|
|
||||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
|
||||||
|
|
||||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
||||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
||||||
|
|
||||||
flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>
|
|
||||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
|
||||||
(const char *) Q->data,
|
|
||||||
(const char *) K->data,
|
|
||||||
(const char *) V->data,
|
|
||||||
mask ? ((const char *) mask->data) : nullptr,
|
|
||||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
|
||||||
scale, max_bias, m0, m1, n_head_log2,
|
|
||||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
|
||||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
|
||||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
|
||||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
|
||||||
K->nb[1], K->nb[2], K->nb[3],
|
|
||||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
|
||||||
);
|
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
if (parallel_blocks == 1) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
const dim3 block_dim_combine(D, 1, 1);
|
|
||||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
|
||||||
const int shmem_combine = 0;
|
|
||||||
|
|
||||||
flash_attn_combine_results<D, parallel_blocks>
|
|
||||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
|
||||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
const ggml_tensor * Q = dst->src[0];
|
|
||||||
const ggml_tensor * K = dst->src[1];
|
|
||||||
const ggml_tensor * V = dst->src[2];
|
|
||||||
|
|
||||||
const ggml_tensor * mask = dst->src[3];
|
|
||||||
|
|
||||||
ggml_tensor * KQV = dst;
|
ggml_tensor * KQV = dst;
|
||||||
|
ggml_tensor * Q = dst->src[0];
|
||||||
|
|
||||||
const int32_t precision = KQV->op_params[2];
|
const int32_t precision = KQV->op_params[2];
|
||||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||||
@ -318,113 +245,86 @@ void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tens
|
|||||||
constexpr int cols_per_block = 1;
|
constexpr int cols_per_block = 1;
|
||||||
constexpr int parallel_blocks = 4;
|
constexpr int parallel_blocks = 4;
|
||||||
switch (Q->ne[0]) {
|
switch (Q->ne[0]) {
|
||||||
case 64:
|
case 64: {
|
||||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
constexpr int D = 64;
|
||||||
break;
|
constexpr int nwarps = D/WARP_SIZE;
|
||||||
case 128:
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
||||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
break;
|
} break;
|
||||||
case 256:
|
case 128: {
|
||||||
launch_fattn_vec_f16<256, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
constexpr int D = 128;
|
||||||
break;
|
constexpr int nwarps = D/WARP_SIZE;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
} break;
|
||||||
|
case 256: {
|
||||||
|
constexpr int D = 256;
|
||||||
|
constexpr int nwarps = D/WARP_SIZE;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <int cols_per_block, int parallel_blocks>
|
||||||
|
void launch_fattn_vec_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * Q = dst->src[0];
|
||||||
|
switch (Q->ne[0]) {
|
||||||
|
case 64: {
|
||||||
|
constexpr int D = 64;
|
||||||
|
constexpr int nwarps = D/WARP_SIZE;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
} break;
|
||||||
|
case 128: {
|
||||||
|
constexpr int D = 128;
|
||||||
|
constexpr int nwarps = D/WARP_SIZE;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
} break;
|
||||||
|
default: {
|
||||||
|
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||||
|
} break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * KQV = dst;
|
||||||
const ggml_tensor * Q = dst->src[0];
|
const ggml_tensor * Q = dst->src[0];
|
||||||
const ggml_tensor * K = dst->src[1];
|
|
||||||
const ggml_tensor * V = dst->src[2];
|
|
||||||
|
|
||||||
const ggml_tensor * mask = dst->src[3];
|
|
||||||
|
|
||||||
ggml_tensor * KQV = dst;
|
|
||||||
|
|
||||||
const int32_t precision = KQV->op_params[2];
|
const int32_t precision = KQV->op_params[2];
|
||||||
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
|
||||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
|
||||||
|
|
||||||
if (Q->ne[1] == 1) {
|
if (Q->ne[1] == 1) {
|
||||||
constexpr int cols_per_block = 1;
|
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
|
||||||
constexpr int parallel_blocks = 4;
|
|
||||||
switch (Q->ne[0]) {
|
|
||||||
case 64:
|
|
||||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (Q->ne[1] == 2) {
|
if (Q->ne[1] == 2) {
|
||||||
constexpr int cols_per_block = 2;
|
constexpr int cols_per_block = 2;
|
||||||
constexpr int parallel_blocks = 4;
|
constexpr int parallel_blocks = 4;
|
||||||
switch (Q->ne[0]) {
|
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
case 64:
|
|
||||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (Q->ne[1] <= 4) {
|
if (Q->ne[1] <= 4) {
|
||||||
constexpr int cols_per_block = 4;
|
constexpr int cols_per_block = 4;
|
||||||
constexpr int parallel_blocks = 4;
|
constexpr int parallel_blocks = 4;
|
||||||
switch (Q->ne[0]) {
|
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
case 64:
|
|
||||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (Q->ne[1] <= 8) {
|
if (Q->ne[1] <= 8) {
|
||||||
constexpr int cols_per_block = 8;
|
constexpr int cols_per_block = 8;
|
||||||
constexpr int parallel_blocks = 4;
|
constexpr int parallel_blocks = 4;
|
||||||
switch (Q->ne[0]) {
|
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
case 64:
|
|
||||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
constexpr int cols_per_block = 8;
|
constexpr int cols_per_block = 8;
|
||||||
constexpr int parallel_blocks = 1;
|
constexpr int parallel_blocks = 1;
|
||||||
switch (Q->ne[0]) {
|
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
case 64:
|
|
||||||
launch_fattn_vec_f16< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_vec_f16<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
@ -52,17 +52,7 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||||||
const int stride_KV = nb11 / sizeof(half);
|
const int stride_KV = nb11 / sizeof(half);
|
||||||
const int stride_KV2 = nb11 / sizeof(half2);
|
const int stride_KV2 = nb11 / sizeof(half2);
|
||||||
|
|
||||||
float slope = 1.0f;
|
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||||
|
|
||||||
// ALiBi
|
|
||||||
if (max_bias > 0.0f) {
|
|
||||||
const int h = blockIdx.y;
|
|
||||||
|
|
||||||
const float base = h < n_head_log2 ? m0 : m1;
|
|
||||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
|
||||||
|
|
||||||
slope = powf(base, exph);
|
|
||||||
}
|
|
||||||
|
|
||||||
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
|
||||||
constexpr int nwarps = D / WARP_SIZE;
|
constexpr int nwarps = D / WARP_SIZE;
|
||||||
@ -210,6 +200,10 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||||||
|
|
||||||
#pragma unroll
|
#pragma unroll
|
||||||
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
|
||||||
|
if (ic0 + j_VKQ >= ne01) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
|
||||||
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
|
||||||
|
|
||||||
@ -221,164 +215,65 @@ static __global__ void flash_attn_vec_ext_f32(
|
|||||||
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (parallel_blocks != 1 && tid != 0) {
|
if (parallel_blocks != 1 && tid < ncols && ic0 + tid < ne01) {
|
||||||
#pragma unroll
|
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
|
||||||
for (int j = 0; j < ncols; ++j) {
|
|
||||||
dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f32(
|
template <int cols_per_block, int parallel_blocks>
|
||||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
void launch_fattn_vec_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
const ggml_tensor * Q = dst->src[0];
|
||||||
) {
|
switch (Q->ne[0]) {
|
||||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
case 64: {
|
||||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
constexpr int D = 64;
|
||||||
|
constexpr int nwarps = D/WARP_SIZE;
|
||||||
if (parallel_blocks > 1) {
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
|
||||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
} break;
|
||||||
|
case 128: {
|
||||||
|
constexpr int D = 128;
|
||||||
|
constexpr int nwarps = D/WARP_SIZE;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
|
} break;
|
||||||
|
default: {
|
||||||
|
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
||||||
|
} break;
|
||||||
}
|
}
|
||||||
|
|
||||||
constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE;
|
|
||||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
|
||||||
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
|
|
||||||
const int shmem = 0;
|
|
||||||
|
|
||||||
float scale = 1.0f;
|
|
||||||
float max_bias = 0.0f;
|
|
||||||
|
|
||||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
|
||||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
|
||||||
|
|
||||||
const uint32_t n_head = Q->ne[2];
|
|
||||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
|
||||||
|
|
||||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
||||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
||||||
|
|
||||||
flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>
|
|
||||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
|
||||||
(const char *) Q->data,
|
|
||||||
(const char *) K->data,
|
|
||||||
(const char *) V->data,
|
|
||||||
mask ? ((const char *) mask->data) : nullptr,
|
|
||||||
parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
|
||||||
scale, max_bias, m0, m1, n_head_log2,
|
|
||||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
|
||||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
|
||||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
|
||||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
|
||||||
K->nb[1], K->nb[2], K->nb[3],
|
|
||||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
|
||||||
);
|
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
if (parallel_blocks == 1) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
const dim3 block_dim_combine(D, 1, 1);
|
|
||||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
|
||||||
const int shmem_combine = 0;
|
|
||||||
|
|
||||||
flash_attn_combine_results<D, parallel_blocks>
|
|
||||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
|
||||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
const ggml_tensor * Q = dst->src[0];
|
const ggml_tensor * Q = dst->src[0];
|
||||||
const ggml_tensor * K = dst->src[1];
|
|
||||||
const ggml_tensor * V = dst->src[2];
|
|
||||||
|
|
||||||
const ggml_tensor * mask = dst->src[3];
|
|
||||||
|
|
||||||
ggml_tensor * KQV = dst;
|
|
||||||
|
|
||||||
GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
|
|
||||||
|
|
||||||
if (Q->ne[1] == 1) {
|
if (Q->ne[1] == 1) {
|
||||||
constexpr int cols_per_block = 1;
|
constexpr int cols_per_block = 1;
|
||||||
constexpr int parallel_blocks = 4;
|
constexpr int parallel_blocks = 4;
|
||||||
switch (Q->ne[0]) {
|
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
case 64:
|
|
||||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (Q->ne[1] == 2) {
|
if (Q->ne[1] == 2) {
|
||||||
constexpr int cols_per_block = 2;
|
constexpr int cols_per_block = 2;
|
||||||
constexpr int parallel_blocks = 4;
|
constexpr int parallel_blocks = 4;
|
||||||
switch (Q->ne[0]) {
|
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
case 64:
|
|
||||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (Q->ne[1] <= 4) {
|
if (Q->ne[1] <= 4) {
|
||||||
constexpr int cols_per_block = 4;
|
constexpr int cols_per_block = 4;
|
||||||
constexpr int parallel_blocks = 4;
|
constexpr int parallel_blocks = 4;
|
||||||
switch (Q->ne[0]) {
|
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
case 64:
|
|
||||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (Q->ne[1] <= 8) {
|
if (Q->ne[1] <= 8) {
|
||||||
constexpr int cols_per_block = 8;
|
constexpr int cols_per_block = 8;
|
||||||
constexpr int parallel_blocks = 4;
|
constexpr int parallel_blocks = 4;
|
||||||
switch (Q->ne[0]) {
|
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
case 64:
|
|
||||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
constexpr int cols_per_block = 8;
|
constexpr int cols_per_block = 8;
|
||||||
constexpr int parallel_blocks = 1;
|
constexpr int parallel_blocks = 1;
|
||||||
switch (Q->ne[0]) {
|
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
|
||||||
case 64:
|
|
||||||
launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
case 128:
|
|
||||||
launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream());
|
|
||||||
break;
|
|
||||||
default:
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
@ -1,5 +1,7 @@
|
|||||||
#include "common.cuh"
|
#include "common.cuh"
|
||||||
#include "fattn-common.cuh"
|
#include "fattn-common.cuh"
|
||||||
|
#include "fattn-tile-f16.cuh"
|
||||||
|
#include "fattn-tile-f32.cuh"
|
||||||
#include "fattn-vec-f16.cuh"
|
#include "fattn-vec-f16.cuh"
|
||||||
#include "fattn-vec-f32.cuh"
|
#include "fattn-vec-f32.cuh"
|
||||||
#include "fattn.cuh"
|
#include "fattn.cuh"
|
||||||
@ -83,19 +85,9 @@ static __global__ void flash_attn_ext_f16(
|
|||||||
const int stride_Q = nb01 / sizeof(float);
|
const int stride_Q = nb01 / sizeof(float);
|
||||||
const int stride_KV = nb11 / sizeof(half);
|
const int stride_KV = nb11 / sizeof(half);
|
||||||
|
|
||||||
half slopeh = __float2half(1.0f);
|
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
|
||||||
half2 slope2 = make_half2(1.0f, 1.0f);
|
const half slopeh = __float2half(slopef);
|
||||||
|
const half2 slope2 = make_half2(slopef, slopef);
|
||||||
// ALiBi
|
|
||||||
if (max_bias > 0.0f) {
|
|
||||||
const int h = blockIdx.y;
|
|
||||||
|
|
||||||
const float base = h < n_head_log2 ? m0 : m1;
|
|
||||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
|
||||||
|
|
||||||
slopeh = __float2half(powf(base, exph));
|
|
||||||
slope2 = make_half2(slopeh, slopeh);
|
|
||||||
}
|
|
||||||
|
|
||||||
frag_b Q_b[D/16][ncols/frag_n];
|
frag_b Q_b[D/16][ncols/frag_n];
|
||||||
|
|
||||||
@ -437,117 +429,64 @@ static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
|
|||||||
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
|
||||||
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
|
||||||
|
|
||||||
template <int D, int cols_per_block, int nwarps, int parallel_blocks, typename KQ_acc_t> void launch_fattn_f16_impl(
|
template <int D, int cols_per_block, int nwarps, typename KQ_acc_t>
|
||||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
void launch_fattn_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
ggml_cuda_pool & pool, cudaStream_t main_stream
|
const ggml_tensor * Q = dst->src[0];
|
||||||
) {
|
|
||||||
ggml_cuda_pool_alloc<float> dst_tmp(pool);
|
|
||||||
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
|
|
||||||
|
|
||||||
if (parallel_blocks > 1) {
|
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
|
||||||
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
|
|
||||||
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
|
|
||||||
}
|
|
||||||
|
|
||||||
constexpr int frag_m = (cols_per_block) == 8 && (D) % 32 == 0 ? 32 : 16;
|
|
||||||
const dim3 block_dim(WARP_SIZE, nwarps, 1);
|
|
||||||
const dim3 blocks_num(parallel_blocks*(Q->ne[1] + cols_per_block - 1) / cols_per_block, Q->ne[2], Q->ne[3]);
|
|
||||||
const int shmem = 0;
|
|
||||||
|
|
||||||
float scale = 1.0f;
|
|
||||||
float max_bias = 0.0f;
|
|
||||||
|
|
||||||
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
|
|
||||||
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
|
|
||||||
|
|
||||||
const uint32_t n_head = Q->ne[2];
|
|
||||||
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
|
|
||||||
|
|
||||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
|
||||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
|
||||||
|
|
||||||
flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>
|
|
||||||
<<<blocks_num, block_dim, shmem, main_stream>>> (
|
|
||||||
(const char *) Q->data,
|
|
||||||
(const char *) K->data,
|
|
||||||
(const char *) V->data,
|
|
||||||
mask ? ((const char *) mask->data) : nullptr,
|
|
||||||
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
|
|
||||||
scale, max_bias, m0, m1, n_head_log2,
|
|
||||||
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
|
|
||||||
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
|
|
||||||
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
|
|
||||||
Q->nb[1], Q->nb[2], Q->nb[3],
|
|
||||||
K->nb[1], K->nb[2], K->nb[3],
|
|
||||||
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
|
|
||||||
);
|
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
|
|
||||||
if ((parallel_blocks) == 1) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
const dim3 block_dim_combine(D, 1, 1);
|
|
||||||
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
|
|
||||||
const int shmem_combine = 0;
|
|
||||||
|
|
||||||
flash_attn_combine_results<D, parallel_blocks>
|
|
||||||
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
|
|
||||||
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
|
|
||||||
CUDA_CHECK(cudaGetLastError());
|
|
||||||
}
|
|
||||||
|
|
||||||
template <int D, int cols_per_block, int nwarps, typename KQ_acc_t> void launch_fattn_f16(
|
|
||||||
const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask,
|
|
||||||
const int nsm, ggml_cuda_pool & pool, cudaStream_t main_stream
|
|
||||||
) {
|
|
||||||
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
|
||||||
|
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
||||||
|
|
||||||
if (4*blocks_num_pb1 < 2*nsm) {
|
if (4*blocks_num_pb1 < 2*nsm) {
|
||||||
launch_fattn_f16_impl<D, cols_per_block, nwarps, 4, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
constexpr int parallel_blocks = 4;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
if (2*blocks_num_pb1 < 2*nsm) {
|
if (2*blocks_num_pb1 < 2*nsm) {
|
||||||
launch_fattn_f16_impl<D, cols_per_block, nwarps, 2, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
constexpr int parallel_blocks = 2;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
launch_fattn_f16_impl<D, cols_per_block, nwarps, 1, KQ_acc_t>(Q, K, V, KQV, mask, pool, main_stream);
|
constexpr int parallel_blocks = 1;
|
||||||
|
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
|
||||||
|
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
|
const ggml_tensor * KQV = dst;
|
||||||
const ggml_tensor * Q = dst->src[0];
|
const ggml_tensor * Q = dst->src[0];
|
||||||
const ggml_tensor * K = dst->src[1];
|
|
||||||
const ggml_tensor * V = dst->src[2];
|
|
||||||
|
|
||||||
const ggml_tensor * mask = dst->src[3];
|
|
||||||
|
|
||||||
ggml_tensor * KQV = dst;
|
|
||||||
|
|
||||||
GGML_ASSERT(Q->type == GGML_TYPE_F32);
|
|
||||||
GGML_ASSERT(K->type == GGML_TYPE_F16);
|
|
||||||
GGML_ASSERT(V->type == GGML_TYPE_F16);
|
|
||||||
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
|
|
||||||
|
|
||||||
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
|
|
||||||
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
|
|
||||||
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
|
|
||||||
|
|
||||||
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
|
|
||||||
|
|
||||||
ggml_cuda_set_device(ctx.device);
|
ggml_cuda_set_device(ctx.device);
|
||||||
|
|
||||||
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
||||||
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
|
|
||||||
|
|
||||||
const int32_t precision = KQV->op_params[2];
|
const int32_t precision = KQV->op_params[2];
|
||||||
|
|
||||||
if (!fast_fp16_available(cc)) {
|
// On AMD the tile kernels perform poorly, use the vec kernel instead:
|
||||||
|
if (cc >= CC_OFFSET_AMD) {
|
||||||
|
if (precision == GGML_PREC_DEFAULT) {
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
||||||
|
} else {
|
||||||
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||||
|
}
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!fast_fp16_available(cc)) {
|
||||||
|
if (Q->ne[1] <= 8) {
|
||||||
|
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
|
||||||
|
} else {
|
||||||
|
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
|
||||||
|
}
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (!fp16_mma_available(cc)) {
|
if (!fp16_mma_available(cc)) {
|
||||||
|
if (Q->ne[1] <= 8) {
|
||||||
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
|
||||||
|
} else {
|
||||||
|
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
|
||||||
|
}
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -562,22 +501,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|||||||
constexpr int nwarps = 4;
|
constexpr int nwarps = 4;
|
||||||
switch (Q->ne[0]) {
|
switch (Q->ne[0]) {
|
||||||
case 64:
|
case 64:
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 80:
|
case 80:
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 96:
|
case 96:
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 112:
|
case 112:
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 128:
|
case 128:
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 256:
|
case 256:
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
@ -588,22 +527,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|||||||
constexpr int nwarps = 4;
|
constexpr int nwarps = 4;
|
||||||
switch (Q->ne[0]) {
|
switch (Q->ne[0]) {
|
||||||
case 64:
|
case 64:
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 80:
|
case 80:
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 96:
|
case 96:
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 112:
|
case 112:
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 128:
|
case 128:
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
// case 256:
|
// case 256:
|
||||||
// launch_fattn_f16<256, cols_per_block, nwarps, float>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
// launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
|
||||||
// break;
|
// break;
|
||||||
default:
|
default:
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
@ -623,16 +562,16 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|||||||
constexpr int nwarps = 4;
|
constexpr int nwarps = 4;
|
||||||
switch (Q->ne[0]) {
|
switch (Q->ne[0]) {
|
||||||
case 64:
|
case 64:
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 96:
|
case 96:
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 128:
|
case 128:
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 256:
|
case 256:
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
@ -646,22 +585,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|||||||
constexpr int nwarps = 4;
|
constexpr int nwarps = 4;
|
||||||
switch (Q->ne[0]) {
|
switch (Q->ne[0]) {
|
||||||
case 64:
|
case 64:
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 80:
|
case 80:
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 96:
|
case 96:
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 112:
|
case 112:
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 128:
|
case 128:
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 256:
|
case 256:
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
@ -674,22 +613,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
|
|||||||
constexpr int nwarps = 4;
|
constexpr int nwarps = 4;
|
||||||
switch (Q->ne[0]) {
