mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 21:37:19 +01:00
Fix convert script, warnings alpaca instructions, default params
This commit is contained in:
parent
715d292ee0
commit
3bfa3b43b7
@ -193,15 +193,15 @@ First, download the `ggml` Alpaca model into the `./models` folder:
|
||||
```
|
||||
# use one of these
|
||||
# TODO: add a script to simplify the download
|
||||
curl -o ggml2-alpaca-7b-q4.bin -C - https://gateway.estuary.tech/gw/ipfs/QmUp1UGeQFDqJKvtjbSYPBiZZKRjLp8shVP9hT8ZB9Ynv1
|
||||
curl -o ggml2-alpaca-7b-q4.bin -C - https://ipfs.io/ipfs/QmUp1UGeQFDqJKvtjbSYPBiZZKRjLp8shVP9hT8ZB9Ynv1
|
||||
curl -o ggml2-alpaca-7b-q4.bin -C - https://cloudflare-ipfs.com/ipfs/QmUp1UGeQFDqJKvtjbSYPBiZZKRjLp8shVP9hT8ZB9Ynv1
|
||||
curl -o ./models/ggml-alpaca-7b-q4.bin -C - https://gateway.estuary.tech/gw/ipfs/QmUp1UGeQFDqJKvtjbSYPBiZZKRjLp8shVP9hT8ZB9Ynv1
|
||||
curl -o ./models/ggml-alpaca-7b-q4.bin -C - https://ipfs.io/ipfs/QmUp1UGeQFDqJKvtjbSYPBiZZKRjLp8shVP9hT8ZB9Ynv1
|
||||
curl -o ./models/ggml-alpaca-7b-q4.bin -C - https://cloudflare-ipfs.com/ipfs/QmUp1UGeQFDqJKvtjbSYPBiZZKRjLp8shVP9hT8ZB9Ynv1
|
||||
```
|
||||
|
||||
Now run the `main` tool like this:
|
||||
|
||||
```
|
||||
./main -m ./models/ggml2-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins
|
||||
./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins
|
||||
```
|
||||
|
||||
Sample run:
|
||||
|
@ -3,4 +3,4 @@
|
||||
# Temporary script - will be removed in the future
|
||||
#
|
||||
|
||||
./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins --top_k 10000 --temp 0.96 --repeat_penalty 1 -t 7
|
||||
./main -m ./models/ggml-alpaca-7b-q4.bin --color -f ./prompts/alpaca.txt -ins --top_k 10000 --temp 0.2 --repeat_penalty 1 -t 7
|
||||
|
@ -28,8 +28,8 @@ def parse_args():
|
||||
|
||||
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
||||
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
||||
parser.add_argument('ftype', type=int, choices=[0, 1], default=1, help='file type (0: float32, 1: float16)')
|
||||
parser.add_argument('vocab_only', type=bool, default=False, help='only write vocab to file')
|
||||
parser.add_argument('ftype', help='file type (0: float32, 1: float16)', type=int, choices=[0, 1], default=1)
|
||||
parser.add_argument('vocab_only', help='only write vocab to file', type=int, default=0, nargs='?')
|
||||
return parser.parse_args()
|
||||
|
||||
def get_n_parts(dim):
|
||||
@ -135,6 +135,8 @@ def main():
|
||||
|
||||
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
|
||||
|
||||
print(args)
|
||||
|
||||
# if only writing vocab to file
|
||||
if args.vocab_only:
|
||||
|
||||
|
20
main.cpp
20
main.cpp
@ -165,12 +165,20 @@ bool llama_model_load(const std::string & fname, llama_model & model, llama_voca
|
||||
// load vocab
|
||||
{
|
||||
std::string word;
|
||||
std::vector<char> tmp(64);
|
||||
|
||||
for (int i = 0; i < model.hparams.n_vocab; i++) {
|
||||
uint32_t len;
|
||||
fin.read((char *) &len, sizeof(len));
|
||||
|
||||
word.resize(len);
|
||||
fin.read((char *) word.data(), len);
|
||||
if (len > 0) {
|
||||
tmp.resize(len);
|
||||
fin.read(tmp.data(), len);
|
||||
word.assign(tmp.data(), len);
|
||||
} else {
|
||||
word.clear();
|
||||
}
|
||||
|
||||
float score;
|
||||
fin.read((char *) &score, sizeof(score));
|
||||
@ -178,10 +186,6 @@ bool llama_model_load(const std::string & fname, llama_model & model, llama_voca
|
||||
vocab.token_to_id[word] = i;
|
||||
vocab.id_to_token[i] = word;
|
||||
vocab.score[i] = score;
|
||||
|
||||
//if (i < 30000) {
|
||||
// fprintf(stderr, "%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
|
||||
//}
|
||||
}
|
||||
}
|
||||
|
||||
@ -974,7 +978,7 @@ int main(int argc, char ** argv) {
|
||||
n_past += embd.size();
|
||||
embd.clear();
|
||||
|
||||
if (embd_inp.size() <= input_consumed) {
|
||||
if ((int) embd_inp.size() <= input_consumed) {
|
||||
// out of user input, sample next token
|
||||
const float top_k = params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
@ -1011,7 +1015,7 @@ int main(int argc, char ** argv) {
|
||||
--remaining_tokens;
|
||||
} else {
|
||||
// some user input remains from prompt or interaction, forward it to processing
|
||||
while (embd_inp.size() > input_consumed) {
|
||||
while ((int) embd_inp.size() > input_consumed) {
|
||||
embd.push_back(embd_inp[input_consumed]);
|
||||
last_n_tokens.erase(last_n_tokens.begin());
|
||||
last_n_tokens.push_back(embd_inp[input_consumed]);
|
||||
@ -1036,7 +1040,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// in interactive mode, and not currently processing queued inputs;
|
||||
// check if we should prompt the user for more
|
||||
if (params.interactive && embd_inp.size() <= input_consumed) {
|
||||
if (params.interactive && (int) embd_inp.size() <= input_consumed) {
|
||||
// check for reverse prompt
|
||||
for (auto antiprompt_inp : antipromptv_inp) {
|
||||
if (antiprompt_inp.size() && std::equal(antiprompt_inp.rbegin(), antiprompt_inp.rend(), last_n_tokens.rbegin())) {
|
||||
|
Loading…
x
Reference in New Issue
Block a user