clear code

This commit is contained in:
caitianchi 2024-05-29 01:50:59 +08:00
parent 056d178160
commit 3c306f18c8
2 changed files with 63 additions and 388 deletions

View File

@ -1,53 +0,0 @@
#!/bin/bash
model_dir="/Users/cxt/model/llm/mobileVLM/MobileVLM-1.7B_processed"
projector_name="mmproj-model-f16.gguf"
llama_name="ggml-model-q4_k.gguf"
img_dir="/Users/cxt/model/llm"
img_name="demo.jpg"
prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:"
# img_name="cat.jpeg"
# prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:"
program_dir="build_64/bin"
binName="minicpmv-cli"
n_threads=4
deviceDir="/data/local/tmp"
saveDir="output"
if [ ! -d ${saveDir} ]; then
mkdir ${saveDir}
fi
function android_run() {
# # copy resource into device
# adb push ${model_dir}/${projector_name} ${deviceDir}/${projector_name}
# adb push ${model_dir}/${llama_name} ${deviceDir}/${llama_name}
adb push ${img_dir}/${img_name} ${deviceDir}/${img_name}
# copy program into device
adb push ${program_dir}/${binName} ${deviceDir}/${binName}
adb shell "chmod 0777 ${deviceDir}/${binName}"
# run
adb shell "echo cd ${deviceDir} ${deviceDir}/${binName} \
-m ${deviceDir}/${llama_name} \
--mmproj ${deviceDir}/${projector_name} \
-t ${n_threads} \
--image ${deviceDir}/${img_name} \
-p \"${prompt}\" \
> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt"
adb shell "cd ${deviceDir}; pwd; ${deviceDir}/${binName} \
-m ${deviceDir}/${llama_name} \
--mmproj ${deviceDir}/${projector_name} \
-t ${n_threads} \
--image ${deviceDir}/${img_name} \
-p \"${prompt}\" \
>> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt 2>&1"
adb pull ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt ${saveDir}
}
android_run
echo "android_run is Done!"

View File

@ -31,193 +31,6 @@ struct clip_image_grid_shape {
int second; int second;
}; };
// /**
// * Selects the best resolution from a list of possible resolutions based on the original size.
// *
// * @param original_size The original size of the image in the format (width, height).
// * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
// * @return The best fit resolution in the format (width, height).
// */
// static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
// int original_width = original_size.first;
// int original_height = original_size.second;
// std::pair<int, int> best_fit;
// int max_effective_resolution = 0;
// int min_wasted_resolution = std::numeric_limits<int>::max();
// for (const auto& resolution : possible_resolutions) {
// int width = resolution.first;
// int height = resolution.second;
// float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
// int downscaled_width = static_cast<int>(original_width * scale);
// int downscaled_height = static_cast<int>(original_height * scale);
// int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
// int wasted_resolution = (width * height) - effective_resolution;
// // LOG_TEE("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
// if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
// max_effective_resolution = effective_resolution;
// min_wasted_resolution = wasted_resolution;
// best_fit = resolution;
// }
// }
// return best_fit;
// }
// /**
// * @brief Get the anyres image grid shape object
// *
// * @param image_size
// * @param grid_pinpoints
// * @param image_patch_size
// * @return <int, int>
// */
// static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
// /**
// Conversion from gguf flat array to vector:
// std::vector<std::pair<int, int>> possible_resolutions;
// for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
// possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
// }
// */
// auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
// return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
// }
// // Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
// static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out) {
// struct {
// struct ggml_tensor * newline;
// struct ggml_context * ctx;
// } model;
// const int32_t image_size = clip_image_size(ctx_clip);
// const int32_t patch_size = clip_patch_size(ctx_clip);
// int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)
// int num_patches_width = grid_shape.first; // grid 1-4
// int num_patches_height = grid_shape.second; // grid 1-4
// const size_t num_images = num_patches_width * num_patches_height + 1;
// // TODO: size calculation is not calculated - it's only tens of MB
// size_t ctx_size = 0;
// {
// ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
// ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
// }
// struct ggml_init_params params {
// /*.mem_size =*/ ctx_size,
// /*.mem_buffer =*/ NULL,
// /*.no_alloc =*/ false, // NOTE: this should be false when using the legacy API
// };
// // Python reference code for full unpad:
// /*
// base_image_feature = image_feature[0]
// image_feature = image_feature[1:]
// image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
// image_feature = image_feature.flatten(1, 2).flatten(2, 3)
// image_feature = unpad_image(image_feature, image_sizes[image_idx])
// image_feature = torch.cat((
// image_feature,
// self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
// ), dim=-1)
// image_feature = image_feature.flatten(1, 2).transpose(0, 1)
// image_feature = torch.cat((base_image_feature, image_feature), dim=0)
// */
// // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
// // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
// // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
// // Once all images are processed to prepended the base_image_features without any changes.
// // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
// /*
// image_feature = image_feature.view(2, 2, 24, 24, 4096)
// image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
// image_feature = image_feature.view(2, 24, 2, 24, 4096)
// image_feature = image_feature.flatten(0, 3)
// // Reshape to 4D tensor by merging the last two dimensions
// image_feature = image_feature.view(2, 2, 24, 24*4096)
// image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
// image_feature = image_feature.view(-1, 4096)
// */
// model.ctx = ggml_init(params);
// ggml_tensor * newline_tmp = clip_get_newline_tensor(ctx_clip);
// model.newline = ggml_new_tensor_1d(model.ctx, GGML_TYPE_F32, newline_tmp->ne[0]);
// if (newline_tmp->backend != GGML_BACKEND_TYPE_CPU) {
// if (newline_tmp->buffer == NULL) {
// LOG_TEE("newline_tmp tensor buffer is NULL\n");
// }
// ggml_backend_tensor_get(newline_tmp, model.newline->data, 0, ggml_nbytes(newline_tmp));
// } else {
// model.newline->data = newline_tmp->data;
// if (model.newline->data == NULL) {
// LOG_TEE("newline_tmp tensor data is NULL\n");
// }
// }
// struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_patches(ctx_clip), num_images - 1); // example: 4096 x 576 x 4
// // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
// // fill it with the image embeddings, ignoring the base
// for (size_t i = 1; i < num_images; i++) {
// size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
// memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
// }
// struct ggml_cgraph * gf = ggml_new_graph(model.ctx);
// size_t size_ele = ggml_type_size(GGML_TYPE_F32);
// struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
// num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
// num_patches_per_side,
// num_patches_width,
// num_patches_height,
// size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
// size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
// size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
// // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
// struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
// /**
// At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
// image_feature = torch.cat((
// image_feature,
// self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
// ), dim=-1)
// *
// */
// // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
// struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side, size_ele * clip_n_mmproj_embd(ctx_clip), 0);
// // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
// ggml_build_forward_expand(gf, flatten);
// ggml_graph_compute_with_ctx(model.ctx, gf, 1);
// struct ggml_tensor* result = gf->nodes[gf->n_nodes - 1];
// memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
// // append without newline tokens (default behavior in llava_arch when not using unpad ):
// memcpy(image_embd_out + clip_n_patches(ctx_clip) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
// *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_patches(ctx_clip));
// // Debug: Test single segments
// // Current findings: sending base image, sending a segment embedding all works similar to python
// // However, permuted embeddings do not work yet (stride issue?)
// // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
// // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
// // *n_img_pos_out=576;
// ggml_free(model.ctx);
// return true;
// }
static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) { static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
// std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336 // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
clip_image_f32_batch img_res_v; clip_image_f32_batch img_res_v;
@ -243,64 +56,16 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip); const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);
LOG_TEE("\n%s: mm_patch_merge_type is %s.\n", __func__, mm_patch_merge_type); LOG_TEE("\n%s: mm_patch_merge_type is %s.\n", __func__, mm_patch_merge_type);
if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
// flat / default llava-1.5 type embedding
*n_img_pos = clip_n_patches(ctx_clip);
bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd, load_image_size); // image_embd shape is 576 x 4096 *n_img_pos = clip_n_patches(ctx_clip);
delete[] img_res_v.data;
if (!encoded) {
LOG_TEE("Unable to encode image\n");
return false; bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[0], image_embd, load_image_size); // image_embd shape is 576 x 4096
} delete[] img_res_v.data;
if (!encoded) {
LOG_TEE("Unable to encode image\n");
return false;
} }
// else {
// // spatial_unpad llava-1.6 type embedding
// // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
// std::vector<float *> image_embd_v;
// image_embd_v.resize(img_res_v.size);
// for (size_t i = 0; i < img_res_v.size; i++) {
// image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