|
switch (Q->ne[0]) {
|
||||||
case 64:
|
case 64:
|
||||||
launch_fattn_f16< 64, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 80:
|
case 80:
|
||||||
launch_fattn_f16< 80, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 96:
|
case 96:
|
||||||
launch_fattn_f16< 96, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 112:
|
case 112:
|
||||||
launch_fattn_f16<112, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 128:
|
case 128:
|
||||||
launch_fattn_f16<128, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
case 256:
|
case 256:
|
||||||
launch_fattn_f16<256, cols_per_block, nwarps, half>(Q, K, V, KQV, mask, nsm, ctx.pool(), ctx.stream());
|
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
|
1247
ggml-cuda/mmq.cu
1247
ggml-cuda/mmq.cu
File diff suppressed because it is too large
Load Diff
@ -58,10 +58,10 @@ static __global__ void rope(
|
|||||||
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
dst[i + 1] = x0*sin_theta + x1*cos_theta;
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename T, bool has_pos>
|
template<typename T, bool has_pos, bool has_freq_facs>
|
||||||
static __global__ void rope_neox(
|
static __global__ void rope_neox(
|
||||||
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims
|
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, float inv_ndims, const float * freq_factors
|
||||||
) {
|
) {
|
||||||
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
|
||||||
|
|
||||||
@ -88,7 +88,9 @@ static __global__ void rope_neox(
|
|||||||
float cur_rot = inv_ndims * ic - ib;
|
float cur_rot = inv_ndims * ic - ib;
|
||||||
|
|
||||||
const int p = has_pos ? pos[i2] : 0;
|
const int p = has_pos ? pos[i2] : 0;
|
||||||
const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f);
|
const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
|
||||||
|
|
||||||
|
const float theta_base = p*freq_scale*powf(theta_scale, col/2.0f)/freq_factor;
|
||||||
|
|
||||||
float cos_theta, sin_theta;
|
float cos_theta, sin_theta;
|
||||||
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
rope_yarn(theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||||
@ -164,7 +166,7 @@ static void rope_cuda(
|
|||||||
template<typename T>
|
template<typename T>
|
||||||
static void rope_neox_cuda(
|
static void rope_neox_cuda(
|
||||||
const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
|
||||||
) {
|
) {
|
||||||
GGML_ASSERT(ncols % 2 == 0);
|
GGML_ASSERT(ncols % 2 == 0);
|
||||||
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
|
||||||
@ -175,16 +177,30 @@ static void rope_neox_cuda(
|
|||||||
const float inv_ndims = -1.0f / n_dims;
|
const float inv_ndims = -1.0f / n_dims;
|
||||||
|
|
||||||
if (pos == nullptr) {
|
if (pos == nullptr) {
|
||||||
rope_neox<T, false><<<block_nums, block_dims, 0, stream>>>(
|
if (freq_factors == nullptr) {
|
||||||
|
rope_neox<T, false, false><<<block_nums, block_dims, 0, stream>>>(
|
||||||
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
theta_scale, inv_ndims
|
theta_scale, inv_ndims, freq_factors
|
||||||
);
|
);
|
||||||
} else {
|
} else {
|
||||||
rope_neox<T, true><<<block_nums, block_dims, 0, stream>>>(
|
rope_neox<T, false, true><<<block_nums, block_dims, 0, stream>>>(
|
||||||
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
theta_scale, inv_ndims
|
theta_scale, inv_ndims, freq_factors
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
} else {
|
||||||
|
if (freq_factors == nullptr) {
|
||||||
|
rope_neox<T, true, false><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
|
theta_scale, inv_ndims, freq_factors
|
||||||
|
);
|
||||||
|
} else {
|
||||||
|
rope_neox<T, true, true><<<block_nums, block_dims, 0, stream>>>(
|
||||||
|
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
|
||||||
|
theta_scale, inv_ndims, freq_factors
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void rope_glm_f32_cuda(
|
static void rope_glm_f32_cuda(
|
||||||
@ -214,24 +230,27 @@ static void rope_cuda_f32(
|
|||||||
|
|
||||||
static void rope_neox_cuda_f16(
|
static void rope_neox_cuda_f16(
|
||||||
const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
|
||||||
|
|
||||||
rope_neox_cuda<half>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
rope_neox_cuda<half>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void rope_neox_cuda_f32(
|
static void rope_neox_cuda_f32(
|
||||||
const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
|
||||||
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
|
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
|
||||||
) {
|
) {
|
||||||
|
|
||||||
rope_neox_cuda<float>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
|
rope_neox_cuda<float>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
const ggml_tensor * src0 = dst->src[0];
|
const ggml_tensor * src0 = dst->src[0];
|
||||||
const ggml_tensor * src1 = dst->src[1];
|
const ggml_tensor * src1 = dst->src[1];
|
||||||
|
const ggml_tensor * src2 = dst->src[2];
|
||||||
|
|
||||||
const float * src0_d = (const float *)src0->data;
|
const float * src0_d = (const float *)src0->data;
|
||||||
const float * src1_d = (const float *)src1->data;
|
const float * src1_d = (const float *)src1->data;
|
||||||
|
|
||||||
float * dst_d = (float *)dst->data;
|
float * dst_d = (float *)dst->data;
|
||||||
cudaStream_t stream = ctx.stream();
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
@ -241,7 +260,6 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
|
|
||||||
const int64_t ne00 = src0->ne[0];
|
const int64_t ne00 = src0->ne[0];
|
||||||
const int64_t ne01 = src0->ne[1];
|
const int64_t ne01 = src0->ne[1];
|
||||||
const int64_t ne2 = dst->ne[2];
|
|
||||||
const int64_t nrows = ggml_nrows(src0);
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
//const int n_past = ((int32_t *) dst->op_params)[0];
|
//const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
@ -259,16 +277,22 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||||
|
|
||||||
|
const float * freq_factors = nullptr;
|
||||||
const int32_t * pos = nullptr;
|
const int32_t * pos = nullptr;
|
||||||
if ((mode & 1) == 0) {
|
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_I32);
|
|
||||||
GGML_ASSERT(src1->ne[0] == ne2);
|
|
||||||
pos = (const int32_t *) src1_d;
|
|
||||||
}
|
|
||||||
|
|
||||||
const bool is_neox = mode & 2;
|
const bool is_neox = mode & 2;
|
||||||
const bool is_glm = mode & 4;
|
const bool is_glm = mode & 4;
|
||||||
|
|
||||||
|
pos = (const int32_t *) src1_d;
|
||||||
|
|
||||||
|
if (is_neox) {
|
||||||
|
if (src2 != nullptr) {
|
||||||
|
freq_factors = (const float *) src2->data;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox");
|
||||||
|
}
|
||||||
|
|
||||||
rope_corr_dims corr_dims;
|
rope_corr_dims corr_dims;
|
||||||
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
|
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
|
||||||
|
|
||||||
@ -280,12 +304,12 @@ void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
if (src0->type == GGML_TYPE_F32) {
|
if (src0->type == GGML_TYPE_F32) {
|
||||||
rope_neox_cuda_f32(
|
rope_neox_cuda_f32(
|
||||||
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||||
attn_factor, corr_dims, stream
|
attn_factor, corr_dims, freq_factors, stream
|
||||||
);
|
);
|
||||||
} else if (src0->type == GGML_TYPE_F16) {
|
} else if (src0->type == GGML_TYPE_F16) {
|
||||||
rope_neox_cuda_f16(
|
rope_neox_cuda_f16(
|
||||||
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
|
||||||
attn_factor, corr_dims, stream
|
attn_factor, corr_dims, freq_factors, stream
|
||||||
);
|
);
|
||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
|
#include "common.cuh"
|
||||||
#include "softmax.cuh"
|
#include "softmax.cuh"
|
||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
@ -23,17 +24,7 @@ static __global__ void soft_max_f32(const float * x, const T * mask, float * dst
|
|||||||
const int warp_id = threadIdx.x / WARP_SIZE;
|
const int warp_id = threadIdx.x / WARP_SIZE;
|
||||||
const int lane_id = threadIdx.x % WARP_SIZE;
|
const int lane_id = threadIdx.x % WARP_SIZE;
|
||||||
|
|
||||||
float slope = 1.0f;
|
const float slope = get_alibi_slope(max_bias, rowx/nrows_y, n_head_log2, m0, m1);
|
||||||
|
|
||||||
// ALiBi
|
|
||||||
if (max_bias > 0.0f) {
|
|
||||||
const int h = rowx/nrows_y; // head index
|
|
||||||
|
|
||||||
const float base = h < n_head_log2 ? m0 : m1;
|
|
||||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
|
||||||
|
|
||||||
slope = powf(base, exph);
|
|
||||||
}
|
|
||||||
|
|
||||||
extern __shared__ float data_soft_max_f32[];
|
extern __shared__ float data_soft_max_f32[];
|
||||||
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
|
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
|
||||||
|
@ -1,35 +1,36 @@
|
|||||||
#include "upscale.cuh"
|
#include "upscale.cuh"
|
||||||
|
|
||||||
static __global__ void upscale_f32(const float * x, float * dst, const int ne00, const int ne00xne01, const int scale_factor) {
|
static __global__ void upscale_f32(const float * x, float * dst,
|
||||||
// blockIdx.z: idx of ne02*ne03
|
const int nb00, const int nb01, const int nb02, const int nb03,
|
||||||
// blockIdx.y: idx of ne01*scale_factor, aka ne1
|
const int ne10, const int ne11, const int ne12, const int ne13,
|
||||||
// blockIDx.x: idx of ne00*scale_factor / BLOCK_SIZE
|
const float sf0, const float sf1, const float sf2, const float sf3) {
|
||||||
// ne00xne01: ne00 * ne01
|
int index = threadIdx.x + blockIdx.x * blockDim.x;
|
||||||
int ne0 = ne00 * scale_factor;
|
if (index >= ne10 * ne11 * ne12 * ne13) {
|
||||||
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
|
|
||||||
if (nidx >= ne0) {
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
// operation
|
|
||||||
int i00 = nidx / scale_factor;
|
int i10 = index % ne10;
|
||||||
int i01 = blockIdx.y / scale_factor;
|
int i11 = (index / ne10) % ne11;
|
||||||
int offset_src =
|
int i12 = (index / (ne10 * ne11)) % ne12;
|
||||||
i00 +
|
int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
|
||||||
i01 * ne00 +
|
|
||||||
blockIdx.z * ne00xne01;
|
int i00 = i10 / sf0;
|
||||||
int offset_dst =
|
int i01 = i11 / sf1;
|
||||||
nidx +
|
int i02 = i12 / sf2;
|
||||||
blockIdx.y * ne0 +
|
int i03 = i13 / sf3;
|
||||||
blockIdx.z * ne0 * gridDim.y;
|
|
||||||
dst[offset_dst] = x[offset_src];
|
dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void upscale_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03,
|
static void upscale_f32_cuda(const float * x, float * dst,
|
||||||
const int scale_factor, cudaStream_t stream) {
|
const int nb00, const int nb01, const int nb02, const int nb03,
|
||||||
int ne0 = (ne00 * scale_factor);
|
const int ne10, const int ne11, const int ne12, const int ne13,
|
||||||
int num_blocks = (ne0 + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
|
const float sf0, const float sf1, const float sf2, const float sf3,
|
||||||
dim3 gridDim(num_blocks, (ne01 * scale_factor), ne02*ne03);
|
cudaStream_t stream) {
|
||||||
upscale_f32<<<gridDim, CUDA_UPSCALE_BLOCK_SIZE, 0, stream>>>(x, dst, ne00, ne00 * ne01, scale_factor);
|
int dst_size = ne10 * ne11 * ne12 * ne13;
|
||||||
|
int num_blocks = (dst_size + CUDA_UPSCALE_BLOCK_SIZE - 1) / CUDA_UPSCALE_BLOCK_SIZE;
|
||||||
|
|
||||||
|
upscale_f32<<<num_blocks, CUDA_UPSCALE_BLOCK_SIZE,0,stream>>>(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3);
|
||||||
}
|
}
|
||||||
|
|
||||||
void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||||
@ -39,10 +40,12 @@ void ggml_cuda_op_upscale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
|||||||
cudaStream_t stream = ctx.stream();
|
cudaStream_t stream = ctx.stream();
|
||||||
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
|
||||||
|
|
||||||
const int scale_factor = dst->op_params[0];
|
const float sf0 = (float)dst->ne[0]/src0->ne[0];
|
||||||
|
const float sf1 = (float)dst->ne[1]/src0->ne[1];
|
||||||
|
const float sf2 = (float)dst->ne[2]/src0->ne[2];
|
||||||
|
const float sf3 = (float)dst->ne[3]/src0->ne[3];
|
||||||
|
|
||||||
upscale_f32_cuda(src0_d, dst_d, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], scale_factor, stream);
|
upscale_f32_cuda(src0_d, dst_d, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3, stream);
|
||||||
}
|
}
|
||||||
|
47
ggml-impl.h
47
ggml-impl.h
@ -17,6 +17,18 @@
|
|||||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||||
|
|
||||||
|
#if defined(_WIN32)
|
||||||
|
|
||||||
|
#define m512bh(p) p
|
||||||
|
#define m512i(p) p
|
||||||
|
|
||||||
|
#else
|
||||||
|
|
||||||
|
#define m512bh(p) (__m512bh)(p)
|
||||||
|
#define m512i(p) (__m512i)(p)
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Converts brain16 to float32.
|
* Converts brain16 to float32.
|
||||||
*
|
*
|
||||||
@ -120,9 +132,16 @@ extern "C" {
|
|||||||
#ifndef __F16C__
|
#ifndef __F16C__
|
||||||
#define __F16C__
|
#define __F16C__
|
||||||
#endif
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
|
||||||
|
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
|
||||||
#ifndef __SSE3__
|
#ifndef __SSE3__
|
||||||
#define __SSE3__
|
#define __SSE3__
|
||||||
#endif
|
#endif
|
||||||
|
#ifndef __SSSE3__
|
||||||
|
#define __SSSE3__
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// 16-bit float
|
// 16-bit float
|
||||||
@ -436,6 +455,34 @@ static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
|||||||
#include <riscv_vector.h>
|
#include <riscv_vector.h>
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#if defined(__loongarch64)
|
||||||
|
#if defined(__loongarch_asx)
|
||||||
|
#include <lasxintrin.h>
|
||||||
|
#endif
|
||||||
|
#if defined(__loongarch_sx)
|
||||||
|
#include <lsxintrin.h>
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(__loongarch_asx)
|
||||||
|
|
||||||
|
typedef union {
|
||||||
|
int32_t i;
|
||||||
|
float f;
|
||||||
|
} ft_union;
|
||||||
|
|
||||||
|
/* float type data load instructions */
|
||||||
|
static __m128 __lsx_vreplfr2vr_s(float val) {
|
||||||
|
ft_union fi_tmpval = {.f = val};
|
||||||
|
return (__m128)__lsx_vreplgr2vr_w(fi_tmpval.i);
|
||||||
|
}
|
||||||
|
|
||||||
|
static __m256 __lasx_xvreplfr2vr_s(float val) {
|
||||||
|
ft_union fi_tmpval = {.f = val};
|
||||||
|
return (__m256)__lasx_xvreplgr2vr_w(fi_tmpval.i);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
#ifdef __F16C__
|
#ifdef __F16C__
|
||||||
|
|
||||||
#ifdef _MSC_VER
|
#ifdef _MSC_VER
|
||||||
|
@ -1677,6 +1677,10 @@ static void ggml_vk_graph_compute(struct ggml_kompute_context * ctx, struct ggml
|
|||||||
} break;
|
} break;
|
||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
{
|
{
|
||||||
|
#pragma message("TODO: implement phi3 frequency factors support")
|
||||||
|
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
|
||||||
|
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
|
||||||
|
|
||||||
GGML_ASSERT(ne10 == ne02);
|
GGML_ASSERT(ne10 == ne02);
|
||||||
GGML_ASSERT(src0t == dstt);
|
GGML_ASSERT(src0t == dstt);
|
||||||
// const int n_past = ((int32_t *) dst->op_params)[0];
|
// const int n_past = ((int32_t *) dst->op_params)[0];
|
||||||
|
174
ggml-metal.m
174
ggml-metal.m
@ -927,12 +927,22 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
const int64_t ne10 = src1 ? src1->ne[0] : 0;
|
const int64_t ne10 = src1 ? src1->ne[0] : 0;
|
||||||
const int64_t ne11 = src1 ? src1->ne[1] : 0;
|
const int64_t ne11 = src1 ? src1->ne[1] : 0;
|
||||||
const int64_t ne12 = src1 ? src1->ne[2] : 0;
|
const int64_t ne12 = src1 ? src1->ne[2] : 0;
|
||||||
const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
|
const int64_t ne13 = src1 ? src1->ne[3] : 0;
|
||||||
|
|
||||||
const uint64_t nb10 = src1 ? src1->nb[0] : 0;
|
const uint64_t nb10 = src1 ? src1->nb[0] : 0;
|
||||||
const uint64_t nb11 = src1 ? src1->nb[1] : 0;
|
const uint64_t nb11 = src1 ? src1->nb[1] : 0;
|
||||||
const uint64_t nb12 = src1 ? src1->nb[2] : 0;
|
const uint64_t nb12 = src1 ? src1->nb[2] : 0;
|
||||||
const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
|
const uint64_t nb13 = src1 ? src1->nb[3] : 0;
|
||||||
|
|
||||||
|
const int64_t ne20 = src2 ? src2->ne[0] : 0;
|
||||||
|
const int64_t ne21 = src2 ? src2->ne[1] : 0;
|
||||||
|
const int64_t ne22 = src2 ? src2->ne[2] : 0; GGML_UNUSED(ne22);
|
||||||
|
const int64_t ne23 = src2 ? src2->ne[3] : 0; GGML_UNUSED(ne23);
|
||||||
|
|
||||||
|
const uint64_t nb20 = src2 ? src2->nb[0] : 0; GGML_UNUSED(nb20);
|
||||||
|
const uint64_t nb21 = src2 ? src2->nb[1] : 0;
|
||||||
|
const uint64_t nb22 = src2 ? src2->nb[2] : 0;
|
||||||
|
const uint64_t nb23 = src2 ? src2->nb[3] : 0;
|
||||||
|
|
||||||
const int64_t ne0 = dst ? dst->ne[0] : 0;
|
const int64_t ne0 = dst ? dst->ne[0] : 0;
|
||||||
const int64_t ne1 = dst ? dst->ne[1] : 0;
|
const int64_t ne1 = dst ? dst->ne[1] : 0;
|
||||||
@ -1378,7 +1388,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
|
||||||
|
|
||||||
if (ne00%4 == 0) {
|
if (ne00%4 == 0) {
|
||||||
while (nth < ne00/4 && nth < 256) {
|
while (nth < ne00/4 && nth*ne01*ne02*ne03 < 256) {
|
||||||
nth *= 2;
|
nth *= 2;
|
||||||
}
|
}
|
||||||
if (use_f16) {
|
if (use_f16) {
|
||||||
@ -1387,7 +1397,7 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4].pipeline;
|
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_F32_4].pipeline;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
while (nth < ne00 && nth < 1024) {
|
while (nth < ne00 && nth*ne01*ne02*ne03 < 256) {
|
||||||
nth *= 2;
|
nth *= 2;
|
||||||
}
|
}
|
||||||
if (use_f16) {
|
if (use_f16) {
|
||||||
@ -1785,16 +1795,6 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
const int n_as = src0->ne[2];
|
const int n_as = src0->ne[2];
|
||||||
|
|
||||||
// src2 = ids
|
// src2 = ids
|
||||||
const int64_t ne20 = src2->ne[0];
|
|
||||||
const int64_t ne21 = src2->ne[1];
|
|
||||||
const int64_t ne22 = src2->ne[2]; GGML_UNUSED(ne22);
|
|
||||||
const int64_t ne23 = src2->ne[3]; GGML_UNUSED(ne23);
|
|
||||||
|
|
||||||
const uint64_t nb20 = src2->nb[0]; GGML_UNUSED(nb20);
|
|
||||||
const uint64_t nb21 = src2->nb[1];
|
|
||||||
const uint64_t nb22 = src2->nb[2]; GGML_UNUSED(nb22);
|
|
||||||
const uint64_t nb23 = src2->nb[3]; GGML_UNUSED(nb23);
|
|
||||||
|
|
||||||
const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t);
|
const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t);
|
||||||
|
|
||||||
GGML_ASSERT(src2t == GGML_TYPE_I32);
|
GGML_ASSERT(src2t == GGML_TYPE_I32);
|
||||||
@ -2244,7 +2244,13 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
|
// skip 3, n_ctx, used in GLM RoPE, unimplemented in metal
|
||||||
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
|
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
|
||||||
|
|
||||||
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
|
float freq_base;
|
||||||
|
float freq_scale;
|
||||||
|
float ext_factor;
|
||||||
|
float attn_factor;
|
||||||
|
float beta_fast;
|
||||||
|
float beta_slow;
|
||||||
|
|
||||||
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
|
||||||
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
|
||||||
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
|
||||||
@ -2252,6 +2258,15 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
|
||||||
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
|
||||||
|
|
||||||
|
const bool is_neox = mode & 2;
|
||||||
|
const bool is_glm = mode & 4;
|
||||||
|
|
||||||
|
GGML_ASSERT(!is_glm && "GLM RoPE not implemented in Metal");
|
||||||
|
|
||||||
|
if (!is_neox) {
|
||||||
|
GGML_ASSERT(id_src2 == nil && "TODO: freq_factors not implemented for !is_neox");
|
||||||
|
}
|
||||||
|
|
||||||
id<MTLComputePipelineState> pipeline = nil;
|
id<MTLComputePipelineState> pipeline = nil;
|
||||||
|
|
||||||
switch (src0->type) {
|
switch (src0->type) {
|
||||||
@ -2263,33 +2278,38 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
[encoder setComputePipelineState:pipeline];
|
[encoder setComputePipelineState:pipeline];
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:2];
|
if (id_src2 != nil) {
|
||||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3];
|
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
||||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4];
|
} else {
|
||||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:2];
|
||||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6];
|
}
|
||||||
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:3];
|
||||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
|
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:4];
|
||||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
|
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
|
||||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
|
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
|
||||||
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11];
|
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
|
||||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12];
|
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:8];
|
||||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13];
|
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:9];
|
||||||
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14];
|
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:10];
|
||||||
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15];
|
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:11];
|
||||||
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16];
|
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:12];
|
||||||
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17];
|
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:13];
|
||||||
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18];
|
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:14];
|
||||||
[encoder setBytes:&n_past length:sizeof( int) atIndex:19];
|
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:15];
|
||||||
[encoder setBytes:&n_dims length:sizeof( int) atIndex:20];
|
[encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:16];
|
||||||
[encoder setBytes:&mode length:sizeof( int) atIndex:21];
|
[encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:17];
|
||||||
[encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22];
|
[encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:18];
|
||||||
[encoder setBytes:&freq_base length:sizeof( float) atIndex:23];
|
[encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:19];
|
||||||
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:24];
|
[encoder setBytes:&n_past length:sizeof( int) atIndex:20];
|
||||||
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:25];
|
[encoder setBytes:&n_dims length:sizeof( int) atIndex:21];
|
||||||
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:26];
|
[encoder setBytes:&mode length:sizeof( int) atIndex:22];
|
||||||
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:27];
|
[encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:23];
|
||||||
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:28];
|
[encoder setBytes:&freq_base length:sizeof( float) atIndex:24];
|
||||||
|
[encoder setBytes:&freq_scale length:sizeof( float) atIndex:25];
|
||||||
|
[encoder setBytes:&ext_factor length:sizeof( float) atIndex:26];
|
||||||
|
[encoder setBytes:&attn_factor length:sizeof( float) atIndex:27];
