mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
gguf-py : add support for I8, I16 and I32 (#6045)
* Refactor dtype handling to be extensible This code is equivalent as before, but now it is prepared to easily add more NumPy dtypes. * Add support for I8, I16 and I32 These types are allowed in the GGUF specification. * Add support for I8, I16 and I32 to gguf_writer * Add support for I8, I16, I32 to gguf_reader
This commit is contained in:
parent
3fe8d7a17f
commit
3ca23481dd
@ -661,6 +661,9 @@ class GGMLQuantizationType(IntEnum):
|
||||
IQ3_S = 21
|
||||
IQ2_S = 22
|
||||
IQ4_XS = 23
|
||||
I8 = 24
|
||||
I16 = 25
|
||||
I32 = 26
|
||||
|
||||
|
||||
class GGUFEndian(IntEnum):
|
||||
@ -727,6 +730,9 @@ GGML_QUANT_SIZES = {
|
||||
GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
|
||||
GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
|
||||
GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
|
||||
GGMLQuantizationType.I8: (1, 1),
|
||||
GGMLQuantizationType.I16: (1, 2),
|
||||
GGMLQuantizationType.I32: (1, 4),
|
||||
}
|
||||
|
||||
|
||||
|
@ -248,6 +248,15 @@ class GGUFReader:
|
||||
elif ggml_type == GGMLQuantizationType.F16:
|
||||
item_count = n_elems
|
||||
item_type = np.float16
|
||||
elif ggml_type == GGMLQuantizationType.I8:
|
||||
item_count = n_elems
|
||||
item_type = np.int8
|
||||
elif ggml_type == GGMLQuantizationType.I16:
|
||||
item_count = n_elems
|
||||
item_type = np.int16
|
||||
elif ggml_type == GGMLQuantizationType.I32:
|
||||
item_count = n_elems
|
||||
item_type = np.int32
|
||||
else:
|
||||
item_count = n_bytes
|
||||
item_type = np.uint8
|
||||
|
@ -196,9 +196,6 @@ class GGUFWriter:
|
||||
if self.state is not WriterState.EMPTY:
|
||||
raise ValueError(f'Expected output file to be empty, got {self.state}')
|
||||
|
||||
if raw_dtype is None and tensor_dtype not in (np.float32, np.float16):
|
||||
raise ValueError("Only F32 and F16 tensors are supported for now")
|
||||
|
||||
encoded_name = name.encode("utf8")
|
||||
self.ti_data += self._pack("Q", len(encoded_name))
|
||||
self.ti_data += encoded_name
|
||||
@ -207,7 +204,18 @@ class GGUFWriter:
|
||||
for i in range(n_dims):
|
||||
self.ti_data += self._pack("Q", tensor_shape[n_dims - 1 - i])
|
||||
if raw_dtype is None:
|
||||
dtype = GGMLQuantizationType.F32 if tensor_dtype == np.float32 else GGMLQuantizationType.F16
|
||||
if tensor_shape == np.float32:
|
||||
dtype = GGMLQuantizationType.F32
|
||||
elif tensor_dtype == np.float16:
|
||||
dtype = GGMLQuantizationType.F16
|
||||
elif tensor_dtype == np.int8:
|
||||
dtype = GGMLQuantizationType.I8
|
||||
elif tensor_dtype == np.int16:
|
||||
dtype = GGMLQuantizationType.I16
|
||||
elif tensor_dtype == np.int32:
|
||||
dtype = GGMLQuantizationType.I32
|
||||
else:
|
||||
raise ValueError("Only F32, F16, I8, I16, I32 tensors are supported for now")
|
||||
else:
|
||||
dtype = raw_dtype
|
||||
self.ti_data += self._pack("I", dtype)
|
||||
|
Loading…
Reference in New Issue
Block a user