// const bool encoded = clip_image_encode(ctx_clip, n_threads, &img_res_v.data[i], image_embd_v[i], load_image_size); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
// if (!encoded) {
// LOG_TEE("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) img_res_v.size);
// return false;
// }
// }
// const int64_t t_img_enc_batch_us = ggml_time_us();
// LOG_TEE("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
// const int32_t * image_grid = clip_image_grid(ctx_clip);
// std::vector<std::pair<int, int>> grid_pinpoints;
// for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
// grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
// }
// // free all img_res_v - not needed anymore
// delete[] img_res_v.data;
// img_res_v.size = 0;
// img_res_v.data = nullptr;
// const int32_t image_size = clip_image_size(ctx_clip);
// struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);
// int n_img_pos_out;
// clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out);
// *n_img_pos = n_img_pos_out;
// for (size_t i = 0; i < image_embd_v.size(); i++) {
// free(image_embd_v[i]);
// }
// image_embd_v.clear();
// // debug image/segment/normalization content:
// // clip_image_u8 * tmp = clip_image_u8_init();
// // clip_image_convert_f32_to_u8(*image_feature, *tmp);
// // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
// }
LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos); LOG_TEE("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
@ -323,84 +88,6 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
return true; return true;
} }
bool llava_image_embed_make_with_clip_img_ollama(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
std::vector<std::vector<clip_image_u8 *>> imgs = slice_image(img);
std::vector<std::vector<llava_image_embed *>> image_embed_slices;
for (size_t i = 0; i < imgs.size(); ++i){
image_embed_slices.push_back(std::vector<llava_image_embed *>());
for (size_t j = 0; j < imgs[i].size(); ++j) {
float* image_embed = NULL;
int n_image_pos = 0;
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, imgs[i][j], &image_embed, &n_image_pos);
if (!image_embed_result) {
LOG_TEE("%s: coulnd't embed the image\n", __func__);
return false;
}
auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
result->embed = image_embed;
result->n_image_pos = n_image_pos;
image_embed_slices[i].push_back(result);
}
}
std::string fname = "./examples/minicpm-v2.5/slice_token_for_ollama.raw";
auto file = fopen(fname.c_str(), "rb");
if (file == NULL) {
LOG_TEE("%s: can't read file %s\n", __func__, fname.c_str());
return false;
}
fseek(file, 0, SEEK_END);
auto fileSize = ftell(file);
fseek(file, 0, SEEK_SET);
auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
if (buffer == NULL) {
LOG_TEE("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, fname.c_str());
perror("Memory allocation error");
fclose(file);
return false;
}
errno = 0;
size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
if (ferror(file)) {
die_fmt("read error: %s", strerror(errno));
}
if (ret != (size_t) fileSize) {
die("unexpectedly reached end of file");
}
fclose(file); // Close the file
float * all_image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*61);
int all_n_img_pos=0;
int token_len = 4096*sizeof(float);
std::memcpy(all_image_embd+token_len*all_n_img_pos++, buffer, token_len);
std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[0][0]->embed, 96*token_len);
all_n_img_pos+=96;
std::memcpy(all_image_embd+token_len*all_n_img_pos++, buffer+token_len, token_len);
if (image_embed_slices.size() > 1) {
std::memcpy(all_image_embd+token_len*all_n_img_pos++, buffer+token_len*2, token_len);
for (size_t i = 1; i < image_embed_slices.size(); ++i) {
for (size_t j = 0; j < image_embed_slices[i].size(); ++j) {
std::memcpy(all_image_embd+token_len*all_n_img_pos++, buffer, token_len);
std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[i][j]->embed, 96*token_len);
all_n_img_pos+=96;
std::memcpy(all_image_embd+token_len*all_n_img_pos++, buffer+token_len, token_len);
if (j == image_embed_slices[i].size() - 1) {
std::memcpy(all_image_embd+token_len*all_n_img_pos++, buffer+token_len*4, token_len);
}
}
}
std::memcpy(all_image_embd+token_len*all_n_img_pos++, buffer+token_len*3, token_len);
}
*image_embd_out = all_image_embd;
*n_img_pos_out = all_n_img_pos;
return true;
}
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) { bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model float * image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*6); // TODO: base on gridsize/llava model
if (!image_embd) { if (!image_embd) {
@ -644,14 +331,7 @@ std::vector<std::vector<clip_image_u8 *>> slice_image(const clip_image_u8 * img,
return images; return images;
} }
std::vector<std::vector<struct llava_image_embed *>> llava_image_embed_make_with_bytes_slice(struct clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img) {
std::vector<std::vector<struct llava_image_embed *>> llava_image_embed_make_with_bytes_slice(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