|
||||||
|
[encoder setBytes:&beta_fast length:sizeof( float) atIndex:28];
|
||||||
|
[encoder setBytes:&beta_slow length:sizeof( float) atIndex:29];
|
||||||
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||||
} break;
|
} break;
|
||||||
@ -2353,7 +2373,10 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
{
|
{
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
const int sf = dst->op_params[0];
|
const float sf0 = (float)ne0/src0->ne[0];
|
||||||
|
const float sf1 = (float)ne1/src0->ne[1];
|
||||||
|
const float sf2 = (float)ne2/src0->ne[2];
|
||||||
|
const float sf3 = (float)ne3/src0->ne[3];
|
||||||
|
|
||||||
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline;
|
const id<MTLComputePipelineState> pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline;
|
||||||
|
|
||||||
@ -2376,7 +2399,10 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
[encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15];
|
||||||
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
[encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16];
|
||||||
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
[encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17];
|
||||||
[encoder setBytes:&sf length:sizeof(sf) atIndex:18];
|
[encoder setBytes:&sf0 length:sizeof(sf0) atIndex:18];
|
||||||
|
[encoder setBytes:&sf1 length:sizeof(sf1) atIndex:19];
|
||||||
|
[encoder setBytes:&sf2 length:sizeof(sf2) atIndex:20];
|
||||||
|
[encoder setBytes:&sf3 length:sizeof(sf3) atIndex:21];
|
||||||
|
|
||||||
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
|
const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0);
|
||||||
|
|
||||||
@ -2513,12 +2539,13 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
case GGML_OP_FLASH_ATTN_EXT:
|
case GGML_OP_FLASH_ATTN_EXT:
|
||||||
{
|
{
|
||||||
GGML_ASSERT(ne00 % 4 == 0);
|
GGML_ASSERT(ne00 % 4 == 0);
|
||||||
|
GGML_ASSERT(ne11 % 32 == 0);
|
||||||
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
|
GGML_ASSERT(ggml_are_same_shape (src1, src2));
|
||||||
|
|
||||||
GGML_ASSERT(ggml_are_same_shape(src1, src2));
|
struct ggml_tensor * src3 = gf->nodes[i]->src[3];
|
||||||
GGML_ASSERT(src3);
|
|
||||||
|
|
||||||
size_t offs_src3 = 0;
|
size_t offs_src3 = 0;
|
||||||
|
|
||||||
@ -2590,34 +2617,35 @@ static enum ggml_status ggml_metal_graph_compute(
|
|||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
[encoder setBuffer:id_src1 offset:offs_src1 atIndex:1];
|
||||||
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
[encoder setBuffer:id_src2 offset:offs_src2 atIndex:2];
|
||||||
|
if (id_src3) {
|
||||||
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
[encoder setBuffer:id_src3 offset:offs_src3 atIndex:3];
|
||||||
|
} else {
|
||||||
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:3];
|
||||||
|
}
|
||||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
|
[encoder setBuffer:id_dst offset:offs_dst atIndex:4];
|
||||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:5];
|
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:5];
|
||||||
[encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:6];
|
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:6];
|
||||||
[encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:7];
|
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:7];
|
||||||
[encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:8];
|
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8];
|
||||||
[encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:9];
|
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9];
|
||||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:10];
|
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10];
|
||||||
[encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:11];
|
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:11];
|
||||||
[encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:12];
|
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:12];
|
||||||
[encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:13];
|
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:13];
|
||||||
[encoder setBytes:&ne11 length:sizeof( int64_t) atIndex:14];
|
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:14];
|
||||||
[encoder setBytes:&ne12 length:sizeof( int64_t) atIndex:15];
|
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:15];
|
||||||
[encoder setBytes:&ne13 length:sizeof( int64_t) atIndex:16];
|
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:16];
|
||||||
[encoder setBytes:&nb10 length:sizeof(uint64_t) atIndex:17];
|
[encoder setBytes:&nb21 length:sizeof(uint64_t) atIndex:17];
|
||||||
[encoder setBytes:&nb11 length:sizeof(uint64_t) atIndex:18];
|
[encoder setBytes:&nb22 length:sizeof(uint64_t) atIndex:18];
|
||||||
[encoder setBytes:&nb12 length:sizeof(uint64_t) atIndex:19];
|
[encoder setBytes:&nb23 length:sizeof(uint64_t) atIndex:19];
|
||||||
[encoder setBytes:&nb13 length:sizeof(uint64_t) atIndex:20];
|
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:20];
|
||||||
[encoder setBytes:&nb31 length:sizeof(uint64_t) atIndex:21];
|
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:21];
|
||||||
[encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:22];
|
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:22];
|
||||||
[encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:23];
|
[encoder setBytes:&scale length:sizeof( float) atIndex:23];
|
||||||
[encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:24];
|
[encoder setBytes:&max_bias length:sizeof( float) atIndex:24];
|
||||||
[encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:25];
|
[encoder setBytes:&m0 length:sizeof(m0) atIndex:25];
|
||||||
[encoder setBytes:&scale length:sizeof( float) atIndex:26];
|
[encoder setBytes:&m1 length:sizeof(m1) atIndex:26];
|
||||||
[encoder setBytes:&max_bias length:sizeof( float) atIndex:27];
|
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:27];
|
||||||
[encoder setBytes:&m0 length:sizeof(m0) atIndex:28];
|
|
||||||
[encoder setBytes:&m1 length:sizeof(m1) atIndex:29];
|
|
||||||
[encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:30];
|
|
||||||
|
|
||||||
if (!use_vec_kernel) {
|
if (!use_vec_kernel) {
|
||||||
// half8x8 kernel
|
// half8x8 kernel
|
||||||
|
@ -1640,6 +1640,7 @@ static void rope_yarn_corr_dims(
|
|||||||
typedef void (rope_t)(
|
typedef void (rope_t)(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const int32_t * src1,
|
device const int32_t * src1,
|
||||||
|
device const float * src2,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
constant int64_t & ne00,
|
constant int64_t & ne00,
|
||||||
constant int64_t & ne01,
|
constant int64_t & ne01,
|
||||||
@ -1675,6 +1676,7 @@ template<typename T>
|
|||||||
kernel void kernel_rope(
|
kernel void kernel_rope(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const int32_t * src1,
|
device const int32_t * src1,
|
||||||
|
device const float * src2,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
constant int64_t & ne00,
|
constant int64_t & ne00,
|
||||||
constant int64_t & ne01,
|
constant int64_t & ne01,
|
||||||
@ -1744,8 +1746,10 @@ kernel void kernel_rope(
|
|||||||
|
|
||||||
// simplified from `(ib * n_dims + ic) * inv_ndims`
|
// simplified from `(ib * n_dims + ic) * inv_ndims`
|
||||||
const float cur_rot = inv_ndims*ic - ib;
|
const float cur_rot = inv_ndims*ic - ib;
|
||||||
|
const float freq_factor = src2 != src0 ? src2[ic/2] : 1.0f;
|
||||||
|
|
||||||
|
const float theta = theta_0 * pow(freq_base, cur_rot) / freq_factor;
|
||||||
|
|
||||||
const float theta = theta_0 * pow(freq_base, cur_rot);
|
|
||||||
float cos_theta, sin_theta;
|
float cos_theta, sin_theta;
|
||||||
rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
|
||||||
|
|
||||||
@ -1852,7 +1856,10 @@ kernel void kernel_upscale_f32(
|
|||||||
constant uint64_t & nb1,
|
constant uint64_t & nb1,
|
||||||
constant uint64_t & nb2,
|
constant uint64_t & nb2,
|
||||||
constant uint64_t & nb3,
|
constant uint64_t & nb3,
|
||||||
constant int32_t & sf,
|
constant float & sf0,
|
||||||
|
constant float & sf1,
|
||||||
|
constant float & sf2,
|
||||||
|
constant float & sf3,
|
||||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||||
uint3 ntg[[threads_per_threadgroup]]) {
|
uint3 ntg[[threads_per_threadgroup]]) {
|
||||||
@ -1861,15 +1868,17 @@ kernel void kernel_upscale_f32(
|
|||||||
const int64_t i2 = tgpig.y;
|
const int64_t i2 = tgpig.y;
|
||||||
const int64_t i1 = tgpig.x;
|
const int64_t i1 = tgpig.x;
|
||||||
|
|
||||||
const int64_t i03 = i3;
|
const int64_t i03 = i3/sf3;
|
||||||
const int64_t i02 = i2;
|
const int64_t i02 = i2/sf2;
|
||||||
const int64_t i01 = i1/sf;
|
const int64_t i01 = i1/sf1;
|
||||||
|
|
||||||
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
|
|
||||||
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
|
|
||||||
|
|
||||||
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
|
||||||
dst_ptr[i0] = src0_ptr[i0/sf];
|
const int64_t i00 = i0/sf0;
|
||||||
|
|
||||||
|
device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||||
|
device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
|
||||||
|
|
||||||
|
dst_ptr[0] = src0_ptr[0];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2049,27 +2058,24 @@ typedef void (flash_attn_ext_f16_t)(
|
|||||||
device const char * v,
|
device const char * v,
|
||||||
device const char * mask,
|
device const char * mask,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
constant int64_t & ne00,
|
|
||||||
constant int64_t & ne01,
|
constant int64_t & ne01,
|
||||||
constant int64_t & ne02,
|
constant int64_t & ne02,
|
||||||
constant int64_t & ne03,
|
constant int64_t & ne03,
|
||||||
constant uint64_t & nb00,
|
|
||||||
constant uint64_t & nb01,
|
constant uint64_t & nb01,
|
||||||
constant uint64_t & nb02,
|
constant uint64_t & nb02,
|
||||||
constant uint64_t & nb03,
|
constant uint64_t & nb03,
|
||||||
constant int64_t & ne10,
|
|
||||||
constant int64_t & ne11,
|
constant int64_t & ne11,
|
||||||
constant int64_t & ne12,
|
constant int64_t & ne12,
|
||||||
constant int64_t & ne13,
|
constant int64_t & ne13,
|
||||||
constant uint64_t & nb10,
|
|
||||||
constant uint64_t & nb11,
|
constant uint64_t & nb11,
|
||||||
constant uint64_t & nb12,
|
constant uint64_t & nb12,
|
||||||
constant uint64_t & nb13,
|
constant uint64_t & nb13,
|
||||||
|
constant uint64_t & nb21,
|
||||||
|
constant uint64_t & nb22,
|
||||||
|
constant uint64_t & nb23,
|
||||||
constant uint64_t & nb31,
|
constant uint64_t & nb31,
|
||||||
constant int64_t & ne0,
|
|
||||||
constant int64_t & ne1,
|
constant int64_t & ne1,
|
||||||
constant int64_t & ne2,
|
constant int64_t & ne2,
|
||||||
constant int64_t & ne3,
|
|
||||||
constant float & scale,
|
constant float & scale,
|
||||||
constant float & max_bias,
|
constant float & max_bias,
|
||||||
constant float & m0,
|
constant float & m0,
|
||||||
@ -2090,27 +2096,24 @@ kernel void kernel_flash_attn_ext_f16(
|
|||||||
device const char * v,
|
device const char * v,
|
||||||
device const char * mask,
|
device const char * mask,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
constant int64_t & ne00,
|
|
||||||
constant int64_t & ne01,
|
constant int64_t & ne01,
|
||||||
constant int64_t & ne02,
|
constant int64_t & ne02,
|
||||||
constant int64_t & ne03,
|
constant int64_t & ne03,
|
||||||
constant uint64_t & nb00,
|
|
||||||
constant uint64_t & nb01,
|
constant uint64_t & nb01,
|
||||||
constant uint64_t & nb02,
|
constant uint64_t & nb02,
|
||||||
constant uint64_t & nb03,
|
constant uint64_t & nb03,
|
||||||
constant int64_t & ne10,
|
|
||||||
constant int64_t & ne11,
|
constant int64_t & ne11,
|
||||||
constant int64_t & ne12,
|
constant int64_t & ne12,
|
||||||
constant int64_t & ne13,
|
constant int64_t & ne13,
|
||||||
constant uint64_t & nb10,
|
|
||||||
constant uint64_t & nb11,
|
constant uint64_t & nb11,
|
||||||
constant uint64_t & nb12,
|
constant uint64_t & nb12,
|
||||||
constant uint64_t & nb13,
|
constant uint64_t & nb13,
|
||||||
|
constant uint64_t & nb21,
|
||||||
|
constant uint64_t & nb22,
|
||||||
|
constant uint64_t & nb23,
|
||||||
constant uint64_t & nb31,
|
constant uint64_t & nb31,
|
||||||
constant int64_t & ne0,
|
|
||||||
constant int64_t & ne1,
|
constant int64_t & ne1,
|
||||||
constant int64_t & ne2,
|
constant int64_t & ne2,
|
||||||
constant int64_t & ne3,
|
|
||||||
constant float & scale,
|
constant float & scale,
|
||||||
constant float & max_bias,
|
constant float & max_bias,
|
||||||
constant float & m0,
|
constant float & m0,
|
||||||
@ -2180,10 +2183,6 @@ kernel void kernel_flash_attn_ext_f16(
|
|||||||
const short ne22 = ne12;
|
const short ne22 = ne12;
|
||||||
const short ne23 = ne13;
|
const short ne23 = ne13;
|
||||||
|
|
||||||
const uint nb21 = nb11;
|
|
||||||
const uint nb22 = nb12;
|
|
||||||
const uint nb23 = nb13;
|
|
||||||
|
|
||||||
// broadcast
|
// broadcast
|
||||||
const short rk2 = ne02/ne12;
|
const short rk2 = ne02/ne12;
|
||||||
const short rk3 = ne03/ne13;
|
const short rk3 = ne03/ne13;
|
||||||
@ -2209,11 +2208,7 @@ kernel void kernel_flash_attn_ext_f16(
|
|||||||
// pointer to the mask
|
// pointer to the mask
|
||||||
device const half * mp = (device const half *) (mask + iq1*nb31);
|
device const half * mp = (device const half *) (mask + iq1*nb31);
|
||||||
|
|
||||||
// prepare diagonal scale matrix
|
float slope = 1.0f;
|
||||||
simdgroup_float8x8 mscale(scale);
|
|
||||||
|
|
||||||
// prepare diagonal slope matrix
|
|
||||||
simdgroup_float8x8 mslope(1.0f);
|
|
||||||
|
|
||||||
// ALiBi
|
// ALiBi
|
||||||
if (max_bias > 0.0f) {
|
if (max_bias > 0.0f) {
|
||||||
@ -2222,7 +2217,7 @@ kernel void kernel_flash_attn_ext_f16(
|
|||||||
const float base = h < n_head_log2 ? m0 : m1;
|
const float base = h < n_head_log2 ? m0 : m1;
|
||||||
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
|
||||||
|
|
||||||
mslope = simdgroup_float8x8(pow(base, exph));
|
slope = pow(base, exph);
|
||||||
}
|
}
|
||||||
|
|
||||||
// loop over the KV cache
|
// loop over the KV cache
|
||||||
@ -2247,13 +2242,20 @@ kernel void kernel_flash_attn_ext_f16(
|
|||||||
simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk);
|
simdgroup_multiply_accumulate(mqk, mq[i], mk, mqk);
|
||||||
}
|
}
|
||||||
|
|
||||||
// mqk = mqk*scale + mask*slope
|
|
||||||
simdgroup_half8x8 mm;
|
|
||||||
simdgroup_load(mm, mp + ic + 8*cc, nb31/sizeof(half), 0, false);
|
|
||||||
simdgroup_multiply(mm, mslope, mm);
|
|
||||||
simdgroup_multiply_accumulate(mqk, mqk, mscale, mm);
|
|
||||||
|
|
||||||
simdgroup_store(mqk, ss + 8*cc, TF, 0, false);
|
simdgroup_store(mqk, ss + 8*cc, TF, 0, false);
|
||||||
|
|
||||||
|
const short tx = tiisg%4;
|
||||||
|
const short ty = tiisg/4;
|
||||||
|
|
||||||
|
if (mask != q) {
|
||||||
|
// mqk = mqk*scale + mask*slope
|
||||||
|
ss[8*cc + ty*TF + 2*tx + 0] = scale*ss[8*cc + ty*TF + 2*tx + 0] + slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 0];
|
||||||
|
ss[8*cc + ty*TF + 2*tx + 1] = scale*ss[8*cc + ty*TF + 2*tx + 1] + slope*mp[ic + 8*cc + ty*nb31/sizeof(half) + 2*tx + 1];
|
||||||
|
} else {
|
||||||
|
// mqk = mqk*scale
|
||||||
|
ss[8*cc + ty*TF + 2*tx + 0] *= scale;
|
||||||
|
ss[8*cc + ty*TF + 2*tx + 1] *= scale;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2425,27 +2427,24 @@ kernel void kernel_flash_attn_ext_vec_f16(
|
|||||||
device const char * v,
|
device const char * v,
|
||||||
device const char * mask,
|
device const char * mask,
|
||||||
device float * dst,
|
device float * dst,
|
||||||
constant int64_t & ne00,
|
|
||||||
constant int64_t & ne01,
|
constant int64_t & ne01,
|
||||||
constant int64_t & ne02,
|
constant int64_t & ne02,
|
||||||
constant int64_t & ne03,
|
constant int64_t & ne03,
|
||||||
constant uint64_t & nb00,
|
|
||||||
constant uint64_t & nb01,
|
constant uint64_t & nb01,
|
||||||
constant uint64_t & nb02,
|
constant uint64_t & nb02,
|
||||||
constant uint64_t & nb03,
|
constant uint64_t & nb03,
|
||||||
constant int64_t & ne10,
|
|
||||||
constant int64_t & ne11,
|
constant int64_t & ne11,
|
||||||
constant int64_t & ne12,
|
constant int64_t & ne12,
|
||||||
constant int64_t & ne13,
|
constant int64_t & ne13,
|
||||||
constant uint64_t & nb10,
|
|
||||||
constant uint64_t & nb11,
|
constant uint64_t & nb11,
|
||||||
constant uint64_t & nb12,
|
constant uint64_t & nb12,
|
||||||
constant uint64_t & nb13,
|
constant uint64_t & nb13,
|
||||||
|
constant uint64_t & nb21,
|
||||||
|
constant uint64_t & nb22,
|
||||||
|
constant uint64_t & nb23,
|
||||||
constant uint64_t & nb31,
|
constant uint64_t & nb31,
|
||||||
constant int64_t & ne0,
|
|
||||||
constant int64_t & ne1,
|
constant int64_t & ne1,
|
||||||
constant int64_t & ne2,
|
constant int64_t & ne2,
|
||||||
constant int64_t & ne3,
|
|
||||||
constant float & scale,
|
constant float & scale,
|
||||||
constant float & max_bias,
|
constant float & max_bias,
|
||||||
constant float & m0,
|
constant float & m0,
|
||||||
@ -2521,10 +2520,6 @@ kernel void kernel_flash_attn_ext_vec_f16(
|
|||||||
const short ne22 = ne12;
|
const short ne22 = ne12;
|
||||||
const short ne23 = ne13;
|
const short ne23 = ne13;
|
||||||
|
|
||||||
const uint nb21 = nb11;
|
|
||||||
const uint nb22 = nb12;
|
|
||||||
const uint nb23 = nb13;
|
|
||||||
|
|
||||||
// broadcast
|
// broadcast
|
||||||
const short rk2 = ne02/ne12;
|
const short rk2 = ne02/ne12;
|
||||||
const short rk3 = ne03/ne13;
|
const short rk3 = ne03/ne13;
|
||||||
@ -2589,8 +2584,7 @@ kernel void kernel_flash_attn_ext_vec_f16(
|
|||||||
|
|
||||||
// mqk = mqk*scale + mask*slope
|
// mqk = mqk*scale + mask*slope
|
||||||
if (tiisg == 0) {
|
if (tiisg == 0) {
|
||||||
float4 mm = (float4) mp4[ic/4 + cc];
|
mqk = mqk*scale + ((mask != q) ? ((float4) mp4[ic/4 + cc])*slope : (float4) 0.0f);
|
||||||
mqk = mqk*scale + mm*slope;
|
|
||||||
|
|
||||||
ss4[cc] = mqk;
|
ss4[cc] = mqk;
|
||||||
}
|
}
|
||||||
@ -2824,8 +2818,7 @@ kernel void kernel_cpy_f32_f16(
|
|||||||
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
|
for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
|
||||||
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
|
||||||
|
|
||||||
// TODO: is there a better way to handle -INFINITY?
|
dst_data[i00] = src[0];
|
||||||
dst_data[i00] = src[0] == -INFINITY ? -MAXHALF : src[0];
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
216
ggml-mpi.c
216
ggml-mpi.c
@ -1,216 +0,0 @@
|
|||||||
#include "ggml-mpi.h"
|
|
||||||
|
|
||||||
#include "ggml.h"
|
|
||||||
|
|
||||||
#include <mpi.h>
|
|
||||||
|
|
||||||
#include <stdio.h>
|
|
||||||
#include <stdlib.h>
|
|
||||||
|
|
||||||
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
||||||
|
|
||||||
#define UNUSED GGML_UNUSED
|
|
||||||
|
|
||||||
struct ggml_mpi_context {
|
|
||||||
int rank;
|
|
||||||
int size;
|
|
||||||
};
|
|
||||||
|
|
||||||
void ggml_mpi_backend_init(void) {
|
|
||||||
MPI_Init(NULL, NULL);
|
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_mpi_backend_free(void) {
|
|
||||||
MPI_Finalize();
|
|
||||||
}
|
|
||||||
|
|
||||||
struct ggml_mpi_context * ggml_mpi_init(void) {
|
|
||||||
struct ggml_mpi_context * ctx = calloc(1, sizeof(struct ggml_mpi_context));
|
|
||||||
|
|
||||||
MPI_Comm_rank(MPI_COMM_WORLD, &ctx->rank);
|
|
||||||
MPI_Comm_size(MPI_COMM_WORLD, &ctx->size);
|
|
||||||
|
|
||||||
return ctx;
|
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_mpi_free(struct ggml_mpi_context * ctx) {
|
|
||||||
free(ctx);
|
|
||||||
}
|
|
||||||
|
|
||||||
int ggml_mpi_rank(struct ggml_mpi_context * ctx) {
|
|
||||||
return ctx->rank;
|
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_mpi_eval_init(
|
|
||||||
struct ggml_mpi_context * ctx_mpi,
|
|
||||||
int * n_tokens,
|
|
||||||
int * n_past,
|
|
||||||
int * n_threads) {
|
|
||||||
UNUSED(ctx_mpi);
|
|
||||||
|
|
||||||
// synchronize the worker node parameters with the root node
|
|
||||||
MPI_Barrier(MPI_COMM_WORLD);
|
|
||||||
|
|
||||||
MPI_Bcast(n_tokens, 1, MPI_INT, 0, MPI_COMM_WORLD);
|
|
||||||
MPI_Bcast(n_past, 1, MPI_INT, 0, MPI_COMM_WORLD);
|
|
||||||
MPI_Bcast(n_threads, 1, MPI_INT, 0, MPI_COMM_WORLD);
|
|
||||||
}
|
|
||||||
|
|
||||||
static int ggml_graph_get_node_idx(struct ggml_cgraph * gf, const char * name) {
|
|
||||||
struct ggml_tensor * t = ggml_graph_get_tensor(gf, name);
|
|
||||||
if (t == NULL) {
|
|
||||||
fprintf(stderr, "%s: tensor %s not found\n", __func__, name);
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < gf->n_nodes; i++) {
|
|
||||||
if (gf->nodes[i] == t) {
|
|
||||||
return i;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
fprintf(stderr, "%s: tensor %s not found in graph (should not happen)\n", __func__, name);
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_mpi_tensor_send(struct ggml_tensor * t, int mpi_rank_dst) {
|
|
||||||
MPI_Datatype mpi_type;
|
|
||||||
|
|
||||||
switch (t->type) {
|
|
||||||
case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
|
|
||||||
case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
|
|
||||||
default: GGML_ASSERT(false && "not implemented");
|
|
||||||
}
|
|
||||||
|
|
||||||
const int retval = MPI_Send(t->data, ggml_nelements(t), mpi_type, mpi_rank_dst, 0, MPI_COMM_WORLD);
|
|
||||||
GGML_ASSERT(retval == MPI_SUCCESS);
|
|
||||||
}
|
|
||||||
|
|
||||||
static void ggml_mpi_tensor_recv(struct ggml_tensor * t, int mpi_rank_src) {
|
|
||||||
MPI_Datatype mpi_type;
|
|
||||||
|
|
||||||
switch (t->type) {
|
|
||||||
case GGML_TYPE_I32: mpi_type = MPI_INT32_T; break;
|
|
||||||
case GGML_TYPE_F32: mpi_type = MPI_FLOAT; break;
|
|
||||||
default: GGML_ASSERT(false && "not implemented");
|
|
||||||
}
|
|
||||||
|
|
||||||
MPI_Status status; UNUSED(status);
|
|
||||||
|
|
||||||
const int retval = MPI_Recv(t->data, ggml_nelements(t), mpi_type, mpi_rank_src, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
|
|
||||||
GGML_ASSERT(retval == MPI_SUCCESS);
|
|
||||||
}
|
|
||||||
|
|
||||||
// TODO: there are many improvements that can be done to this implementation
|
|
||||||
void ggml_mpi_graph_compute_pre(
|
|
||||||
struct ggml_mpi_context * ctx_mpi,
|
|
||||||
struct ggml_cgraph * gf,
|
|
||||||
int n_layers) {
|
|
||||||
const int mpi_rank = ctx_mpi->rank;
|
|
||||||
const int mpi_size = ctx_mpi->size;
|
|
||||||
|
|
||||||
struct ggml_tensor * inp_tokens = ggml_graph_get_tensor(gf, "inp_tokens");
|
|
||||||
if (inp_tokens == NULL) {
|
|
||||||
fprintf(stderr, "%s: tensor 'inp_tokens' not found\n", __func__);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
struct ggml_tensor * inp0 = ggml_graph_get_tensor(gf, "layer_inp_0");
|
|
||||||
if (inp0 == NULL) {
|
|
||||||
fprintf(stderr, "%s: tensor 'inp0' not found\n", __func__);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
GGML_ASSERT(inp0 == gf->nodes[0]);
|
|
||||||
|
|
||||||
// distribute the compute graph into slices across the MPI nodes
|
|
||||||
//
|
|
||||||
// the main node (0) processes the last layers + the remainder of the compute graph
|
|
||||||
// and is responsible to pass the input tokens to the first node (1)
|
|
||||||
//
|
|
||||||
// node 1: [( 0) * n_per_node, ( 1) * n_per_node)
|
|
||||||
// node 2: [( 1) * n_per_node, ( 2) * n_per_node)
|
|
||||||
// ...
