mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-04 01:57:53 +01:00
llama : pass KV cache type through API
This commit is contained in:
parent
b881f630ca
commit
3ce30e07c9
@ -500,6 +500,10 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
params.dump_kv_cache = true;
|
||||
} else if (arg == "-nkvo" || arg == "--no-kv-offload") {
|
||||
params.no_kv_offload = true;
|
||||
} else if (arg == "-ctk" || arg == "--cache-type-k") {
|
||||
params.cache_type_k = argv[++i];
|
||||
} else if (arg == "-ctv" || arg == "--cache-type-v") {
|
||||
params.cache_type_v = argv[++i];
|
||||
} else if (arg == "--multiline-input") {
|
||||
params.multiline_input = true;
|
||||
} else if (arg == "--simple-io") {
|
||||
@ -844,6 +848,10 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" verbose print of the KV cache\n");
|
||||
printf(" -nkvo, --no-kv-offload\n");
|
||||
printf(" disable KV offload\n");
|
||||
printf(" -ctk TYPE, --cache-type-k TYPE\n");
|
||||
printf(" KV cache data type for K (default: %s)\n", params.cache_type_k.c_str());
|
||||
printf(" -ctv TYPE, --cache-type-v TYPE\n");
|
||||
printf(" KV cache data type for V (default: %s)\n", params.cache_type_v.c_str());
|
||||
printf(" --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
|
||||
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
printf(" --lora-scaled FNAME S apply LoRA adapter with user defined scaling S (implies --no-mmap)\n");
|
||||
@ -908,6 +916,29 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
|
||||
return mparams;
|
||||
}
|
||||
|
||||
static ggml_type kv_cache_type_from_str(const std::string & s) {
|
||||
if (s == "f16") {
|
||||
return GGML_TYPE_F16;
|
||||
}
|
||||
if (s == "q8_0") {
|
||||
return GGML_TYPE_Q8_0;
|
||||
}
|
||||
if (s == "q4_0") {
|
||||
return GGML_TYPE_Q4_0;
|
||||
}
|
||||
if (s == "q4_1") {
|
||||
return GGML_TYPE_Q4_1;
|
||||
}
|
||||
if (s == "q5_0") {
|
||||
return GGML_TYPE_Q5_0;
|
||||
}
|
||||
if (s == "q5_1") {
|
||||
return GGML_TYPE_Q5_1;
|
||||
}
|
||||
|
||||
throw std::runtime_error("Invalid cache type: " + s);
|
||||
}
|
||||
|
||||
struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
|
||||
auto cparams = llama_context_default_params();
|
||||
|
||||
@ -930,6 +961,9 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
cparams.yarn_orig_ctx = params.yarn_orig_ctx;
|
||||
cparams.offload_kqv = !params.no_kv_offload;
|
||||
|
||||
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
|
||||
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
|
||||
|
||||
return cparams;
|
||||
}
|
||||
|
||||
|
@ -125,9 +125,12 @@ struct gpt_params {
|
||||
bool dump_kv_cache = false; // dump the KV cache contents for debugging purposes
|
||||
bool no_kv_offload = false; // disable KV offloading
|
||||
|
||||
std::string cache_type_k = "f16"; // KV cache data type for the K
|
||||
std::string cache_type_v = "f16"; // KV cache data type for the V
|
||||
|
||||
// multimodal models (see examples/llava)
|
||||
std::string mmproj = ""; // path to multimodal projector
|
||||
std::string image = ""; // path to an image file
|
||||
std::string image = ""; // path to an image file
|
||||
};
|
||||
|
||||
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
|
||||
|
29
llama.cpp
29
llama.cpp
@ -8580,6 +8580,8 @@ struct llama_context_params llama_context_default_params() {
|
||||
/*.yarn_beta_fast =*/ 32.0f,
|
||||
/*.yarn_beta_slow =*/ 1.0f,
|
||||
/*.yarn_orig_ctx =*/ 0,
|
||||
/*.type_k =*/ GGML_TYPE_F16,
|
||||
/*.type_v =*/ GGML_TYPE_F16,
|
||||
/*.mul_mat_q =*/ true,
|
||||
/*.f16_kv =*/ true,
|
||||
/*.logits_all =*/ false,
|
||||
@ -8737,31 +8739,36 @@ struct llama_context * llama_new_context_with_model(
|
||||
|
||||
//const ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
// TODO: move as params
|
||||
const ggml_type k_type = GGML_TYPE_Q8_0;
|
||||
const ggml_type v_type = GGML_TYPE_F16;
|
||||
const ggml_type type_k = params.type_k;
|
||||
const ggml_type type_v = params.type_v;
|
||||
|
||||
GGML_ASSERT(hparams.n_embd_head() % ggml_blck_size(k_type) == 0);
|
||||
GGML_ASSERT(hparams.n_embd_head() % ggml_blck_size(v_type) == 0);
|
||||
GGML_ASSERT(hparams.n_embd_head() % ggml_blck_size(type_k) == 0);
|
||||
GGML_ASSERT(hparams.n_embd_head() % ggml_blck_size(type_v) == 0);
|
||||
|
||||
// reserve memory for context buffers
|
||||
if (!hparams.vocab_only) {
|
||||
if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, k_type, v_type, cparams.n_ctx, model->n_gpu_layers, cparams.offload_kqv)) {
|
||||
if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, type_k, type_v, cparams.n_ctx, model->n_gpu_layers, cparams.offload_kqv)) {
|
||||
LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
{
|
||||
// const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
|
||||
size_t memory_size = 0;
|
||||
size_t memory_size_k = 0;
|
||||
size_t memory_size_v = 0;
|
||||
|
||||
for (auto & k : ctx->kv_self.k_l) {
|
||||
memory_size += ggml_nbytes(k);
|
||||
memory_size_k += ggml_nbytes(k);
|
||||
}
|
||||
|
||||
for (auto & v : ctx->kv_self.v_l) {
|
||||
memory_size += ggml_nbytes(v);
|
||||
memory_size_v += ggml_nbytes(v);
|
||||
}
|
||||
LLAMA_LOG_INFO("%s: kv self size = %7.2f MiB\n", __func__, memory_size / 1024.0 / 1024.0);
|
||||
|
||||
LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
|
||||
(float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
|
||||
ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
|
||||
ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
|
||||
}
|
||||
|
||||
// resized during inference
|
||||
|
3
llama.h
3
llama.h
@ -191,6 +191,9 @@ extern "C" {
|
||||
float yarn_beta_slow; // YaRN high correction dim
|
||||
uint32_t yarn_orig_ctx; // YaRN original context size
|
||||
|
||||
ggml_type type_k; // data type for K cache
|
||||
ggml_type type_v; // data type for V cache
|
||||
|
||||
// Keep the booleans together to avoid misalignment during copy-by-value.
|
||||
bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
|
||||
bool f16_kv; // use fp16 for KV cache, fp32 otherwise
|
||||
|
Loading…
Reference in New Issue
Block a user