clip_image_u8 * img = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
clip_image_u8_free(img);
LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__);
return std::vector<std::vector<struct llava_image_embed *>>();
}
std::vector<std::vector<clip_image_u8 *>> imgs = slice_image(img); std::vector<std::vector<clip_image_u8 *>> imgs = slice_image(img);
for (size_t i = 0; i < imgs.size(); ++i){ for (size_t i = 0; i < imgs.size(); ++i){
for (size_t j = 0; j < imgs[i].size(); ++j) { for (size_t j = 0; j < imgs[i].size(); ++j) {
@ -667,7 +347,6 @@ std::vector<std::vector<struct llava_image_embed *>> llava_image_embed_make_with
int n_image_pos = 0; int n_image_pos = 0;
bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, imgs[i][j], &image_embed, &n_image_pos); bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, imgs[i][j], &image_embed, &n_image_pos);
if (!image_embed_result) { if (!image_embed_result) {
clip_image_u8_free(img);
LOG_TEE("%s: coulnd't embed the image\n", __func__); LOG_TEE("%s: coulnd't embed the image\n", __func__);
return std::vector<std::vector<struct llava_image_embed *>>(); return std::vector<std::vector<struct llava_image_embed *>>();
} }
@ -678,11 +357,9 @@ std::vector<std::vector<struct llava_image_embed *>> llava_image_embed_make_with
results[i].push_back(result); results[i].push_back(result);
} }
} }
clip_image_u8_free(img);
return results; return results;
} }
static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) { static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
auto file = fopen(path, "rb"); auto file = fopen(path, "rb");
if (file == NULL) { if (file == NULL) {
@ -716,6 +393,49 @@ static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long
return true; return true;
} }
bool llava_image_embed_make_with_clip_img_ollama(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
auto image_embed_slices = llava_image_embed_make_with_bytes_slice(ctx_clip, n_threads, img);
if (!image_embed_slices[0][0]){
LOG_TEE("%s: failed to embeding image\n", __func__);
return false;
}
std::string fname = "./examples/minicpm-v2.5/slice_token_for_ollama.raw";
unsigned char* slice_token;
long image_bytes_length;
auto loaded = load_file_to_bytes(fname.c_str(), &slice_token, &image_bytes_length);
if (!loaded) {
LOG_TEE("%s: failed to load %s\n", __func__, fname.c_str());
return false;
}
float * all_image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*61);
int all_n_img_pos=0;
int token_len = clip_n_mmproj_embd(ctx_clip)*sizeof(float);
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token, token_len);
std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[0][0]->embed, 96*token_len);
all_n_img_pos+=clip_n_patches(ctx_clip);
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len, token_len);
if (image_embed_slices.size() > 1) {
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*2, token_len);
for (size_t i = 1; i < image_embed_slices.size(); ++i) {
for (size_t j = 0; j < image_embed_slices[i].size(); ++j) {
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token, token_len);
std::memcpy(all_image_embd+token_len*all_n_img_pos, image_embed_slices[i][j]->embed, 96*token_len);
all_n_img_pos+=clip_n_patches(ctx_clip);
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len, token_len);
if (j == image_embed_slices[i].size() - 1) {
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*4, token_len);
}
}
}
std::memcpy(all_image_embd+token_len*all_n_img_pos++, slice_token+token_len*3, token_len);
}
*image_embd_out = all_image_embd;
*n_img_pos_out = all_n_img_pos;
return true;
}
std::vector<std::vector<struct llava_image_embed *>> llava_image_embed_make_with_filename_slice(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) { std::vector<std::vector<struct llava_image_embed *>> llava_image_embed_make_with_filename_slice(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
unsigned char* image_bytes; unsigned char* image_bytes;
long image_bytes_length; long image_bytes_length;
@ -724,8 +444,16 @@ std::vector<std::vector<struct llava_image_embed *>> llava_image_embed_make_with
LOG_TEE("%s: failed to load %s\n", __func__, image_path); LOG_TEE("%s: failed to load %s\n", __func__, image_path);
return std::vector<std::vector<struct llava_image_embed *>>(); return std::vector<std::vector<struct llava_image_embed *>>();
} }
clip_image_u8 * img = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
clip_image_u8_free(img);
LOG_TEE("%s: can't load image from bytes, is it a valid image?", __func__);
return std::vector<std::vector<struct llava_image_embed *>>();
}
std::vector<std::vector<struct llava_image_embed *>> embeds = llava_image_embed_make_with_bytes_slice(ctx_clip, n_threads, image_bytes, image_bytes_length); std::vector<std::vector<struct llava_image_embed *>> embeds = llava_image_embed_make_with_bytes_slice(ctx_clip, n_threads, img);
clip_image_u8_free(img);
free(image_bytes); free(image_bytes);
return embeds; return embeds;
} }