|
|
||||||
// node n-1: [(n-2) * n_per_node, (n-1) * n_per_node)
|
|
||||||
// node 0: [(n-1) * n_per_node, n_nodes)
|
|
||||||
//
|
|
||||||
if (mpi_rank > 0) {
|
|
||||||
if (mpi_rank == 1) {
|
|
||||||
// the first node (1) receives the input tokens from the main node (0)
|
|
||||||
ggml_mpi_tensor_recv(inp_tokens, 0);
|
|
||||||
} else {
|
|
||||||
// recv input data for each node into the "inp0" tensor (i.e. the first node in the compute graph)
|
|
||||||
ggml_mpi_tensor_recv(inp0, mpi_rank - 1);
|
|
||||||
}
|
|
||||||
} else if (mpi_size > 1) {
|
|
||||||
// node 0 sends the input tokens to node 1
|
|
||||||
ggml_mpi_tensor_send(inp_tokens, 1);
|
|
||||||
|
|
||||||
// recv the output data from the last node
|
|
||||||
ggml_mpi_tensor_recv(inp0, mpi_size - 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
{
|
|
||||||
const int n_per_node = (n_layers + (mpi_size - 1)) / mpi_size;
|
|
||||||
|
|
||||||
const int mpi_idx = mpi_rank > 0 ? mpi_rank - 1 : mpi_size - 1;
|
|
||||||
|
|
||||||
const int il0 = (mpi_idx + 0) * n_per_node;
|
|
||||||
const int il1 = MIN(n_layers, (mpi_idx + 1) * n_per_node);
|
|
||||||
|
|
||||||
char name_l0[GGML_MAX_NAME];
|
|
||||||
char name_l1[GGML_MAX_NAME];
|
|
||||||
|
|
||||||
snprintf(name_l0, sizeof(name_l0), "layer_inp_%d", il0);
|
|
||||||
snprintf(name_l1, sizeof(name_l1), "layer_inp_%d", il1);
|
|
||||||
|
|
||||||
const int idx_l0 = ggml_graph_get_node_idx(gf, name_l0);
|
|
||||||
const int idx_l1 = mpi_rank > 0 ? ggml_graph_get_node_idx(gf, name_l1) + 1 : gf->n_nodes;
|
|
||||||
|
|
||||||
if (idx_l0 < 0 || idx_l1 < 0) {
|
|
||||||
fprintf(stderr, "%s: layer input nodes not found\n", __func__);
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// attach the input data to all nodes that need it
|
|
||||||
// TODO: not great - should be able to do this without modifying the compute graph (see next TODO below)
|
|
||||||
for (int i = idx_l0; i < idx_l1; i++) {
|
|
||||||
if (gf->nodes[i]->src[0] == gf->nodes[idx_l0]) {
|
|
||||||
gf->nodes[i]->src[0] = inp0;
|
|
||||||
}
|
|
||||||
if (gf->nodes[i]->src[1] == gf->nodes[idx_l0]) {
|
|
||||||
gf->nodes[i]->src[1] = inp0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// TODO: instead of rearranging the nodes, we should be able to execute a subset of the compute graph
|
|
||||||
for (int i = 1; i < idx_l1 - idx_l0; i++) {
|
|
||||||
gf->nodes[i] = gf->nodes[idx_l0 + i];
|
|
||||||
gf->grads[i] = gf->grads[idx_l0 + i];
|
|
||||||
}
|
|
||||||
|
|
||||||
// the first node performs the "get_rows" operation, the rest of the nodes get the data from the previous node
|
|
||||||
if (mpi_idx != 0) {
|
|
||||||
gf->nodes[0]->op = GGML_OP_NONE;
|
|
||||||
}
|
|
||||||
|
|
||||||
gf->n_nodes = idx_l1 - idx_l0;
|
|
||||||
|
|
||||||
//fprintf(stderr, "%s: node %d: processing %d nodes [%d, %d)\n", __func__, mpi_rank, gf->n_nodes, il0, il1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void ggml_mpi_graph_compute_post(
|
|
||||||
struct ggml_mpi_context * ctx_mpi,
|
|
||||||
struct ggml_cgraph * gf,
|
|
||||||
int n_layers) {
|
|
||||||
UNUSED(n_layers);
|
|
||||||
|
|
||||||
const int mpi_rank = ctx_mpi->rank;
|
|
||||||
const int mpi_size = ctx_mpi->size;
|
|
||||||
|
|
||||||
// send the output data to the next node
|
|
||||||
if (mpi_rank > 0) {
|
|
||||||
ggml_mpi_tensor_send(gf->nodes[gf->n_nodes - 1], (mpi_rank + 1) % mpi_size);
|
|
||||||
}
|
|
||||||
}
|
|
39
ggml-mpi.h
39
ggml-mpi.h
@ -1,39 +0,0 @@
|
|||||||
#pragma once
|
|
||||||
|
|
||||||
struct ggml_context;
|
|
||||||
struct ggml_tensor;
|
|
||||||
struct ggml_cgraph;
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
|
||||||
extern "C" {
|
|
||||||
#endif
|
|
||||||
|
|
||||||
struct ggml_mpi_context;
|
|
||||||
|
|
||||||
void ggml_mpi_backend_init(void);
|
|
||||||
void ggml_mpi_backend_free(void);
|
|
||||||
|
|
||||||
struct ggml_mpi_context * ggml_mpi_init(void);
|
|
||||||
void ggml_mpi_free(struct ggml_mpi_context * ctx);
|
|
||||||
|
|
||||||
int ggml_mpi_rank(struct ggml_mpi_context * ctx);
|
|
||||||
|
|
||||||
void ggml_mpi_eval_init(
|
|
||||||
struct ggml_mpi_context * ctx_mpi,
|
|
||||||
int * n_tokens,
|
|
||||||
int * n_past,
|
|
||||||
int * n_threads);
|
|
||||||
|
|
||||||
void ggml_mpi_graph_compute_pre(
|
|
||||||
struct ggml_mpi_context * ctx_mpi,
|
|
||||||
struct ggml_cgraph * gf,
|
|
||||||
int n_layers);
|
|
||||||
|
|
||||||
void ggml_mpi_graph_compute_post(
|
|
||||||
struct ggml_mpi_context * ctx_mpi,
|
|
||||||
struct ggml_cgraph * gf,
|
|
||||||
int n_layers);
|
|
||||||
|
|
||||||
#ifdef __cplusplus
|
|
||||||
}
|
|
||||||
#endif
|
|
@ -1,4 +1,4 @@
|
|||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
#include "ggml-opencl.h"
|
#include "ggml-opencl.h"
|
||||||
#include "ggml-backend-impl.h"
|
#include "ggml-backend-impl.h"
|
||||||
|
|
||||||
@ -1835,7 +1835,10 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
|||||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, &offset, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int64_t i12 = i02 * r2, e12 = i12 + r2; i12 < e12; i12++) {
|
int64_t i12 = i02 * r2;
|
||||||
|
int64_t e12 = i12 + r2;
|
||||||
|
events.reserve(e12 - i12);
|
||||||
|
for (; i12 < e12; i12++) {
|
||||||
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
||||||
// copy src1 to device
|
// copy src1 to device
|
||||||
events.emplace_back();
|
events.emplace_back();
|
||||||
|
4315
ggml-quants.c
4315
ggml-quants.c
File diff suppressed because it is too large
Load Diff
1155
ggml-rpc.cpp
Normal file
1155
ggml-rpc.cpp
Normal file
File diff suppressed because it is too large
Load Diff
24
ggml-rpc.h
Normal file
24
ggml-rpc.h
Normal file
@ -0,0 +1,24 @@
|
|||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "ggml.h"
|
||||||
|
#include "ggml-backend.h"
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#define GGML_RPC_MAX_SERVERS 16
|
||||||
|
|
||||||
|
// backend API
|
||||||
|
GGML_API GGML_CALL ggml_backend_t ggml_backend_rpc_init(const char * endpoint);
|
||||||
|
GGML_API GGML_CALL bool ggml_backend_is_rpc(ggml_backend_t backend);
|
||||||
|
|
||||||
|
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_rpc_buffer_type(const char * endpoint);
|
||||||
|
|
||||||
|
GGML_API GGML_CALL void ggml_backend_rpc_get_device_memory(const char * endpoint, size_t * free, size_t * total);
|
||||||
|
|
||||||
|
GGML_API GGML_CALL void start_rpc_server(ggml_backend_t backend, const char * endpoint, size_t free_mem, size_t total_mem);
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
@ -3847,21 +3847,27 @@ static void concat_f32(const float *x,const float *y, float *dst, const int ne
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void upscale_f32(const float *x, float *dst, const int ne00, const int nb02, const int scale_factor,
|
static void upscale_f32(const float *x, float *dst, const int nb00, const int nb01,
|
||||||
const sycl::nd_item<3> &item_ct1) {
|
const int nb02, const int nb03, const int ne10, const int ne11,
|
||||||
int ne0 = ne00 * scale_factor;
|
const int ne12, const int ne13, const float sf0, const float sf1,
|
||||||
int nidx = item_ct1.get_local_id(2) +
|
const float sf2, const float sf3, const sycl::nd_item<1> &item_ct1) {
|
||||||
item_ct1.get_group(2) * item_ct1.get_local_range(2);
|
int index = item_ct1.get_local_id(0) +
|
||||||
if (nidx >= ne0) {
|
item_ct1.get_group(0) * item_ct1.get_local_range(0);
|
||||||
|
if (index >= ne10 * ne11 * ne12 * ne13) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
// operation
|
// operation
|
||||||
int i00 = nidx / scale_factor;
|
int i10 = index % ne10;
|
||||||
int i01 = item_ct1.get_group(1) / scale_factor;
|
int i11 = (index / ne10) % ne11;
|
||||||
int offset_src = i00 + i01 * ne00 + item_ct1.get_group(0) * nb02;
|
int i12 = (index / (ne10 * ne11)) % ne12;
|
||||||
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
|
int i13 = (index / (ne10 * ne11 * ne12)) % ne13;
|
||||||
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
|
|
||||||
dst[offset_dst] = x[offset_src];
|
int i00 = i10 / sf0;
|
||||||
|
int i01 = i11 / sf1;
|
||||||
|
int i02 = i12 / sf2;
|
||||||
|
int i03 = i13 / sf3;
|
||||||
|
|
||||||
|
dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
|
||||||
}
|
}
|
||||||
|
|
||||||
static void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
|
static void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
|
||||||
@ -10085,18 +10091,17 @@ static void concat_f32_sycl(const float *x, const float *y, float *dst,
|
|||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
static void upscale_f32_sycl(const float *x, float *dst, const int ne00,
|
static void upscale_f32_sycl(const float *x, float *dst, const int nb00, const int nb01,
|
||||||
const int ne01, const int ne02,
|
const int nb02, const int nb03, const int ne10, const int ne11,
|
||||||
const int scale_factor, dpct::queue_ptr stream) {
|
const int ne12, const int ne13, const float sf0, const float sf1,
|
||||||
int ne0 = (ne00 * scale_factor);
|
const float sf2, const float sf3, dpct::queue_ptr stream) {
|
||||||
int num_blocks = (ne0 + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
|
int dst_size = ne10 * ne11 * ne12 * ne13;
|
||||||
sycl::range<3> gridDim(ne02, (ne01 * scale_factor), num_blocks);
|
int num_blocks = (dst_size + SYCL_UPSCALE_BLOCK_SIZE - 1) / SYCL_UPSCALE_BLOCK_SIZE;
|
||||||
|
sycl::range<1> gridDim(num_blocks * SYCL_UPSCALE_BLOCK_SIZE);
|
||||||
stream->parallel_for(
|
stream->parallel_for(
|
||||||
sycl::nd_range<3>(gridDim *
|
sycl::nd_range<1>(gridDim, sycl::range<1>(SYCL_UPSCALE_BLOCK_SIZE)),
|
||||||
sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE),
|
[=](sycl::nd_item<1> item_ct1) {
|
||||||
sycl::range<3>(1, 1, SYCL_UPSCALE_BLOCK_SIZE)),
|
upscale_f32(x, dst, nb00, nb01, nb02, nb03, ne10, ne11, ne12, ne13, sf0, sf1, sf2, sf3, item_ct1);
|
||||||
[=](sycl::nd_item<3> item_ct1) {
|
|
||||||
upscale_f32(x, dst, ne00, ne00 * ne01, scale_factor, item_ct1);
|
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -13985,11 +13990,15 @@ inline void ggml_sycl_op_upscale(const ggml_tensor *src0,
|
|||||||
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
||||||
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
|
|
||||||
|
|
||||||
const int scale_factor = dst->op_params[0];
|
const float sf0 = (float)dst->ne[0]/src0->ne[0];
|
||||||
|
const float sf1 = (float)dst->ne[1]/src0->ne[1];
|
||||||
|
const float sf2 = (float)dst->ne[2]/src0->ne[2];
|
||||||
|
const float sf3 = (float)dst->ne[3]/src0->ne[3];
|
||||||
|
|
||||||
upscale_f32_sycl(src0_dd, dst_dd, src0->ne[0], src0->ne[1], src0->ne[2], scale_factor, main_stream);
|
upscale_f32_sycl(src0_dd, dst_dd, src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
|
||||||
|
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3,
|
||||||
|
main_stream);
|
||||||
|
|
||||||
(void) src1;
|
(void) src1;
|
||||||
(void) dst;
|
(void) dst;
|
||||||
@ -14445,6 +14454,9 @@ inline void ggml_sycl_op_rope(const ggml_tensor *src0, const ggml_tensor *src1,
|
|||||||
ggml_tensor *dst, const float *src0_dd,
|
ggml_tensor *dst, const float *src0_dd,
|
||||||
const float *src1_dd, float *dst_dd,
|
const float *src1_dd, float *dst_dd,
|
||||||
const dpct::queue_ptr &main_stream) {
|
const dpct::queue_ptr &main_stream) {
|
||||||
|
#pragma message("TODO: implement phi3 frequency factors support")
|
||||||
|
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
|
||||||
|
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
|
||||||
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||||
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
|
||||||
@ -15564,26 +15576,6 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
|
|||||||
const int64_t r2 = ne12/ne02;
|
const int64_t r2 = ne12/ne02;
|
||||||
const int64_t r3 = ne13/ne03;
|
const int64_t r3 = ne13/ne03;
|
||||||
|
|
||||||
#if 0
|
|
||||||
// use syclGemmEx
|
|
||||||
{
|
|
||||||
for (int i13 = 0; i13 < ne13; ++i13) {
|
|
||||||
for (int i12 = 0; i12 < ne12; ++i12) {
|
|
||||||
int i03 = i13 / r3;
|
|
||||||
int i02 = i12 / r2;
|
|
||||||
|
|
||||||
SYCL_CHECK(
|
|
||||||
syclGemmEx(g_sycl_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
|
|
||||||
ne01, ne11, ne10,
|
|
||||||
alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , SYCL_R_16F, nb01/sizeof(half),
|
|
||||||
(const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, SYCL_R_16F, nb11/sizeof(float),
|
|
||||||
beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
|
|
||||||
cu_compute_type,
|
|
||||||
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
|
if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
|
||||||
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
// there is no broadcast and src0, src1 are contiguous across dims 2, 3
|
||||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
|
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
|
||||||
@ -15595,7 +15587,6 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
|
|||||||
nb11 / nb10, nb12 / nb10, beta,
|
nb11 / nb10, nb12 / nb10, beta,
|
||||||
(char *)dst_t, cu_data_type, ne01, nb2 / nb0,
|
(char *)dst_t, cu_data_type, ne01, nb2 / nb0,
|
||||||
ne12 * ne13, cu_compute_type)));
|
ne12 * ne13, cu_compute_type)));
|
||||||
g_sycl_handles[g_main_device]->wait();
|
|
||||||
} else {
|
} else {
|
||||||
const int ne23 = ne12*ne13;
|
const int ne23 = ne12*ne13;
|
||||||
|
|
||||||
@ -15626,7 +15617,7 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
|
|||||||
nb02, nb03, nb12_scaled, nb13_scaled,
|
nb02, nb03, nb12_scaled, nb13_scaled,
|
||||||
nbd2, nbd3, r2, r3, item_ct1);
|
nbd2, nbd3, r2, r3, item_ct1);
|
||||||
});
|
});
|
||||||
}).wait();
|
});
|
||||||
}
|
}
|
||||||
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
|
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm_batch(
|
||||||
*g_sycl_handles[g_main_device], oneapi::mkl::transpose::trans,
|
*g_sycl_handles[g_main_device], oneapi::mkl::transpose::trans,
|
||||||
@ -15637,9 +15628,7 @@ static void ggml_sycl_mul_mat_batched_sycl(const ggml_tensor *src0,
|
|||||||
dpct::library_data_t::real_half, nb11 / nb10, beta,
|
dpct::library_data_t::real_half, nb11 / nb10, beta,
|
||||||
(void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
|
(void **)(ptrs_dst.get() + 0 * ne23), cu_data_type, ne01, ne23,
|
||||||
cu_compute_type)));
|
cu_compute_type)));
|
||||||
g_sycl_handles[g_main_device]->wait();
|
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
|
|
||||||
if (no_mixed_dtypes) {
|
if (no_mixed_dtypes) {
|
||||||
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
const to_fp32_sycl_t to_fp32_sycl = ggml_get_to_fp32_sycl(GGML_TYPE_F16);
|
||||||
|
14361
ggml-vulkan-shaders.hpp
14361
ggml-vulkan-shaders.hpp
File diff suppressed because it is too large
Load Diff
380
ggml-vulkan.cpp
380
ggml-vulkan.cpp
@ -114,6 +114,7 @@ struct vk_device {
|
|||||||
size_t idx;
|
size_t idx;
|
||||||
|
|
||||||
vk_matmul_pipeline pipeline_matmul_f32;
|
vk_matmul_pipeline pipeline_matmul_f32;
|
||||||
|
vk_matmul_pipeline pipeline_matmul_f32_f16;
|
||||||
vk_matmul_pipeline pipeline_matmul_f16;
|
vk_matmul_pipeline pipeline_matmul_f16;
|
||||||
vk_matmul_pipeline pipeline_matmul_f16_f32;
|
vk_matmul_pipeline pipeline_matmul_f16_f32;
|
||||||
vk_pipeline pipeline_matmul_split_k_reduce;
|
vk_pipeline pipeline_matmul_split_k_reduce;
|
||||||
@ -294,7 +295,6 @@ struct vk_op_rope_neox_push_constants {
|
|||||||
struct vk_op_soft_max_push_constants {
|
struct vk_op_soft_max_push_constants {
|
||||||
uint32_t KX;
|
uint32_t KX;
|
||||||
uint32_t KY;
|
uint32_t KY;
|
||||||
uint32_t KZ;
|
|
||||||
float scale;
|
float scale;
|
||||||
float max_bias;
|
float max_bias;
|
||||||
float m0;
|
float m0;
|
||||||
@ -304,7 +304,8 @@ struct vk_op_soft_max_push_constants {
|
|||||||
|
|
||||||
struct vk_op_argsort_push_constants {
|
struct vk_op_argsort_push_constants {
|
||||||
uint32_t ncols;
|
uint32_t ncols;
|
||||||
bool ascending;
|
uint32_t ncols_pad;
|
||||||
|
int32_t order;
|
||||||
};
|
};
|
||||||
|
|
||||||
// Allow pre-recording command buffers
|
// Allow pre-recording command buffers
|
||||||
@ -375,13 +376,12 @@ struct ggml_backend_vk_context {
|
|||||||
vk_context * compute_ctx;
|
vk_context * compute_ctx;
|
||||||
vk_context * transfer_ctx;
|
vk_context * transfer_ctx;
|
||||||
|
|
||||||
bool disable;
|
|
||||||
bool initialized;
|
bool initialized;
|
||||||
|
|
||||||
size_t idx;
|
size_t idx;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct vk_instance {
|
struct vk_instance_t {
|
||||||
vk::Instance instance;
|
vk::Instance instance;
|
||||||
|
|
||||||
std::vector<size_t> device_indices;
|
std::vector<size_t> device_indices;
|
||||||
@ -423,7 +423,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
|
typedef void (*ggml_vk_func_t)(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
|
||||||
|
|
||||||
static bool vk_instance_initialized = false;
|
static bool vk_instance_initialized = false;
|
||||||
static vk_instance vk_instance;
|
static vk_instance_t vk_instance;
|
||||||
|
|
||||||
GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend);
|
GGML_CALL static void ggml_backend_vk_free(ggml_backend_t backend);
|
||||||
|
|
||||||
@ -1013,6 +1013,7 @@ static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) {
|
|||||||
uint32_t s_align = 32;
|
uint32_t s_align = 32;
|
||||||
|
|
||||||
ctx->device->pipeline_matmul_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
ctx->device->pipeline_matmul_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||||
|
ctx->device->pipeline_matmul_f32_f16 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||||
ctx->device->pipeline_matmul_f16_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
ctx->device->pipeline_matmul_f16_f32 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||||
ctx->device->pipeline_matmul_f16 = std::make_shared<vk_matmul_pipeline_struct>();
|
ctx->device->pipeline_matmul_f16 = std::make_shared<vk_matmul_pipeline_struct>();
|
||||||
ctx->device->pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0] = std::make_shared<vk_matmul_pipeline_struct>();
|
ctx->device->pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0] = std::make_shared<vk_matmul_pipeline_struct>();
|
||||||
@ -1048,6 +1049,13 @@ static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) {
|
|||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32->a_m, "matmul_f32_aligned_m", matmul_f32_aligned_len, matmul_f32_aligned_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, m_align);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32->a_m, "matmul_f32_aligned_m", matmul_f32_aligned_len, matmul_f32_aligned_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, m_align);
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32->a_s, "matmul_f32_aligned_s", matmul_f32_aligned_len, matmul_f32_aligned_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, s_align);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32->a_s, "matmul_f32_aligned_s", matmul_f32_aligned_len, matmul_f32_aligned_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, s_align);
|
||||||
|
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->l, "matmul_f32_f16_l", matmul_f32_f16_len, matmul_f32_f16_data, "main", 3, sizeof(vk_mat_mat_push_constants), l_wg_denoms, warptile_l, 1);
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->m, "matmul_f32_f16_m", matmul_f32_f16_len, matmul_f32_f16_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, 1);
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->s, "matmul_f32_f16_s", matmul_f32_f16_len, matmul_f32_f16_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, 1);
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->a_l, "matmul_f32_f16_aligned_l", matmul_f32_f16_aligned_len, matmul_f32_f16_aligned_data, "main", 3, sizeof(vk_mat_mat_push_constants), l_wg_denoms, warptile_l, l_align);
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->a_m, "matmul_f32_f16_aligned_m", matmul_f32_f16_aligned_len, matmul_f32_f16_aligned_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, m_align);
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->a_s, "matmul_f32_f16_aligned_s", matmul_f32_f16_aligned_len, matmul_f32_f16_aligned_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, s_align);
|
||||||
|
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->l, "matmul_f16_l", matmul_f16_len, matmul_f16_data, "main", 3, sizeof(vk_mat_mat_push_constants), l_wg_denoms, warptile_l, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->l, "matmul_f16_l", matmul_f16_len, matmul_f16_data, "main", 3, sizeof(vk_mat_mat_push_constants), l_wg_denoms, warptile_l, 1);
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->m, "matmul_f16_m", matmul_f16_len, matmul_f16_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->m, "matmul_f16_m", matmul_f16_len, matmul_f16_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, 1);
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->s, "matmul_f16_s", matmul_f16_len, matmul_f16_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->s, "matmul_f16_s", matmul_f16_len, matmul_f16_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, 1);
|
||||||
@ -1230,6 +1238,13 @@ static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) {
|
|||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32->a_m, "matmul_f32_aligned_m", matmul_f32_aligned_fp32_len, matmul_f32_aligned_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, m_align);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32->a_m, "matmul_f32_aligned_m", matmul_f32_aligned_fp32_len, matmul_f32_aligned_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, m_align);
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32->a_s, "matmul_f32_aligned_s", matmul_f32_aligned_fp32_len, matmul_f32_aligned_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, s_align);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32->a_s, "matmul_f32_aligned_s", matmul_f32_aligned_fp32_len, matmul_f32_aligned_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, s_align);
|
||||||
|
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->l, "matmul_f32_f16_l", matmul_f32_f16_fp32_len, matmul_f32_f16_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), l_wg_denoms, warptile_l, 1);
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->m, "matmul_f32_f16_m", matmul_f32_f16_fp32_len, matmul_f32_f16_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, 1);
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->s, "matmul_f32_f16_s", matmul_f32_f16_fp32_len, matmul_f32_f16_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, 1);
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->a_l, "matmul_f32_f16_aligned_l", matmul_f32_f16_aligned_fp32_len, matmul_f32_f16_aligned_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), l_wg_denoms, warptile_l, l_align);
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->a_m, "matmul_f32_f16_aligned_m", matmul_f32_f16_aligned_fp32_len, matmul_f32_f16_aligned_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, m_align);
|
||||||
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f32_f16->a_s, "matmul_f32_f16_aligned_s", matmul_f32_f16_aligned_fp32_len, matmul_f32_f16_aligned_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, s_align);
|
||||||
|
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->l, "matmul_f16_l", matmul_f16_fp32_len, matmul_f16_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), l_wg_denoms, warptile_l, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->l, "matmul_f16_l", matmul_f16_fp32_len, matmul_f16_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), l_wg_denoms, warptile_l, 1);
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->m, "matmul_f16_m", matmul_f16_fp32_len, matmul_f16_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->m, "matmul_f16_m", matmul_f16_fp32_len, matmul_f16_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), m_wg_denoms, warptile_m, 1);
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->s, "matmul_f16_s", matmul_f16_fp32_len, matmul_f16_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_matmul_f16->s, "matmul_f16_s", matmul_f16_fp32_len, matmul_f16_fp32_data, "main", 3, sizeof(vk_mat_mat_push_constants), s_wg_denoms, warptile_s, 1);
|
||||||
@ -1501,8 +1516,8 @@ static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) {
|
|||||||
|
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_diag_mask_inf_f32, "diag_mask_inf_f32", diag_mask_inf_f32_len, diag_mask_inf_f32_data, "main", 2, sizeof(vk_op_diag_mask_push_constants), {512, 1, 1}, {}, 1);
|
||||||
|
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32, "soft_max_f32", soft_max_f32_len, soft_max_f32_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1);
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 4, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_soft_max_f32_f16, "soft_max_f32_f16", soft_max_f32_f16_len, soft_max_f32_f16_data, "main", 3, sizeof(vk_op_soft_max_push_constants), {1, 1, 1}, {}, 1);
|
||||||
|
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
||||||
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
|
||||||
@ -1859,7 +1874,6 @@ static void ggml_vk_init(ggml_backend_vk_context * ctx, size_t idx) {
|
|||||||
ctx->compute_ctx = nullptr;
|
ctx->compute_ctx = nullptr;
|
||||||
ctx->transfer_ctx = nullptr;
|
ctx->transfer_ctx = nullptr;
|
||||||
|
|
||||||
ctx->disable = false;
|
|
||||||
ctx->initialized = true;
|
ctx->initialized = true;
|
||||||
|
|
||||||
ctx->idx = idx;
|
ctx->idx = idx;
|
||||||
@ -1903,6 +1917,9 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte
|
|||||||
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
|
||||||
return ctx->device->pipeline_matmul_f32;
|
return ctx->device->pipeline_matmul_f32;
|
||||||
}
|
}
|
||||||
|
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
|
||||||
|
return ctx->device->pipeline_matmul_f32_f16;
|
||||||
|
}
|
||||||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
||||||
return ctx->device->pipeline_matmul_f16_f32;
|
return ctx->device->pipeline_matmul_f16_f32;
|
||||||
}
|
}
|
||||||
@ -2722,7 +2739,7 @@ static void ggml_vk_matmul(
|
|||||||
uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d,
|
uint32_t batch_stride_a, uint32_t batch_stride_b, uint32_t batch_stride_d,
|
||||||
uint32_t expert_stride_b, uint32_t expert_stride_d, uint32_t idx, uint32_t nbi1, uint32_t n_as) {
|
uint32_t expert_stride_b, uint32_t expert_stride_d, uint32_t idx, uint32_t nbi1, uint32_t n_as) {
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_matmul(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), c: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << split_k_buffer.buffer->buffer << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ")" << std::endl;
|
std::cerr << "ggml_vk_matmul(a: (" << a.buffer->buffer << ", " << a.offset << ", " << a.size << "), b: (" << b.buffer->buffer << ", " << b.offset << ", " << b.size << "), c: (" << d.buffer->buffer << ", " << d.offset << ", " << d.size << "), split_k: (" << (split_k_buffer.buffer != nullptr ? split_k_buffer.buffer->buffer : VK_NULL_HANDLE) << ", " << split_k_buffer.offset << ", " << split_k_buffer.size << "), m: " << m << ", n: " << n << ", k: " << k << ", stride_a: " << stride_a << ", stride_b: " << stride_b << ", stride_d: " << stride_d << ", split_k: " << split_k << ", batch: " << batch << ", ne02: " << ne02 << ", ne12: " << ne12 << ", broadcast2: " << broadcast2 << ", broadcast3: " << broadcast3 << ", batch_stride_a: " << batch_stride_a << ", batch_stride_b: " << batch_stride_b << ", batch_stride_d: " << batch_stride_d << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
if (split_k == 1) {
|
if (split_k == 1) {
|
||||||
@ -2792,7 +2809,7 @@ static vk_pipeline ggml_vk_get_cpy_pipeline(ggml_backend_vk_context * ctx, ggml_
|
|||||||
|
|
||||||
static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out) {
|
static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context * subctx, vk_pipeline pipeline, const ggml_tensor * tensor, vk_subbuffer&& in, vk_subbuffer&& out) {
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", backend=" << tensor->backend << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), ";
|
std::cerr << "ggml_vk_cpy_to_contiguous((" << tensor << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << "), ";
|
||||||
std::cerr << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ")" << std::endl;
|
std::cerr << "buffer in size=" << in.buffer->size << ", buffer out size=" << out.buffer->size << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
const int tensor_type_size = ggml_type_size(tensor->type);
|
const int tensor_type_size = ggml_type_size(tensor->type);
|
||||||
@ -2812,9 +2829,9 @@ static void ggml_vk_cpy_to_contiguous(ggml_backend_vk_context * ctx, vk_context
|
|||||||
|
|
||||||
static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
std::cerr << "ggml_vk_mul_mat_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||||
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
||||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
|
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
|
||||||
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
|
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
|
||||||
@ -2982,19 +2999,13 @@ static void ggml_vk_mul_mat_q_f16(ggml_backend_vk_context * ctx, vk_context * su
|
|||||||
ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21,
|
ne01, ne11, ne10, ne10, ne10, ne01, split_k, ne12*ne13, ne02, ne12, r2, r3, stride_batch_x, stride_batch_y, ne20*ne21,
|
||||||
0, 0, 0, 0, 1
|
0, 0, 0, 0, 1
|
||||||
); // NOLINT
|
); // NOLINT
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
||||||
// copy dst to host
|
|
||||||
float * d = (float *) ((char *) dst->data);
|
|
||||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, sizeof(float) * d_ne * ne12 * ne13);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
std::cerr << "ggml_vk_mul_mat_vec_q_f16((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||||
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
||||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
|
GGML_ASSERT(ggml_vk_dim01_contiguous(src0) || src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16); // NOLINT
|
||||||
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
|
GGML_ASSERT(ggml_vk_dim01_contiguous(src1) || src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16); // NOLINT
|
||||||
@ -3147,12 +3158,11 @@ static void ggml_vk_mul_mat_vec_q_f16(ggml_backend_vk_context * ctx, vk_context
|
|||||||
|
|
||||||
static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_mul_mat_p021_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
std::cerr << "ggml_vk_mul_mat_p021_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||||
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
||||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
||||||
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
|
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // NOLINT
|
||||||
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
|
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // NOLINT
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
@ -3217,25 +3227,17 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(ggml_backend_vk_context * ctx, vk_c
|
|||||||
const std::array<uint32_t, 6> pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
const std::array<uint32_t, 6> pc = { (uint32_t)ne00, (uint32_t)ne01, (uint32_t)ne02, (uint32_t)ne12, (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_p021_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 6 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
||||||
// copy dst to host
|
|
||||||
float * d = (float *) dst->data;
|
|
||||||
ggml_vk_sync_buffers(subctx);
|
|
||||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset, d, sizeof(float) * d_ne);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
std::cerr << "ggml_vk_mul_mat_nc_f16_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||||
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
||||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "),)" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(!ggml_is_transposed(src0));
|
GGML_ASSERT(!ggml_is_transposed(src0));
|
||||||
GGML_ASSERT(!ggml_is_transposed(src1));
|
GGML_ASSERT(!ggml_is_transposed(src1));
|
||||||
GGML_ASSERT(!ggml_is_permuted(src0));
|
GGML_ASSERT(!ggml_is_permuted(src0));
|
||||||
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||||
|
|
||||||
@ -3302,26 +3304,6 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(ggml_backend_vk_context * ctx, vk_con
|
|||||||
const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
const std::array<uint32_t, 7> pc = { (uint32_t)ne00, (uint32_t)ne01, row_stride_x, channel_stride_x, (uint32_t)(ne12 / ne02), (uint32_t)(qy_shader_offset / ggml_type_size(src1->type)), (uint32_t)(d_shader_offset / ggml_type_size(dst->type)) };
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
ggml_vk_dispatch_pipeline(ctx, subctx, ctx->device->pipeline_mul_mat_vec_nc_f16_f32, { { d_Qx, qx_buf_offset, qx_sz }, { d_Qy, qy_buffer_offset, qy_sz + qy_shader_offset }, { d_D, d_buffer_offset, d_sz + d_shader_offset } }, 7 * sizeof(uint32_t), &pc, { 1, (uint32_t)ne01, (uint32_t)ne12 });
|
||||||
|
|
||||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
||||||
// copy dst to host
|
|
||||||
float * d = (float *) dst->data;
|
|
||||||
ggml_vk_sync_buffers(subctx);
|
|
||||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset, d, sizeof(float) * d_ne);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
static bool ggml_vk_can_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * dst) {
|
|
||||||
const uint64_t ne10 = src1->ne[0];
|
|
||||||
|
|
||||||
const uint64_t ne0 = dst->ne[0];
|
|
||||||
const uint64_t ne1 = dst->ne[1];
|
|
||||||
|
|
||||||
// TODO: find the optimal values for these
|
|
||||||
return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
|
|
||||||
(src1->type == GGML_TYPE_F32 || src1->type == GGML_TYPE_F16 || ggml_is_quantized(src1->type)) &&
|
|
||||||
dst->type == GGML_TYPE_F32 &&
|
|
||||||
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_mul_mat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
@ -3711,8 +3693,6 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx
|
|||||||
// TODO: support for transposed / permuted tensors
|
// TODO: support for transposed / permuted tensors
|
||||||
GGML_ASSERT(nb0 == sizeof(float));
|
GGML_ASSERT(nb0 == sizeof(float));
|
||||||
GGML_ASSERT(nb00 == sizeof(float));
|
GGML_ASSERT(nb00 == sizeof(float));
|
||||||
GGML_ASSERT(src0->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
GGML_ASSERT(dst->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||||
@ -3752,7 +3732,7 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx
|
|||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) {
|
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) {
|
||||||
switch (op) {
|
switch (op) {
|
||||||
case GGML_OP_ADD:
|
case GGML_OP_ADD:
|
||||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||||
@ -3834,7 +3814,7 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||||||
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
|
if (src0->type == GGML_TYPE_F32 && (src1 == nullptr || src1->type == GGML_TYPE_F32) && dst->type == GGML_TYPE_F32) {
|
||||||
return ctx->device->pipeline_soft_max_f32;
|
return ctx->device->pipeline_soft_max_f32;
|
||||||
}
|
}
|
||||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && src2->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) {
|
||||||
return ctx->device->pipeline_soft_max_f32_f16;
|
return ctx->device->pipeline_soft_max_f32_f16;
|
||||||
}
|
}
|
||||||
return nullptr;
|
return nullptr;
|
||||||
@ -3900,16 +3880,13 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
template<typename PC>
|
template<typename PC>
|
||||||
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) {
|
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) {
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", backend=" << src0->backend << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
|
||||||
if (src1 != nullptr) {
|
if (src1 != nullptr) {
|
||||||
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", backend=" << src1->backend << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
|
||||||
}
|
}
|
||||||
if (src2 != nullptr) {
|
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl;
|
||||||
std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", backend=" << src2->backend << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3];
|
|
||||||
}
|
|
||||||
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", backend=" << dst->backend << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl;
|
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
|
GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
|
||||||
GGML_ASSERT(op == GGML_OP_CPY || ggml_vk_dim01_contiguous(src0)); // NOLINT
|
GGML_ASSERT(op == GGML_OP_CPY || ggml_vk_dim01_contiguous(src0)); // NOLINT
|
||||||
@ -3926,13 +3903,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
const uint64_t ne13 = use_src1 ? src1->ne[3] : 0;
|
const uint64_t ne13 = use_src1 ? src1->ne[3] : 0;
|
||||||
const uint64_t ne1 = ne10 * ne11;
|
const uint64_t ne1 = ne10 * ne11;
|
||||||
// const uint64_t nb10 = use_src1 ? src1->nb[0] : 0;
|
// const uint64_t nb10 = use_src1 ? src1->nb[0] : 0;
|
||||||
const uint64_t nb2 = dst->nb[2];
|
|
||||||
const uint64_t nb3 = dst->nb[3];
|
|
||||||
|
|
||||||
const bool use_src2 = src2 != nullptr;
|
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, dst, op);
|
||||||
const uint64_t ne2 = use_src2 ? src2->ne[0] * src2->ne[1] : 0;
|
|
||||||
|
|
||||||
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op);
|
|
||||||
ggml_vk_func_t op_func;
|
ggml_vk_func_t op_func;
|
||||||
|
|
||||||
if (pipeline == nullptr) {
|
if (pipeline == nullptr) {
|
||||||
@ -3955,18 +3927,15 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||||
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||||
ggml_tensor_extra_gpu * extra_src2 = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr;
|
|
||||||
|
|
||||||
vk_buffer d_X = nullptr;
|
vk_buffer d_X = nullptr;
|
||||||
size_t x_buf_offset = 0;
|
size_t x_buf_offset = 0;
|
||||||
vk_buffer d_Y = nullptr;
|
vk_buffer d_Y = nullptr;
|
||||||
size_t y_buf_offset = 0;
|
size_t y_buf_offset = 0;
|
||||||
vk_buffer d_Z = nullptr;
|
vk_buffer d_Z = nullptr;
|
||||||
size_t z_buf_offset = 0;
|
|
||||||
|
|
||||||
bool src0_uma = false;
|
bool src0_uma = false;
|
||||||
bool src1_uma = false;
|
bool src1_uma = false;
|
||||||
bool src2_uma = false;
|
|
||||||
|
|
||||||
if (ctx->device->uma) {
|
if (ctx->device->uma) {
|
||||||
ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset);
|
ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset);
|
||||||
@ -3975,21 +3944,16 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset);
|
ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset);
|
||||||
src1_uma = d_Y != nullptr;
|
src1_uma = d_Y != nullptr;
|
||||||
}
|
}
|
||||||
if (use_src2) {
|
|
||||||
ggml_vk_host_get(ctx, src1->data, d_Z, z_buf_offset);
|
|
||||||
src2_uma = d_Z != nullptr;
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0, ctx->device->properties.limits.minStorageBufferOffsetAlignment);
|
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0, ctx->device->properties.limits.minStorageBufferOffsetAlignment);
|
||||||
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
||||||
uint64_t z_sz = use_src2 ? ggml_vk_align_size(ggml_type_size(src2->type) * ne2, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
|
|
||||||
uint64_t d_sz = ggml_type_size(dst->type) * ne0;
|
uint64_t d_sz = ggml_type_size(dst->type) * ne0;
|
||||||
|
|
||||||
vk_buffer d_D = extra->buffer_gpu.lock();
|
vk_buffer d_D = extra->buffer_gpu.lock();
|
||||||
|
|
||||||
// Workaround for tiny tensor inputs on ROPE
|
// Workaround for tiny tensor inputs on ROPE
|
||||||
if (use_src1 && src1->backend == GGML_BACKEND_TYPE_GPU && y_sz > d_D->size) {
|
if (use_src1 && y_sz > d_D->size) {
|
||||||
y_sz = VK_WHOLE_SIZE;
|
y_sz = VK_WHOLE_SIZE;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -4007,12 +3971,6 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
GGML_ASSERT(d_Y != nullptr);
|
GGML_ASSERT(d_Y != nullptr);
|
||||||
}
|
}
|
||||||
|
|
||||||
if (use_src2 && !src2_uma) {
|
|
||||||
d_Z = extra_src2->buffer_gpu.lock();
|
|
||||||
z_buf_offset = extra_src2->offset;
|
|
||||||
GGML_ASSERT(d_Z != nullptr);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (op_supports_incontiguous) {
|
if (op_supports_incontiguous) {
|
||||||
x_sz = ggml_nbytes(src0);
|
x_sz = ggml_nbytes(src0);
|
||||||
y_sz = use_src1 ? ggml_nbytes(src1) : 0;
|
y_sz = use_src1 ? ggml_nbytes(src1) : 0;
|
||||||
@ -4048,6 +4006,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
case GGML_OP_GET_ROWS:
|
case GGML_OP_GET_ROWS:
|
||||||
elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) };
|
elements = { (uint32_t)ne00, (uint32_t)ne10, (uint32_t)(ne11 * ne12) };
|
||||||
break;
|
break;
|
||||||
|
case GGML_OP_ARGSORT:
|
||||||
|
elements = { (uint32_t)ne00, (uint32_t)ggml_nrows(src0), 1 };
|
||||||
|
break;
|
||||||
default:
|
default:
|
||||||
elements = { (uint32_t)ggml_nelements(src0), 1, 1 };
|
elements = { (uint32_t)ggml_nelements(src0), 1, 1 };
|
||||||
break;
|
break;
|
||||||
@ -4066,7 +4027,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
}
|
}
|
||||||
|
|
||||||
if (op == GGML_OP_SOFT_MAX) {
|
if (op == GGML_OP_SOFT_MAX) {
|
||||||
// Empty src1 and src2 are possible on soft_max, but the shader needs buffers
|
// Empty src1 is possible on soft_max, but the shader needs a buffer
|
||||||
vk_subbuffer subbuf_y;
|
vk_subbuffer subbuf_y;
|
||||||
if (use_src1) {
|
if (use_src1) {
|
||||||
subbuf_y = { d_Y, y_buf_offset, y_sz };
|
subbuf_y = { d_Y, y_buf_offset, y_sz };
|
||||||
@ -4074,15 +4035,8 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
subbuf_y = { d_X, 0, d_X->size };
|
subbuf_y = { d_X, 0, d_X->size };
|
||||||
}
|
}
|
||||||
|
|
||||||
vk_subbuffer subbuf_z;
|
|
||||||
if (use_src2) {
|
|
||||||
subbuf_z = { d_Z, z_buf_offset, z_sz };
|
|
||||||
} else {
|
|
||||||
subbuf_z = { d_X, 0, d_X->size };
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
} else if (use_src1) {
|
} else if (use_src1) {
|
||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
@ -4090,22 +4044,15 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
}
|
}
|
||||||
if (dst->backend == GGML_BACKEND_TYPE_CPU && op == GGML_OP_CPY) {
|
|
||||||
ggml_vk_d2h_tensor_2d(ctx, subctx, d_D, 0, dst);
|
|
||||||
} else if(dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
||||||
// copy dst to host
|
|
||||||
float * d = (float *) dst->data;
|
|
||||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, 0, d, d_sz);
|
|
||||||
}
|
|
||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(op != GGML_OP_SOFT_MAX);
|
GGML_ASSERT(op != GGML_OP_SOFT_MAX);
|
||||||
|
GGML_ASSERT(op != GGML_OP_ARGSORT);
|
||||||
|
|
||||||
ggml_pipeline_allocate_descriptor_sets(ctx, pipeline, ne02 * ne03);
|
ggml_pipeline_allocate_descriptor_sets(ctx, pipeline, ne02 * ne03);
|
||||||
|
|
||||||
switch (dst->op) {
|
switch (dst->op) {
|
||||||
case GGML_OP_NORM:
|
case GGML_OP_NORM:
|
||||||
case GGML_OP_RMS_NORM:
|
case GGML_OP_RMS_NORM:
|
||||||
case GGML_OP_SOFT_MAX:
|
|
||||||
elements = { (uint32_t)ne01, 1, 1 };
|
elements = { (uint32_t)ne01, 1, 1 };
|
||||||
break;
|
break;
|
||||||
case GGML_OP_DIAG_MASK_INF:
|
case GGML_OP_DIAG_MASK_INF:
|
||||||
@ -4135,17 +4082,13 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
|
|||||||
ggml_vk_sync_buffers(subctx);
|
ggml_vk_sync_buffers(subctx);
|
||||||
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
|
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset + x_offset, x_sz }, { d_D, d_buf_offset + d_offset, d_sz } }, sizeof(PC), &pc, elements);
|
||||||
}
|
}
|
||||||
if (dst->backend == GGML_BACKEND_TYPE_CPU) {
|
|
||||||
// copy dst to host
|
|
||||||
ggml_vk_buffer_read_async(ctx, subctx, d_D, d_buf_offset + d_offset, (char *) dst->data + i02*nb2 + i03*nb3, d_sz);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
@ -4153,7 +4096,7 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx,
|
|||||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, {
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_GET_ROWS, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||||
@ -4168,7 +4111,7 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
|||||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, {
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ADD, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||||
@ -4183,7 +4126,7 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
|||||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, {
|
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_MUL, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||||
@ -4198,7 +4141,7 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, co
|
|||||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, {
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SCALE, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||||
@ -4211,7 +4154,7 @@ static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
|||||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, {
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SQR, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||||
@ -4225,7 +4168,7 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, co
|
|||||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, {
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CLAMP, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||||
@ -4240,7 +4183,7 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
|||||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||||
const uint32_t d_offset = (extra->offset % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
const uint32_t d_offset = (extra->offset % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
|
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CPY, {
|
||||||
(uint32_t)ggml_nelements(src0),
|
(uint32_t)ggml_nelements(src0),
|
||||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||||
@ -4252,24 +4195,24 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons
|
|||||||
static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||||
float * op_params = (float *)dst->op_params;
|
float * op_params = (float *)dst->op_params;
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||||
float * op_params = (float *)dst->op_params;
|
float * op_params = (float *)dst->op_params;
|
||||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||||
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
|
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||||
int32_t * op_params = (int32_t *)dst->op_params;
|
int32_t * op_params = (int32_t *)dst->op_params;
|
||||||
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
|
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
|
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
float * op_params = (float *)dst->op_params;
|
float * op_params = (float *)dst->op_params;
|
||||||
|
|
||||||
float scale = op_params[0];
|
float scale = op_params[0];
|
||||||
@ -4285,13 +4228,9 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx,
|
|||||||
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
|
||||||
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
|
||||||
|
|
||||||
#pragma message("TODO: src2 is no longer used in soft_max - should be removed and ALiBi calculation should be updated")
|
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_SOFT_MAX, {
|
||||||
#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/7192")
|
|
||||||
|
|
||||||
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_SOFT_MAX, {
|
|
||||||
ncols,
|
ncols,
|
||||||
src1 != nullptr ? nrows_y : (uint32_t)0,
|
src1 != nullptr ? nrows_y : (uint32_t)0,
|
||||||
src2 != nullptr ? (uint32_t)1 : (uint32_t)0,
|
|
||||||
scale, max_bias,
|
scale, max_bias,
|
||||||
m0, m1,
|
m0, m1,
|
||||||
n_head_log2,
|
n_head_log2,
|
||||||
@ -4299,6 +4238,10 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx,
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||||
|
#pragma message("TODO: implement phi3 frequency factors support")
|
||||||
|
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
|
||||||
|
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
|
||||||
|
|
||||||
const int n_dims = ((int32_t *) dst->op_params)[1];
|
const int n_dims = ((int32_t *) dst->op_params)[1];
|
||||||
const int mode = ((int32_t *) dst->op_params)[2];
|
const int mode = ((int32_t *) dst->op_params)[2];
|
||||||
// const int n_ctx = ((int32_t *) dst->op_params)[3];
|
// const int n_ctx = ((int32_t *) dst->op_params)[3];
|
||||||
@ -4321,15 +4264,39 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con
|
|||||||
if (is_neox) {
|
if (is_neox) {
|
||||||
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
const float theta_scale = powf(freq_base, -2.0f/n_dims);
|
||||||
const float inv_ndims = -1.0f / n_dims;
|
const float inv_ndims = -1.0f / n_dims;
|
||||||
ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims });
|
ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, {
|
||||||
|
(uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1],
|
||||||
|
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims
|
||||||
|
});
|
||||||
} else {
|
} else {
|
||||||
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ROPE, { (uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1], freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f} });
|
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, {
|
||||||
|
(uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1],
|
||||||
|
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}
|
||||||
|
});
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
|
||||||
int32_t * op_params = (int32_t *)dst->op_params;
|
int32_t * op_params = (int32_t *)dst->op_params;
|
||||||
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, { (uint32_t)src0->ne[0], ((ggml_sort_order) op_params[0]) == GGML_SORT_ORDER_ASC });
|
|
||||||
|
uint32_t ncols = src0->ne[0];
|
||||||
|
|
||||||
|
uint32_t ncols_pad = 1;
|
||||||
|
while (ncols_pad < ncols) {
|
||||||
|
ncols_pad *= 2;
|
||||||
|
}
|
||||||
|
|
||||||
|
GGML_ASSERT(ncols_pad <= 1024);
|
||||||
|
|
||||||
|
std::cerr << "ncols=" << ncols << " ncols_pad=" << ncols_pad << " ascending=" << op_params[0] << std::endl;
|
||||||
|
|
||||||
|
std::cerr << ((ggml_sort_order) op_params[0]) << " " << GGML_SORT_ORDER_ASC << std::endl;
|
||||||
|
|
||||||
|
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_ARGSORT, {
|
||||||
|
ncols,
|
||||||
|
ncols_pad,
|
||||||
|
op_params[0],
|
||||||
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef GGML_VULKAN_RUN_TESTS
|
#ifdef GGML_VULKAN_RUN_TESTS
|
||||||
@ -4381,6 +4348,9 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
|
|||||||
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f32->a_s;
|
p = ctx->device->pipeline_matmul_f32->a_s;
|
||||||
shname = "F32_ALIGNED_S";
|
shname = "F32_ALIGNED_S";
|
||||||
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
||||||
|
p = ctx->device->pipeline_matmul_f32_f16->a_s;
|
||||||
|
shname = "F32_F16_ALIGNED_S";
|
||||||
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f16_f32->a_s;
|
p = ctx->device->pipeline_matmul_f16_f32->a_s;
|
||||||
shname = "F16_F32_ALIGNED_S";
|
shname = "F16_F32_ALIGNED_S";
|
||||||
@ -4394,6 +4364,9 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
|
|||||||
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f32->a_m;
|
p = ctx->device->pipeline_matmul_f32->a_m;
|
||||||
shname = "F32_ALIGNED_M";
|
shname = "F32_ALIGNED_M";
|
||||||
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
||||||
|
p = ctx->device->pipeline_matmul_f32_f16->a_m;
|
||||||
|
shname = "F32_F16_ALIGNED_M";
|
||||||
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f16_f32->a_m;
|
p = ctx->device->pipeline_matmul_f16_f32->a_m;
|
||||||
shname = "F16_F32_ALIGNED_M";
|
shname = "F16_F32_ALIGNED_M";
|
||||||
@ -4407,6 +4380,9 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
|
|||||||
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f32->a_l;
|
p = ctx->device->pipeline_matmul_f32->a_l;
|
||||||
shname = "F32_ALIGNED_L";
|
shname = "F32_ALIGNED_L";
|
||||||
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
||||||
|
p = ctx->device->pipeline_matmul_f32_f16->a_l;
|
||||||
|
shname = "F32_F16_ALIGNED_L";
|
||||||
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f16_f32->a_l;
|
p = ctx->device->pipeline_matmul_f16_f32->a_l;
|
||||||
shname = "F16_F32_ALIGNED_L";
|
shname = "F16_F32_ALIGNED_L";
|
||||||
@ -4427,6 +4403,9 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
|
|||||||
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f32->s;
|
p = ctx->device->pipeline_matmul_f32->s;
|
||||||
shname = "F32_S";
|
shname = "F32_S";
|
||||||
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
||||||
|
p = ctx->device->pipeline_matmul_f32_f16->s;
|
||||||
|
shname = "F32_F16_S";
|
||||||
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f16_f32->s;
|
p = ctx->device->pipeline_matmul_f16_f32->s;
|
||||||
shname = "F16_F32_S";
|
shname = "F16_F32_S";
|
||||||
@ -4438,6 +4417,9 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
|
|||||||
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f32->m;
|
p = ctx->device->pipeline_matmul_f32->m;
|
||||||
shname = "F32_M";
|
shname = "F32_M";
|
||||||
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
||||||
|
p = ctx->device->pipeline_matmul_f32_f16->m;
|
||||||
|
shname = "F32_F16_M";
|
||||||
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f16_f32->m;
|
p = ctx->device->pipeline_matmul_f16_f32->m;
|
||||||
shname = "F16_F32_M";
|
shname = "F16_F32_M";
|
||||||
@ -4449,6 +4431,9 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
|
|||||||
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
if (std::is_same<float, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f32->l;
|
p = ctx->device->pipeline_matmul_f32->l;
|
||||||
shname = "F32_L";
|
shname = "F32_L";
|
||||||
|
} else if (std::is_same<float, X_TYPE>() && std::is_same<ggml_fp16_t, Y_TYPE>()) {
|
||||||
|
p = ctx->device->pipeline_matmul_f32_f16->l;
|
||||||
|
shname = "F32_F16_L";
|
||||||
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
} else if (std::is_same<ggml_fp16_t, X_TYPE>() && std::is_same<float, Y_TYPE>()) {
|
||||||
p = ctx->device->pipeline_matmul_f16_f32->l;
|
p = ctx->device->pipeline_matmul_f16_f32->l;
|
||||||
shname = "F16_F32_L";
|
shname = "F16_F32_L";
|
||||||
@ -4561,15 +4546,11 @@ static void ggml_vk_test_matmul(ggml_backend_vk_context * ctx, size_t m, size_t
|
|||||||
src1_ggml->data = y;
|
src1_ggml->data = y;
|
||||||
tensor_ggml->data = d_chk;
|
tensor_ggml->data = d_chk;
|
||||||
|
|
||||||
ctx->disable = true;
|
|
||||||
|
|
||||||
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
|
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
|
||||||
ggml_build_forward_expand(cgraph, tensor_ggml);
|
ggml_build_forward_expand(cgraph, tensor_ggml);
|
||||||
|
|
||||||
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
|
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
|
||||||
|
|
||||||
ctx->disable = false;
|
|
||||||
|
|
||||||
ggml_free(ggml_ctx);
|
ggml_free(ggml_ctx);
|
||||||
|
|
||||||
double avg_err = 0.0;
|
double avg_err = 0.0;
|
||||||
@ -5049,15 +5030,11 @@ static void ggml_vk_test_dequant_matmul(ggml_backend_vk_context * ctx, size_t m,
|
|||||||
src1_ggml->data = y;
|
src1_ggml->data = y;
|
||||||
tensor_ggml->data = d_chk;
|
tensor_ggml->data = d_chk;
|
||||||
|
|
||||||
ctx->disable = true;
|
|
||||||
|
|
||||||
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
|
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
|
||||||
ggml_build_forward_expand(cgraph, tensor_ggml);
|
ggml_build_forward_expand(cgraph, tensor_ggml);
|
||||||
|
|
||||||
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
|
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 1);
|
||||||
|
|
||||||
ctx->disable = false;
|
|
||||||
|
|
||||||
ggml_free(ggml_ctx);
|
ggml_free(ggml_ctx);
|
||||||
|
|
||||||
double avg_err = 0.0;
|
double avg_err = 0.0;
|
||||||
@ -5134,12 +5111,12 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm
|
|||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl;
|
std::cerr << "ggml_vk_preallocate_buffers_graph(" << node << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
if (ctx->disable || node->backend != GGML_BACKEND_TYPE_GPU) {
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
|
||||||
|
|
||||||
|
if (extra == nullptr) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
|
|
||||||
|
|
||||||
ggml_tensor * src0 = node->src[0];
|
ggml_tensor * src0 = node->src[0];
|
||||||
ggml_tensor * src1 = node->src[1];
|
ggml_tensor * src1 = node->src[1];
|
||||||
|
|
||||||
@ -5244,9 +5221,6 @@ static void ggml_vk_preallocate_buffers_graph(ggml_backend_vk_context * ctx, ggm
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
|
static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
|
||||||
if (ctx->disable) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_preallocate_buffers(x_size: " << ctx->prealloc_size_x << " y_size: " << ctx->prealloc_size_y << " split_k_size: " << ctx->prealloc_size_split_k << ")" << std::endl;
|
std::cerr << "ggml_vk_preallocate_buffers(x_size: " << ctx->prealloc_size_x << " y_size: " << ctx->prealloc_size_y << " split_k_size: " << ctx->prealloc_size_split_k << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
@ -5420,7 +5394,9 @@ static void ggml_vk_preallocate_buffers(ggml_backend_vk_context * ctx) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){
|
static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * node, bool last_node){
|
||||||
if (ctx->disable || node->backend != GGML_BACKEND_TYPE_GPU || ggml_is_empty(node)) {
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
|
||||||
|
|
||||||
|
if (ggml_is_empty(node) || extra == nullptr) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -5432,9 +5408,6 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||||||
|
|
||||||
const ggml_tensor * src0 = node->src[0];
|
const ggml_tensor * src0 = node->src[0];
|
||||||
const ggml_tensor * src1 = node->src[1];
|
const ggml_tensor * src1 = node->src[1];
|
||||||
const ggml_tensor * src2 = node->src[2];
|
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) node->extra;
|
|
||||||
|
|
||||||
switch (node->op) {
|
switch (node->op) {
|
||||||
case GGML_OP_UNARY:
|
case GGML_OP_UNARY:
|
||||||
@ -5547,7 +5520,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||||||
|
|
||||||
break;
|
break;
|
||||||
case GGML_OP_SOFT_MAX:
|
case GGML_OP_SOFT_MAX:
|
||||||
ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, src2, node);
|
ggml_vk_soft_max(ctx, ctx->compute_ctx, src0, src1, node);
|
||||||
|
|
||||||
break;
|
break;
|
||||||
case GGML_OP_ROPE:
|
case GGML_OP_ROPE:
|
||||||
@ -5580,7 +5553,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||||||
last_node = true;
|
last_node = true;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
if (node->backend == GGML_BACKEND_TYPE_CPU || last_node) {
|
if (last_node) {
|
||||||
ggml_vk_ctx_end(ctx->compute_ctx);
|
ggml_vk_ctx_end(ctx->compute_ctx);
|
||||||
ctx->compute_ctx->exit_tensor = node;
|
ctx->compute_ctx->exit_tensor = node;
|
||||||
ctx->compute_ctx = nullptr;
|
ctx->compute_ctx = nullptr;
|
||||||
@ -5588,10 +5561,6 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||||||
}
|
}
|
||||||
|
|
||||||
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor){
|
static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_params * params, ggml_tensor * tensor){
|
||||||
if (ctx->disable) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = nullptr;
|
ggml_tensor_extra_gpu * extra = nullptr;
|
||||||
|
|
||||||
switch (tensor->op) {
|
switch (tensor->op) {
|
||||||
@ -5650,7 +5619,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
}
|
}
|
||||||
|
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", backend=" << tensor->backend << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")" << std::endl;
|
std::cerr << "ggml_vk_compute_forward(" << tensor << ", name=" << tensor->name << ", op=" << ggml_op_name(tensor->op) << ", type=" << tensor->type << ", ne0=" << tensor->ne[0] << ", ne1=" << tensor->ne[1] << ", ne2=" << tensor->ne[2] << ", ne3=" << tensor->ne[3] << ", nb0=" << tensor->nb[0] << ", nb1=" << tensor->nb[1] << ", nb2=" << tensor->nb[2] << ", nb3=" << tensor->nb[3] << ", view_src=" << tensor->view_src << ", view_offs=" << tensor->view_offs << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||||
@ -5690,9 +5659,6 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
// Clean up after graph processing is done
|
// Clean up after graph processing is done
|
||||||
static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) {
|
static void ggml_vk_graph_cleanup(ggml_backend_vk_context * ctx) {
|
||||||
if (ctx->disable) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_vk_graph_cleanup()" << std::endl;
|
std::cerr << "ggml_vk_graph_cleanup()" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
@ -5865,7 +5831,6 @@ GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t b
|
|||||||
extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
|
extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
|
||||||
}
|
}
|
||||||
|
|
||||||
tensor->backend = GGML_BACKEND_TYPE_GPU;
|
|
||||||
tensor->extra = extra;
|
tensor->extra = extra;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -5873,8 +5838,6 @@ GGML_CALL static void ggml_backend_vk_buffer_set_tensor(ggml_backend_buffer_t bu
|
|||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
std::cerr << "ggml_backend_vk_buffer_set_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
|
|
||||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||||
@ -5888,8 +5851,6 @@ GGML_CALL static void ggml_backend_vk_buffer_get_tensor(ggml_backend_buffer_t bu
|
|||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
std::cerr << "ggml_backend_vk_buffer_get_tensor(" << buffer << ", " << tensor << ", " << data << ", " << offset << ", " << size << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
|
|
||||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||||
@ -6032,6 +5993,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_bu
|
|||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")" << std::endl;
|
std::cerr << "ggml_backend_vk_host_buffer_type_alloc_buffer(" << size << ")" << std::endl;
|
||||||
#endif
|
#endif
|
||||||
|
size += 32; // Behave like the CPU buffer type
|
||||||
void * ptr = nullptr;
|
void * ptr = nullptr;
|
||||||
try {
|
try {
|
||||||
ptr = ggml_vk_host_malloc(&vk_instance.contexts[0], size);
|
ptr = ggml_vk_host_malloc(&vk_instance.contexts[0], size);
|
||||||
@ -6119,7 +6081,6 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g
|
|||||||
#endif
|
#endif
|
||||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||||
|
|
||||||
@ -6140,7 +6101,6 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c
|
|||||||
#endif
|
#endif
|
||||||
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
ggml_backend_vk_context * ctx = (ggml_backend_vk_context *)backend->context;
|
||||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type(ctx->idx) || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_GPU);
|
|
||||||
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||||
|
|
||||||
@ -6206,6 +6166,10 @@ GGML_CALL static void ggml_backend_vk_synchronize(ggml_backend_t backend) {
|
|||||||
ctx->transfer_ctx = nullptr;
|
ctx->transfer_ctx = nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static bool ggml_vk_is_empty(ggml_tensor * node) {
|
||||||
|
return ggml_is_empty(node) || node->op == GGML_OP_NONE || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE;
|
||||||
|
}
|
||||||
|
|
||||||
GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
|
||||||
#ifdef GGML_VULKAN_DEBUG
|
#ifdef GGML_VULKAN_DEBUG
|
||||||
std::cerr << "ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)" << std::endl;
|
std::cerr << "ggml_backend_vk_graph_compute(" << cgraph->n_nodes << " nodes)" << std::endl;
|
||||||
@ -6220,7 +6184,7 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen
|
|||||||
int last_node = cgraph->n_nodes - 1;
|
int last_node = cgraph->n_nodes - 1;
|
||||||
|
|
||||||
// If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
|
// If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
|
||||||
while (last_node > 0 && (cgraph->nodes[last_node]->backend != GGML_BACKEND_TYPE_GPU || ggml_is_empty(cgraph->nodes[last_node]))) {
|
while (last_node > 0 && ggml_vk_is_empty(cgraph->nodes[last_node])) {
|
||||||
last_node -= 1;
|
last_node -= 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -6234,7 +6198,7 @@ GGML_CALL static ggml_status ggml_backend_vk_graph_compute(ggml_backend_t backen
|
|||||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||||
ggml_tensor * node = cgraph->nodes[i];
|
ggml_tensor * node = cgraph->nodes[i];
|
||||||
|
|
||||||
if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
|
if (ggml_vk_is_empty(node)) {
|
||||||
continue;
|
continue;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -6548,7 +6512,7 @@ static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<c
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
|
static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
|
||||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16 && tensor->type != GGML_TYPE_I32) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
i0 = std::max(i0, 5);
|
i0 = std::max(i0, 5);
|
||||||
@ -6569,6 +6533,8 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d
|
|||||||
val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
||||||
} else if (tensor->type == GGML_TYPE_F16) {
|
} else if (tensor->type == GGML_TYPE_F16) {
|
||||||
val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
|
val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
|
||||||
|
} else if (tensor->type == GGML_TYPE_I32) {
|
||||||
|
val = *(const int32_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
@ -6671,7 +6637,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
ggml_tensor * src0 = tensor->src[0];
|
ggml_tensor * src0 = tensor->src[0];
|
||||||
ggml_tensor * src1 = tensor->src[1];
|
ggml_tensor * src1 = tensor->src[1];
|
||||||
ggml_tensor * src2 = tensor->src[2];
|
|
||||||
|
|
||||||
struct ggml_init_params iparams = {
|
struct ggml_init_params iparams = {
|
||||||
/*.mem_size =*/ 1024*1024*1024,
|
/*.mem_size =*/ 1024*1024*1024,
|
||||||
@ -6798,66 +6763,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
|
|
||||||
ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone);
|
ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone);
|
||||||
}
|
}
|
||||||
if (src2 != nullptr) {
|
|
||||||
src2_clone = ggml_dup_tensor(ggml_ctx, src2);
|
|
||||||
|
|
||||||
src2_size = ggml_nbytes(src2);
|
|
||||||
|
|
||||||
src2_buffer = malloc(src2_size);
|
|
||||||
src2_clone->data = src2_buffer;
|
|
||||||
if (src2->backend == GGML_BACKEND_TYPE_CPU) {
|
|
||||||
memcpy(src2_clone->data, src2->data, src2_size);
|
|
||||||
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
|
||||||
} else if (src2->backend == GGML_BACKEND_TYPE_GPU) {
|
|
||||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src2->extra;
|
|
||||||
vk_buffer buf = extra->buffer_gpu.lock();
|
|
||||||
uint64_t offset = extra->offset;
|
|
||||||
if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) {
|
|
||||||
for (int i3 = 0; i3 < src2->ne[3]; i3++) {
|
|
||||||
for (int i2 = 0; i2 < src2->ne[2]; i2++) {
|
|
||||||
const int idx = i3*src2->ne[2] + i2;
|
|
||||||
ggml_vk_buffer_read(ctx, buf, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
src2_clone->nb[0] = src2->nb[0];
|
|
||||||
src2_clone->nb[1] = src2->nb[1];
|
|
||||||
for (int i = 2; i < GGML_MAX_DIMS; i++) {
|
|
||||||
src2_clone->nb[i] = src2_clone->nb[i - 1]*src2_clone->ne[i - 1];
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
if (offset + src2_size >= buf->size) {
|
|
||||||
src2_size = buf->size - offset;
|
|
||||||
}
|
|
||||||
ggml_vk_buffer_read(ctx, buf, offset, src2_clone->data, src2_size);
|
|
||||||
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
|
||||||
ggml_vk_print_tensor(ctx, src2, "src2");
|
|
||||||
std::cerr << "TENSOR CHECK: " << ggml_op_name(src2_clone->op) << " (check " << check_counter << ")" << std::endl;
|
|
||||||
std::cerr << "src2_clone=" << tensor << " src2_clone->backend: " << src2_clone->backend << " src2_clone->type: " << ggml_type_name(src2_clone->type) << " ne0=" << src2_clone->ne[0] << " nb0=" << src2_clone->nb[0] << " ne1=" << src2_clone->ne[1] << " nb1=" << src2_clone->nb[1] << " ne2=" << src2_clone->ne[2] << " nb2=" << src2_clone->nb[2] << " ne3=" << src2_clone->ne[3] << " nb3=" << src2_clone->nb[3] << std::endl;
|
|
||||||
if (src2->src[0] != nullptr) {
|
|
||||||
std::cerr << "src2->src[0]=" << src2->src[0] << " op=" << ggml_op_name(src2->src[0]->op) << " type=" << ggml_type_name(src2->src[0]->type) << " backend=" << src2->src[0]->backend << " ne0=" << src2->src[0]->ne[0] << " nb0=" << src2->src[0]->nb[0] << " ne1=" << src2->src[0]->ne[1] << " nb1=" << src2->src[0]->nb[1] << " ne2=" << src2->src[0]->ne[2] << " nb2=" << src2->src[0]->nb[2] << " ne3=" << src2->src[0]->ne[3] << " nb3=" << src2->src[0]->nb[3] << std::endl;
|
|
||||||
}
|
|
||||||
if (src2->src[1] != nullptr) {
|
|
||||||
std::cerr << "src2->src[1]=" << src2->src[1] << " op=" << ggml_op_name(src2->src[1]->op) << " type=" << ggml_type_name(src2->src[1]->type) << " backend=" << src2->src[1]->backend << " ne0=" << src2->src[1]->ne[0] << " nb0=" << src2->src[1]->nb[0] << " ne1=" << src2->src[1]->ne[1] << " nb1=" << src2->src[1]->nb[1] << " ne2=" << src2->src[1]->ne[2] << " nb2=" << src2->src[1]->nb[2] << " ne3=" << src2->src[1]->ne[3] << " nb3=" << src2->src[1]->nb[3] << std::endl;
|
|
||||||
}
|
|
||||||
std::cerr << std::endl << "Result:" << std::endl;
|
|
||||||
ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 0, 0);
|
|
||||||
std::cerr << std::endl;
|
|
||||||
std::cerr << std::endl << "Result:" << std::endl;
|
|
||||||
ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 1, 0);
|
|
||||||
std::cerr << std::endl;
|
|
||||||
std::vector<const ggml_tensor *> done;
|
|
||||||
ggml_vk_print_graph_origin(src2_clone, done);
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src2", src2_clone);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (tensor->op == GGML_OP_MUL_MAT) {
|
if (tensor->op == GGML_OP_MUL_MAT) {
|
||||||
tensor_clone = ggml_mul_mat(ggml_ctx, src0_clone, src1_clone);
|
tensor_clone = ggml_mul_mat(ggml_ctx, src0_clone, src1_clone);
|
||||||
@ -6877,7 +6782,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params);
|
tensor_clone = ggml_rms_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params);
|
||||||
} else if (tensor->op == GGML_OP_SOFT_MAX) {
|
} else if (tensor->op == GGML_OP_SOFT_MAX) {
|
||||||
if (src1 != nullptr) {
|
if (src1 != nullptr) {
|
||||||
tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
|
tensor_clone = ggml_soft_max_ext(ggml_ctx, src0_clone, src1_clone, ((float *)tensor->op_params)[0], ((float *)tensor->op_params)[1]);
|
||||||
} else {
|
} else {
|
||||||
tensor_clone = ggml_soft_max(ggml_ctx, src0_clone);
|
tensor_clone = ggml_soft_max(ggml_ctx, src0_clone);
|
||||||
}
|
}
|
||||||
@ -6937,16 +6842,11 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Disable vulkan here to avoid the hooks in ggml.c
|
|
||||||
ctx->disable = true;
|
|
||||||
|
|
||||||
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
|
ggml_cgraph * cgraph = ggml_new_graph(ggml_ctx);
|
||||||
ggml_build_forward_expand(cgraph, tensor_clone);
|
ggml_build_forward_expand(cgraph, tensor_clone);
|
||||||
|
|
||||||
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8);
|
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8);
|
||||||
|
|
||||||
ctx->disable = false;
|
|
||||||
|
|
||||||
ggml_vk_check_tensor(ggml_op_name(tensor->op), tensor_clone);
|
ggml_vk_check_tensor(ggml_op_name(tensor->op), tensor_clone);
|
||||||
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
|
||||||
ggml_vk_print_tensor(ctx, tensor_clone, "tensor_clone");
|
ggml_vk_print_tensor(ctx, tensor_clone, "tensor_clone");
|
||||||
@ -6964,9 +6864,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
if (src1 != nullptr) {
|
if (src1 != nullptr) {
|
||||||
free(src1_buffer);
|
free(src1_buffer);
|
||||||
}
|
}
|
||||||
if (src2 != nullptr) {
|
|
||||||
free(src2_buffer);
|
|
||||||
}
|
|
||||||
|
|
||||||
ggml_free(ggml_ctx);
|
ggml_free(ggml_ctx);
|
||||||
}
|
}
|
||||||
@ -7026,8 +6923,11 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
|
|||||||
} else if (tensor->type == GGML_TYPE_F16) {
|
} else if (tensor->type == GGML_TYPE_F16) {
|
||||||
correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
|
correct = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]));
|
||||||
result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
|
result = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
|
||||||
|
} else if (tensor->type == GGML_TYPE_I32) {
|
||||||
|
correct = *(int32_t *) ((char *) comp_result + i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]);
|
||||||
|
result = *(int32_t *) ((char *) tensor_data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
|
||||||
} else {
|
} else {
|
||||||
std::cerr << "comp_size=" << comp_size << " but required is " << (i3*comp_nb[3] + i2*comp_nb[2] + i1*comp_nb[1] + i0*comp_nb[0]) << std::endl;
|
std::cerr << "Results check not implemented for type " << ggml_type_name(tensor->type) << std::endl;
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl;
|
std::cerr << "Missing debug code for type " << ggml_type_name(tensor->type) << std::endl;
|
||||||
|
70
ggml.h
70
ggml.h
@ -565,7 +565,8 @@ extern "C" {
|
|||||||
// n-dimensional tensor
|
// n-dimensional tensor
|
||||||
struct ggml_tensor {
|
struct ggml_tensor {
|
||||||
enum ggml_type type;
|
enum ggml_type type;
|
||||||
enum ggml_backend_type backend;
|
|
||||||
|
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
|
||||||
|
|
||||||
struct ggml_backend_buffer * buffer;
|
struct ggml_backend_buffer * buffer;
|
||||||
|
|
||||||
@ -766,7 +767,8 @@ extern "C" {
|
|||||||
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
|
||||||
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
|
||||||
|
|
||||||
GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||||
|
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||||
|
|
||||||
// use this to compute the memory overhead of a tensor
|
// use this to compute the memory overhead of a tensor
|
||||||
GGML_API size_t ggml_tensor_overhead(void);
|
GGML_API size_t ggml_tensor_overhead(void);
|
||||||
@ -1458,11 +1460,12 @@ extern "C" {
|
|||||||
struct ggml_tensor * b);
|
struct ggml_tensor * b);
|
||||||
|
|
||||||
// rotary position embedding
|
// rotary position embedding
|
||||||
// if mode & 1 == 1, skip n_past elements (DEPRECATED)
|
// if mode & 1 == 1, skip n_past elements (NOT SUPPORTED)
|
||||||
// if mode & 2 == 1, GPT-NeoX style
|
// if mode & 2 == 1, GPT-NeoX style
|
||||||
// if mode & 4 == 1, ChatGLM style
|
// if mode & 4 == 1, ChatGLM style
|
||||||
//
|
//
|
||||||
// b is an int32 vector with size a->ne[2], it contains the positions
|
// b is an int32 vector with size a->ne[2], it contains the positions
|
||||||
|
// c is freq factors (e.g. phi3-128k), (optional)
|
||||||
GGML_API struct ggml_tensor * ggml_rope(
|
GGML_API struct ggml_tensor * ggml_rope(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
@ -1481,10 +1484,11 @@ extern "C" {
|
|||||||
int n_ctx);
|
int n_ctx);
|
||||||
|
|
||||||
// custom RoPE
|
// custom RoPE
|
||||||
GGML_API struct ggml_tensor * ggml_rope_custom(
|
GGML_API struct ggml_tensor * ggml_rope_ext(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
|
struct ggml_tensor * c,
|
||||||
int n_dims,
|
int n_dims,
|
||||||
int mode,
|
int mode,
|
||||||
int n_ctx,
|
int n_ctx,
|
||||||
@ -1497,7 +1501,23 @@ extern "C" {
|
|||||||
float beta_slow);
|
float beta_slow);
|
||||||
|
|
||||||
// in-place, returns view(a)
|
// in-place, returns view(a)
|
||||||
GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
struct ggml_tensor * c,
|
||||||
|
int n_dims,
|
||||||
|
int mode,
|
||||||
|
int n_ctx,
|
||||||
|
int n_orig_ctx,
|
||||||
|
float freq_base,
|
||||||
|
float freq_scale,
|
||||||
|
float ext_factor,
|
||||||
|
float attn_factor,
|
||||||
|
float beta_fast,
|
||||||
|
float beta_slow);
|
||||||
|
|
||||||
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
@ -1510,20 +1530,28 @@ extern "C" {
|
|||||||
float ext_factor,
|
float ext_factor,
|
||||||
float attn_factor,
|
float attn_factor,
|
||||||
float beta_fast,
|
float beta_fast,
|
||||||
float beta_slow);
|
float beta_slow),
|
||||||
|
"use ggml_rope_ext instead");
|
||||||
|
|
||||||
// compute correction dims for YaRN RoPE scaling
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
|
||||||
GGML_CALL void ggml_rope_yarn_corr_dims(
|
|
||||||
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
|
||||||
|
|
||||||
// xPos RoPE, in-place, returns view(a)
|
|
||||||
GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
|
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
int n_dims,
|
int n_dims,
|
||||||
float base,
|
int mode,
|
||||||
bool down);
|
int n_ctx,
|
||||||
|
int n_orig_ctx,
|
||||||
|
float freq_base,
|
||||||
|
float freq_scale,
|
||||||
|
float ext_factor,
|
||||||
|
float attn_factor,
|
||||||
|
float beta_fast,
|
||||||
|
float beta_slow),
|
||||||
|
"use ggml_rope_ext_inplace instead");
|
||||||
|
|
||||||
|
// compute correction dims for YaRN RoPE scaling
|
||||||
|
GGML_CALL void ggml_rope_yarn_corr_dims(
|
||||||
|
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
|
||||||
|
|
||||||
// rotary position embedding backward, i.e compute dx from dy
|
// rotary position embedding backward, i.e compute dx from dy
|
||||||
// a - dy
|
// a - dy
|
||||||
@ -1531,6 +1559,7 @@ extern "C" {
|
|||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
|
struct ggml_tensor * c,
|
||||||
int n_dims,
|
int n_dims,
|
||||||
int mode,
|
int mode,
|
||||||
int n_ctx,
|
int n_ctx,
|
||||||
@ -1673,12 +1702,24 @@ extern "C" {
|
|||||||
float p1);
|
float p1);
|
||||||
|
|
||||||
// nearest interpolate
|
// nearest interpolate
|
||||||
|
// multiplies ne0 and ne1 by scale factor
|
||||||
// used in stable-diffusion
|
// used in stable-diffusion
|
||||||
GGML_API struct ggml_tensor * ggml_upscale(
|
GGML_API struct ggml_tensor * ggml_upscale(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
int scale_factor);
|
int scale_factor);
|
||||||
|
|
||||||
|
// nearest interpolate
|
||||||
|
// nearest interpolate to specified dimensions
|
||||||
|
// used in tortoise.cpp
|
||||||
|
GGML_API struct ggml_tensor * ggml_upscale_ext(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
int ne0,
|
||||||
|
int ne1,
|
||||||
|
int ne2,
|
||||||
|
int ne3);
|
||||||
|
|
||||||
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
|
||||||
GGML_API struct ggml_tensor * ggml_pad(
|
GGML_API struct ggml_tensor * ggml_pad(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
@ -2376,6 +2417,7 @@ extern "C" {
|
|||||||
GGML_API int ggml_cpu_has_avx512 (void);
|
GGML_API int ggml_cpu_has_avx512 (void);
|
||||||
GGML_API int ggml_cpu_has_avx512_vbmi(void);
|
GGML_API int ggml_cpu_has_avx512_vbmi(void);
|
||||||
GGML_API int ggml_cpu_has_avx512_vnni(void);
|
GGML_API int ggml_cpu_has_avx512_vnni(void);
|
||||||
|
GGML_API int ggml_cpu_has_avx512_bf16(void);
|
||||||
GGML_API int ggml_cpu_has_fma (void);
|
GGML_API int ggml_cpu_has_fma (void);
|
||||||
GGML_API int ggml_cpu_has_neon (void);
|
GGML_API int ggml_cpu_has_neon (void);
|
||||||
GGML_API int ggml_cpu_has_arm_fma (void);
|
GGML_API int ggml_cpu_has_arm_fma (void);
|
||||||
|
@ -2432,7 +2432,6 @@ layout (push_constant) uniform parameter
|
|||||||
{
|
{
|
||||||
uint KX;
|
uint KX;
|
||||||
uint KY;
|
uint KY;
|
||||||
uint KZ;
|
|
||||||
float scale;
|
float scale;
|
||||||
float max_bias;
|
float max_bias;
|
||||||
float m0;
|
float m0;
|
||||||
@ -2449,8 +2448,7 @@ layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
|||||||
|
|
||||||
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
|
||||||
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
|
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
|
||||||
layout (binding = 2) readonly buffer Z {C_TYPE data_c[];};
|
layout (binding = 2) buffer D {D_TYPE data_d[];};
|
||||||
layout (binding = 3) buffer D {D_TYPE data_d[];};
|
|
||||||
|
|
||||||
shared FLOAT_TYPE vals[BLOCK_SIZE];
|
shared FLOAT_TYPE vals[BLOCK_SIZE];
|
||||||
|
|
||||||
@ -2459,7 +2457,7 @@ void main() {
|
|||||||
const uint rowx = gl_WorkGroupID.x;
|
const uint rowx = gl_WorkGroupID.x;
|
||||||
const uint rowy = rowx % p.KY;
|
const uint rowy = rowx % p.KY;
|
||||||
|
|
||||||
float slope = 0.0f;
|
float slope = 1.0f;
|
||||||
|
|
||||||
// ALiBi
|
// ALiBi
|
||||||
if (p.max_bias > 0.0f) {
|
if (p.max_bias > 0.0f) {
|
||||||
@ -2472,12 +2470,19 @@ void main() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
// Find max
|
// Find max
|
||||||
vals[tid] = uintBitsToFloat(0xFF800000);
|
FLOAT_TYPE max_val = uintBitsToFloat(0xFF800000);
|
||||||
|
|
||||||
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
|
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
||||||
vals[tid] = max(vals[tid], FLOAT_TYPE(data_a[rowx * p.KX + col]) * p.scale + (p.KY > 0 ? FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) + (p.KZ > 0 ? slope * FLOAT_TYPE(data_c[col]) : 0.0f));
|
const uint col = col0 + tid;
|
||||||
|
|
||||||
|
if (col >= p.KX) {
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
max_val = max(max_val, FLOAT_TYPE(data_a[rowx * p.KX + col]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)));
|
||||||
|
}
|
||||||
|
vals[tid] = max_val;
|
||||||
|
|
||||||
barrier();
|
barrier();
|
||||||
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
|
||||||
if (tid < s) {
|
if (tid < s) {
|
||||||
@ -2486,15 +2491,21 @@ void main() {
|
|||||||
barrier();
|
barrier();
|
||||||
}
|
}
|
||||||
|
|
||||||
const FLOAT_TYPE max_val = vals[0];
|
max_val = vals[0];
|
||||||
barrier();
|
barrier();
|
||||||
|
|
||||||
// Sum up values
|
// Sum up values
|
||||||
vals[tid] = FLOAT_TYPE(0.0f);
|
vals[tid] = FLOAT_TYPE(0.0f);
|
||||||
|
|
||||||
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
|
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
||||||
|
const uint col = col0 + tid;
|
||||||
|
|
||||||
|
if (col >= p.KX) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
const uint i = rowx * p.KX + col;
|
const uint i = rowx * p.KX + col;
|
||||||
const FLOAT_TYPE val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
|
const FLOAT_TYPE val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
|
||||||
vals[tid] += val;
|
vals[tid] += val;
|
||||||
data_d[i] = D_TYPE(val);
|
data_d[i] = D_TYPE(val);
|
||||||
}
|
}
|
||||||
@ -2509,7 +2520,13 @@ void main() {
|
|||||||
|
|
||||||
const D_TYPE divisor = D_TYPE(vals[0]);
|
const D_TYPE divisor = D_TYPE(vals[0]);
|
||||||
|
|
||||||
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
|
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
|
||||||
|
const uint col = col0 + tid;
|
||||||
|
|
||||||
|
if (col >= p.KX) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
data_d[rowx*p.KX + col] /= divisor;
|
data_d[rowx*p.KX + col] /= divisor;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -2672,20 +2689,26 @@ argsort_src = """
|
|||||||
|
|
||||||
#extension GL_EXT_shader_16bit_storage : require
|
#extension GL_EXT_shader_16bit_storage : require
|
||||||
|
|
||||||
layout(local_size_x = 1024, local_size_y = 1, local_size_z = 1) in;
|
#define BLOCK_SIZE 1024
|
||||||
|
#define ASC 0
|
||||||
|
|
||||||
|
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
|
||||||
|
|
||||||
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
|
||||||
layout (binding = 1) buffer D {int data_d[];};
|
layout (binding = 1) buffer D {int data_d[];};
|
||||||
|
|
||||||
layout (push_constant) uniform parameter {
|
layout (push_constant) uniform parameter {
|
||||||
uint ncols;
|
uint ncols;
|
||||||
bool ascending;
|
uint ncols_pad;
|
||||||
|
uint order;
|
||||||
} p;
|
} p;
|
||||||
|
|
||||||
|
shared int dst_row[BLOCK_SIZE];
|
||||||
|
|
||||||
void swap(uint idx0, uint idx1) {
|
void swap(uint idx0, uint idx1) {
|
||||||
int tmp = data_d[idx0];
|
int tmp = dst_row[idx0];
|
||||||
data_d[idx0] = data_d[idx1];
|
dst_row[idx0] = dst_row[idx1];
|
||||||
data_d[idx1] = tmp;
|
dst_row[idx1] = tmp;
|
||||||
}
|
}
|
||||||
|
|
||||||
void main() {
|
void main() {
|
||||||
@ -2693,36 +2716,45 @@ void main() {
|
|||||||
const int col = int(gl_LocalInvocationID.x);
|
const int col = int(gl_LocalInvocationID.x);
|
||||||
const uint row = gl_WorkGroupID.y;
|
const uint row = gl_WorkGroupID.y;
|
||||||
|
|
||||||
if (col >= p.ncols) {
|
if (col >= p.ncols_pad) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
const uint a_idx = row * p.ncols;
|
const uint row_offset = row * p.ncols;
|
||||||
const uint d_idx = row * p.ncols;
|
|
||||||
|
|
||||||
// initialize indices
|
// initialize indices
|
||||||
if (col < p.ncols) {
|
dst_row[col] = col;
|
||||||
data_d[col] = col;
|
|
||||||
}
|
|
||||||
barrier();
|
barrier();
|
||||||
|
|
||||||
for (uint k = 2; k <= p.ncols; k *= 2) {
|
for (uint k = 2; k <= p.ncols_pad; k *= 2) {
|
||||||
for (uint j = k / 2; j > 0; j /= 2) {
|
for (uint j = k / 2; j > 0; j /= 2) {
|
||||||
const uint ixj = col ^ j;
|
const uint ixj = col ^ j;
|
||||||
if (ixj > col) {
|
if (ixj > col) {
|
||||||
if ((col & k) == 0) {
|
if ((col & k) == 0) {
|
||||||
if (p.ascending ? data_a[a_idx + data_d[d_idx + col]] > data_a[a_idx + data_d[d_idx + ixj]] : data_a[a_idx + data_d[d_idx + col]] < data_a[a_idx + data_d[d_idx + ixj]]) {
|
if (dst_row[col] >= p.ncols ||
|
||||||
swap(d_idx + col, d_idx + ixj);
|
(dst_row[ixj] < p.ncols && (p.order == ASC ?
|
||||||
|
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]] :
|
||||||
|
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]]))
|
||||||
|
) {
|
||||||
|
swap(col, ixj);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
if (p.ascending ? data_a[a_idx + data_d[d_idx + col]] < data_a[a_idx + data_d[d_idx + ixj]] : data_a[a_idx + data_d[d_idx + col]] > data_a[a_idx + data_d[d_idx + ixj]]) {
|
if (dst_row[ixj] >= p.ncols ||
|
||||||
swap(d_idx + col, d_idx + ixj);
|
(dst_row[col] < p.ncols && (p.order == ASC ?
|
||||||
|
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]] :
|
||||||
|
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]]))
|
||||||
|
) {
|
||||||
|
swap(col, ixj);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
barrier();
|
barrier();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (col < p.ncols) {
|
||||||
|
data_d[row_offset + col] = dst_row[col];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@ -2845,13 +2877,16 @@ async def main():
|
|||||||
stream.clear()
|
stream.clear()
|
||||||
stream.extend((mulmat_head, shader_float_type, mulmat_body1, mulmat_load_scalar, mulmat_body2))
|
stream.extend((mulmat_head, shader_float_type, mulmat_body1, mulmat_load_scalar, mulmat_body2))
|
||||||
tasks.append(string_to_spv("matmul_f32", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
|
tasks.append(string_to_spv("matmul_f32", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
|
||||||
tasks.append(string_to_spv("matmul_f32_aligned", "".join(stream), {"LOAD_VEC_A": 1, "LOAD_VEC_B": load_vec, "A_TYPE": "float", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
|
tasks.append(string_to_spv("matmul_f32_aligned", "".join(stream), {"LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
|
||||||
|
|
||||||
|
tasks.append(string_to_spv("matmul_f32_f16", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
|
||||||
|
tasks.append(string_to_spv("matmul_f32_f16_aligned", "".join(stream), {"LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
|
||||||
|
|
||||||
tasks.append(string_to_spv("matmul_f16", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
|
tasks.append(string_to_spv("matmul_f16", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
|
||||||
tasks.append(string_to_spv("matmul_f16_aligned", "".join(stream), {"LOAD_VEC_A": 1, "LOAD_VEC_B": load_vec, "A_TYPE": "float16_t", "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
|
tasks.append(string_to_spv("matmul_f16_aligned", "".join(stream), {"LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
|
||||||
|
|
||||||
tasks.append(string_to_spv("matmul_f16_f32", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
|
tasks.append(string_to_spv("matmul_f16_f32", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
|
||||||
tasks.append(string_to_spv("matmul_f16_f32_aligned", "".join(stream), {"LOAD_VEC_A": 1, "LOAD_VEC_B": load_vec, "A_TYPE": "float16_t", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
|
tasks.append(string_to_spv("matmul_f16_f32_aligned", "".join(stream), {"LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
|
||||||
|
|
||||||
stream.clear()
|
stream.clear()
|
||||||
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_0_defines, mulmat_body1, mulmat_load_q4_0, mulmat_body2))
|
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_0_defines, mulmat_body1, mulmat_load_q4_0, mulmat_body2))
|
||||||
|
@ -2,5 +2,6 @@ from .constants import *
|
|||||||
from .lazy import *
|
from .lazy import *
|
||||||
from .gguf_reader import *
|
from .gguf_reader import *
|
||||||
from .gguf_writer import *
|
from .gguf_writer import *
|
||||||
|
from .quants import *
|
||||||
from .tensor_mapping import *
|
from .tensor_mapping import *
|
||||||
from .vocab import *
|
from .vocab import *
|
||||||
|
@ -61,6 +61,7 @@ class Keys:
|
|||||||
FREQ_BASE = "{arch}.rope.freq_base"
|
FREQ_BASE = "{arch}.rope.freq_base"
|
||||||
SCALING_TYPE = "{arch}.rope.scaling.type"
|
SCALING_TYPE = "{arch}.rope.scaling.type"
|
||||||
SCALING_FACTOR = "{arch}.rope.scaling.factor"
|
SCALING_FACTOR = "{arch}.rope.scaling.factor"
|
||||||
|
SCALING_ATTN_FACTOR = "{arch}.rope.scaling.attn_factor"
|
||||||
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
|
SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
|
||||||
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
|
SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
|
||||||
|
|
||||||
@ -115,7 +116,6 @@ class MODEL_ARCH(IntEnum):
|
|||||||
GPTNEOX = auto()
|
GPTNEOX = auto()
|
||||||
MPT = auto()
|
MPT = auto()
|
||||||
STARCODER = auto()
|
STARCODER = auto()
|
||||||
PERSIMMON = auto()
|
|
||||||
REFACT = auto()
|
REFACT = auto()
|
||||||
BERT = auto()
|
BERT = auto()
|
||||||
NOMIC_BERT = auto()
|
NOMIC_BERT = auto()
|
||||||
@ -149,6 +149,8 @@ class MODEL_TENSOR(IntEnum):
|
|||||||
OUTPUT = auto()
|
OUTPUT = auto()
|
||||||
OUTPUT_NORM = auto()
|
OUTPUT_NORM = auto()
|
||||||
ROPE_FREQS = auto()
|
ROPE_FREQS = auto()
|
||||||
|
ROPE_FACTORS_LONG = auto()
|
||||||
|
ROPE_FACTORS_SHORT = auto()
|
||||||
ATTN_Q = auto()
|
ATTN_Q = auto()
|
||||||
ATTN_K = auto()
|
ATTN_K = auto()
|
||||||
ATTN_V = auto()
|
ATTN_V = auto()
|
||||||
@ -193,7 +195,6 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||||||
MODEL_ARCH.GPTNEOX: "gptneox",
|
MODEL_ARCH.GPTNEOX: "gptneox",
|
||||||
MODEL_ARCH.MPT: "mpt",
|
MODEL_ARCH.MPT: "mpt",
|
||||||
MODEL_ARCH.STARCODER: "starcoder",
|
MODEL_ARCH.STARCODER: "starcoder",
|
||||||
MODEL_ARCH.PERSIMMON: "persimmon",
|
|
||||||
MODEL_ARCH.REFACT: "refact",
|
MODEL_ARCH.REFACT: "refact",
|
||||||
MODEL_ARCH.BERT: "bert",
|
MODEL_ARCH.BERT: "bert",
|
||||||
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
|
MODEL_ARCH.NOMIC_BERT: "nomic-bert",
|
||||||
@ -227,6 +228,8 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
|||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.OUTPUT: "output",
|
||||||
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
||||||
|
MODEL_TENSOR.ROPE_FACTORS_LONG: "rope_factors_long",
|
||||||
|
MODEL_TENSOR.ROPE_FACTORS_SHORT: "rope_factors_short",
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
||||||
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
||||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
||||||
@ -426,20 +429,6 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.FFN_DOWN,
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.FFN_UP,
|
MODEL_TENSOR.FFN_UP,
|
||||||
],
|
],
|
||||||
MODEL_ARCH.PERSIMMON: [
|
|
||||||
MODEL_TENSOR.TOKEN_EMBD,
|
|
||||||
MODEL_TENSOR.OUTPUT,
|
|
||||||
MODEL_TENSOR.OUTPUT_NORM,
|
|
||||||
MODEL_TENSOR.ATTN_NORM,
|
|
||||||
MODEL_TENSOR.ATTN_QKV,
|
|
||||||
MODEL_TENSOR.ATTN_OUT,
|
|
||||||
MODEL_TENSOR.FFN_NORM,
|
|
||||||
MODEL_TENSOR.FFN_DOWN,
|
|
||||||
MODEL_TENSOR.FFN_UP,
|
|
||||||
MODEL_TENSOR.ATTN_Q_NORM,
|
|
||||||
MODEL_TENSOR.ATTN_K_NORM,
|
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
|
||||||
],
|
|
||||||
MODEL_ARCH.REFACT: [
|
MODEL_ARCH.REFACT: [
|
||||||
MODEL_TENSOR.TOKEN_EMBD,
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.OUTPUT_NORM,
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
@ -756,9 +745,6 @@ MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.ROPE_FREQS,
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
],
|
],
|
||||||
MODEL_ARCH.PERSIMMON: [
|
|
||||||
MODEL_TENSOR.ROPE_FREQS,
|
|
||||||
],
|
|
||||||
MODEL_ARCH.QWEN: [
|
MODEL_ARCH.QWEN: [
|
||||||
MODEL_TENSOR.ROPE_FREQS,
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
@ -13,6 +13,7 @@ from string import ascii_letters, digits
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from .constants import (
|
from .constants import (
|
||||||
|
GGML_QUANT_SIZES,
|
||||||
GGUF_DEFAULT_ALIGNMENT,
|
GGUF_DEFAULT_ALIGNMENT,
|
||||||
GGUF_MAGIC,
|
GGUF_MAGIC,
|
||||||
GGUF_VERSION,
|
GGUF_VERSION,
|
||||||
@ -195,7 +196,7 @@ class GGUFWriter:
|
|||||||
return ((x + n - 1) // n) * n
|
return ((x + n - 1) // n) * n
|
||||||
|
|
||||||
def add_tensor_info(
|
def add_tensor_info(
|
||||||
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype[np.float16] | np.dtype[np.float32],
|
self, name: str, tensor_shape: Sequence[int], tensor_dtype: np.dtype,
|
||||||
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
|
tensor_nbytes: int, raw_dtype: GGMLQuantizationType | None = None,
|
||||||
) -> None:
|
) -> None:
|
||||||
if self.state is not WriterState.EMPTY:
|
if self.state is not WriterState.EMPTY:
|
||||||
@ -208,10 +209,6 @@ class GGUFWriter:
|
|||||||
encoded_name = name.encode("utf-8")
|
encoded_name = name.encode("utf-8")
|
||||||
self.ti_data += self._pack("Q", len(encoded_name))
|
self.ti_data += self._pack("Q", len(encoded_name))
|
||||||
self.ti_data += encoded_name
|
self.ti_data += encoded_name
|
||||||
n_dims = len(tensor_shape)
|
|
||||||
self.ti_data += self._pack("I", n_dims)
|
|
||||||
for i in range(n_dims):
|
|
||||||
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
|
||||||
if raw_dtype is None:
|
if raw_dtype is None:
|
||||||
if tensor_dtype == np.float16:
|
if tensor_dtype == np.float16:
|
||||||
dtype = GGMLQuantizationType.F16
|
dtype = GGMLQuantizationType.F16
|
||||||
@ -231,6 +228,15 @@ class GGUFWriter:
|
|||||||
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
|
raise ValueError("Only F16, F32, F64, I8, I16, I32, I64 tensors are supported for now")
|
||||||
else:
|
else:
|
||||||
dtype = raw_dtype
|
dtype = raw_dtype
|
||||||
|
if tensor_dtype == np.uint8:
|
||||||
|
block_size, type_size = GGML_QUANT_SIZES[raw_dtype]
|
||||||
|
if tensor_shape[-1] % type_size != 0:
|
||||||
|
raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
|
||||||
|
tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
|
||||||
|
n_dims = len(tensor_shape)
|
||||||
|
self.ti_data += self._pack("I", n_dims)
|
||||||
|
for i in range(n_dims):
|
||||||
|
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
||||||
self.ti_data += self._pack("I", dtype)
|
self.ti_data += self._pack("I", dtype)
|
||||||
self.ti_data += self._pack("Q", self.offset_tensor)
|
self.ti_data += self._pack("Q", self.offset_tensor)
|
||||||
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
self.offset_tensor += GGUFWriter.ggml_pad(tensor_nbytes, self.data_alignment)
|
||||||
@ -427,6 +433,9 @@ class GGUFWriter:
|
|||||||
def add_rope_scaling_factor(self, value: float) -> None:
|
def add_rope_scaling_factor(self, value: float) -> None:
|
||||||
self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)
|
self.add_float32(Keys.Rope.SCALING_FACTOR.format(arch=self.arch), value)
|
||||||
|
|
||||||
|
def add_rope_scaling_attn_factors(self, value: Sequence[float]) -> None:
|
||||||
|
self.add_float32(Keys.Rope.SCALING_ATTN_FACTOR.format(arch=self.arch), value)
|
||||||
|
|
||||||
def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
|
def add_rope_scaling_orig_ctx_len(self, value: int) -> None:
|
||||||
self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)
|
self.add_uint32(Keys.Rope.SCALING_ORIG_CTX_LEN.format(arch=self.arch), value)
|
||||||
|
|
||||||
|
@ -6,6 +6,7 @@ from typing import Any, Callable
|
|||||||
from collections import deque
|
from collections import deque
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
from numpy._typing import _Shape
|
||||||
from numpy.typing import DTypeLike
|
from numpy.typing import DTypeLike
|
||||||
|
|
||||||
|
|
||||||
@ -110,7 +111,7 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||||||
return o
|
return o
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike = False) -> Callable[[Any], Any]:
|
def _wrap_fn(cls, fn: Callable, *, use_self: LazyBase | None = None, meta_noop: bool | DTypeLike | tuple[DTypeLike, Callable[[tuple[int, ...]], tuple[int, ...]]] = False) -> Callable[[Any], Any]:
|
||||||
def wrapped_fn(*args, **kwargs):
|
def wrapped_fn(*args, **kwargs):
|
||||||
if kwargs is None:
|
if kwargs is None:
|
||||||
kwargs = {}
|
kwargs = {}
|
||||||
@ -130,9 +131,14 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||||||
res = args[0]
|
res = args[0]
|
||||||
assert isinstance(res, cls)
|
assert isinstance(res, cls)
|
||||||
res = res._meta
|
res = res._meta
|
||||||
# allow operations to override the dtype
|
# allow operations to override the dtype and shape
|
||||||
if meta_noop is not True:
|
if meta_noop is not True:
|
||||||
res = cls.meta_with_dtype(res, meta_noop)
|
if isinstance(meta_noop, tuple):
|
||||||
|
dtype, shape = meta_noop
|
||||||
|
assert callable(shape)
|
||||||
|
res = cls.meta_with_dtype_and_shape(dtype, shape(res.shape))
|
||||||
|
else:
|
||||||
|
res = cls.meta_with_dtype_and_shape(meta_noop, res.shape)
|
||||||
|
|
||||||
if isinstance(res, cls._tensor_type):
|
if isinstance(res, cls._tensor_type):
|
||||||
def collect_replace(t: LazyBase):
|
def collect_replace(t: LazyBase):
|
||||||
@ -168,7 +174,12 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||||||
while _t._data is None:
|
while _t._data is None:
|
||||||
lt = _t._lazy.popleft()
|
lt = _t._lazy.popleft()
|
||||||
if lt._data is not None:
|
if lt._data is not None:
|
||||||
raise ValueError(f"{lt} did not belong in the lazy queue")
|
# Lazy tensor did not belong in the lazy queue.
|
||||||
|
# Weirdly only happens with Bloom models...
|
||||||
|
# likely because tensors aren't unique in the queue.
|
||||||
|
# The final output is still the same as in eager mode,
|
||||||
|
# so it's safe to ignore this.
|
||||||
|
continue
|
||||||
assert lt._func is not None
|
assert lt._func is not None
|
||||||
lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
|
lt._args = cls._recurse_apply(lt._args, already_eager_to_eager)
|
||||||
lt._data = lt._func(lt._args)
|
lt._data = lt._func(lt._args)
|
||||||
@ -183,12 +194,12 @@ class LazyBase(ABC, metaclass=LazyMeta):
|
|||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def eager_to_meta(cls, t: Any) -> Any:
|
def eager_to_meta(cls, t: Any) -> Any:
|
||||||
return cls.meta_with_dtype(t, t.dtype)
|
return cls.meta_with_dtype_and_shape(t.dtype, t.shape)
|
||||||
|
|
||||||
# must be overridden, meta tensor init is backend-specific
|
# must be overridden, meta tensor init is backend-specific
|
||||||
@classmethod
|
@classmethod
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def meta_with_dtype(cls, m: Any, dtype: Any) -> Any: pass
|
def meta_with_dtype_and_shape(cls, dtype: Any, shape: Any) -> Any: pass
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def from_eager(cls, t: Any) -> Any:
|
def from_eager(cls, t: Any) -> Any:
|
||||||
@ -205,15 +216,15 @@ class LazyNumpyTensor(LazyBase):
|
|||||||
_tensor_type = np.ndarray
|
_tensor_type = np.ndarray
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def meta_with_dtype(cls, m: np.ndarray[Any, Any], dtype: DTypeLike) -> np.ndarray[Any, Any]:
|
def meta_with_dtype_and_shape(cls, dtype: DTypeLike, shape: _Shape) -> np.ndarray[Any, Any]:
|
||||||
# The initial idea was to use np.nan as the fill value,
|
# The initial idea was to use np.nan as the fill value,
|
||||||
# but non-float types like np.int16 can't use that.
|
# but non-float types like np.int16 can't use that.
|
||||||
# So zero it is.
|
# So zero it is.
|
||||||
cheat = np.zeros(1, dtype)
|
cheat = np.zeros(1, dtype)
|
||||||
return np.lib.stride_tricks.as_strided(cheat, m.shape, (0 for _ in m.shape))
|
return np.lib.stride_tricks.as_strided(cheat, shape, (0 for _ in shape))
|
||||||
|
|
||||||
def astype(self, dtype, *args, **kwargs):
|
def astype(self, dtype, *args, **kwargs):
|
||||||
meta = type(self).meta_with_dtype(self._meta, dtype)
|
meta = type(self).meta_with_dtype_and_shape(dtype, self._meta.shape)
|
||||||
full_args = (self, dtype,) + args
|
full_args = (self, dtype,) + args
|
||||||
# very important to pass the shared _lazy deque, or else there's an infinite loop somewhere.
|
# very important to pass the shared _lazy deque, or else there's an infinite loop somewhere.
|
||||||
return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs)))
|
return type(self)(meta=meta, args=full_args, lazy=self._lazy, func=(lambda a: a[0].astype(*a[1:], **kwargs)))
|
||||||
|
109
gguf-py/gguf/quants.py
Normal file
109
gguf-py/gguf/quants.py
Normal file
@ -0,0 +1,109 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
from typing import Callable
|
||||||
|
|
||||||
|
from numpy.typing import DTypeLike
|
||||||
|
|
||||||
|
from .constants import GGML_QUANT_SIZES, GGMLQuantizationType
|
||||||
|
from .lazy import LazyNumpyTensor
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
|
||||||
|
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
|
||||||
|
n = n.astype(np.float32, copy=False).view(np.int32)
|
||||||
|
# force nan to quiet
|
||||||
|
n = np.where((n & 0x7fffffff) > 0x7f800000, (n & 0xffff0000) | (64 << 16), n)
|
||||||
|
# flush subnormals to zero
|
||||||
|
n = np.where((n & 0x7f800000) == 0, n & 0x80000000, n)
|
||||||
|
# round to nearest even
|
||||||
|
n = (n + (0x7fff + ((n >> 16) & 1))) >> 16
|
||||||
|
return n.astype(np.int16)
|
||||||
|
|
||||||
|
|
||||||
|
# This is faster than np.vectorize and np.apply_along_axis because it works on more than one row at a time
|
||||||
|
def __apply_over_grouped_rows(func: Callable[[np.ndarray], np.ndarray], arr: np.ndarray, otype: DTypeLike, oshape: tuple[int, ...]) -> np.ndarray:
|
||||||
|
rows = arr.reshape((-1, arr.shape[-1]))
|
||||||
|
osize = 1
|
||||||
|
for dim in oshape:
|
||||||
|
osize *= dim
|
||||||
|
out = np.empty(shape=osize, dtype=otype)
|
||||||
|
# compute over groups of 16 rows (arbitrary, but seems good for performance)
|
||||||
|
n_groups = rows.shape[0] // 16
|
||||||
|
np.concatenate([func(group).ravel() for group in np.array_split(rows, n_groups)], axis=0, out=out)
|
||||||
|
return out.reshape(oshape)
|
||||||
|
|
||||||
|
|
||||||
|
def __quantize_bf16_array(n: np.ndarray) -> np.ndarray:
|
||||||
|
return __apply_over_grouped_rows(__compute_fp32_to_bf16, arr=n, otype=np.int16, oshape=n.shape)
|
||||||
|
|
||||||
|
|
||||||
|
__quantize_bf16_lazy = LazyNumpyTensor._wrap_fn(__quantize_bf16_array, meta_noop=np.int16)
|
||||||
|
|
||||||
|
|
||||||
|
def quantize_bf16(n: np.ndarray):
|
||||||
|
if type(n) is LazyNumpyTensor:
|
||||||
|
return __quantize_bf16_lazy(n)
|
||||||
|
else:
|
||||||
|
return __quantize_bf16_array(n)
|
||||||
|
|
||||||
|
|
||||||
|
__q8_block_size, __q8_type_size = GGML_QUANT_SIZES[GGMLQuantizationType.Q8_0]
|
||||||
|
|
||||||
|
|
||||||
|
def can_quantize_to_q8_0(n: np.ndarray) -> bool:
|
||||||
|
return n.shape[-1] % __q8_block_size == 0
|
||||||
|
|
||||||
|
|
||||||
|
# round away from zero
|
||||||
|
# ref: https://stackoverflow.com/a/59143326/22827863
|
||||||
|
def np_roundf(n: np.ndarray) -> np.ndarray:
|
||||||
|
a = abs(n)
|
||||||
|
floored = np.floor(a)
|
||||||
|
b = floored + np.floor(2 * (a - floored))
|
||||||
|
return np.sign(n) * b
|
||||||
|
|
||||||
|
|
||||||
|
def __quantize_q8_0_shape_change(s: tuple[int, ...]) -> tuple[int, ...]:
|
||||||
|
return (*s[:-1], s[-1] // __q8_block_size * __q8_type_size)
|
||||||
|
|
||||||
|
|
||||||
|
# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c
|
||||||
|
def __quantize_q8_0_rows(n: np.ndarray) -> np.ndarray:
|
||||||
|
shape = n.shape
|
||||||
|
assert shape[-1] % __q8_block_size == 0
|
||||||
|
|
||||||
|
n_blocks = n.size // __q8_block_size
|
||||||
|
|
||||||
|
blocks = n.reshape((n_blocks, __q8_block_size)).astype(np.float32, copy=False)
|
||||||
|
|
||||||
|
d = abs(blocks).max(axis=1, keepdims=True) / 127
|
||||||
|
with np.errstate(divide="ignore"):
|
||||||
|
id = np.where(d == 0, 0, 1 / d)
|
||||||
|
qs = np_roundf(blocks * id)
|
||||||
|
|
||||||
|
# (n_blocks, 2)
|
||||||
|
d = d.astype(np.float16).view(np.uint8)
|
||||||
|
# (n_blocks, block_size)
|
||||||
|
qs = qs.astype(np.int8).view(np.uint8)
|
||||||
|
|
||||||
|
assert d.shape[1] + qs.shape[1] == __q8_type_size
|
||||||
|
|
||||||
|
return np.concatenate([d, qs], axis=1).reshape(__quantize_q8_0_shape_change(shape))
|
||||||
|
|
||||||
|
|
||||||
|
def __quantize_q8_0_array(n: np.ndarray) -> np.ndarray:
|
||||||
|
return __apply_over_grouped_rows(__quantize_q8_0_rows, arr=n, otype=np.uint8, oshape=__quantize_q8_0_shape_change(n.shape))
|
||||||
|
|
||||||
|
|
||||||
|
__quantize_q8_0_lazy = LazyNumpyTensor._wrap_fn(
|
||||||
|
__quantize_q8_0_array,
|
||||||
|
meta_noop=(np.uint8, __quantize_q8_0_shape_change),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def quantize_q8_0(data: np.ndarray):
|
||||||
|
if type(data) is LazyNumpyTensor:
|
||||||
|
return __quantize_q8_0_lazy(data)
|
||||||
|
else:
|
||||||
|
return __quantize_q8_0_array(data)
|
10
llama.h
10
llama.h
@ -81,9 +81,10 @@ extern "C" {
|
|||||||
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
|
LLAMA_VOCAB_PRE_TYPE_GPT2 = 7,
|
||||||
LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
|
LLAMA_VOCAB_PRE_TYPE_REFACT = 8,
|
||||||
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
|
LLAMA_VOCAB_PRE_TYPE_COMMAND_R = 9,
|
||||||
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 10,
|
LLAMA_VOCAB_PRE_TYPE_STABLELM2 = 10,
|
||||||
LLAMA_VOCAB_PRE_TYPE_OLMO = 11,
|
LLAMA_VOCAB_PRE_TYPE_QWEN2 = 11,
|
||||||
LLAMA_VOCAB_PRE_TYPE_DBRX = 12,
|
LLAMA_VOCAB_PRE_TYPE_OLMO = 12,
|
||||||
|
LLAMA_VOCAB_PRE_TYPE_DBRX = 13,
|
||||||
};
|
};
|
||||||
|
|
||||||
// note: these values should be synchronized with ggml_rope
|
// note: these values should be synchronized with ggml_rope
|
||||||
@ -242,6 +243,9 @@ extern "C" {
|
|||||||
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
|
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
|
||||||
const float * tensor_split;
|
const float * tensor_split;
|
||||||
|
|
||||||
|
// comma separated list of RPC servers to use for offloading
|
||||||
|
const char * rpc_servers;
|
||||||
|
|
||||||
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
|
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
|
||||||
// If the provided progress_callback returns true, model loading continues.
|
// If the provided progress_callback returns true, model loading continues.
|
||||||
// If it returns false, model loading is immediately aborted.
|
// If it returns false, model loading is immediately aborted.
|
||||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user