mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 23:00:46 +01:00
Merge branch 'master' into gg/flash-attn
This commit is contained in:
commit
3d03bcb7af
1
.ecrc
1
.ecrc
@ -1,4 +1,5 @@
|
||||
{
|
||||
"Exclude": ["^\\.gitmodules$"],
|
||||
"Disable": {
|
||||
"IndentSize": true
|
||||
}
|
||||
|
21
.github/workflows/build.yml
vendored
21
.github/workflows/build.yml
vendored
@ -337,6 +337,7 @@ jobs:
|
||||
OPENCL_VERSION: 2023.04.17
|
||||
CLBLAST_VERSION: 1.6.0
|
||||
SDE_VERSION: 9.33.0-2024-01-07
|
||||
VULKAN_VERSION: 1.3.261.1
|
||||
|
||||
strategy:
|
||||
matrix:
|
||||
@ -353,6 +354,8 @@ jobs:
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_CLBLAST=ON -DBUILD_SHARED_LIBS=ON -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/clblast"'
|
||||
- build: 'openblas'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'kompute'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
@ -361,6 +364,12 @@ jobs:
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Clone Kompute submodule
|
||||
id: clone_kompute
|
||||
if: ${{ matrix.build == 'kompute' }}
|
||||
run: |
|
||||
git submodule update --init kompute
|
||||
|
||||
- name: Download OpenCL SDK
|
||||
id: get_opencl
|
||||
if: ${{ matrix.build == 'clblast' }}
|
||||
@ -395,6 +404,15 @@ jobs:
|
||||
$lib = $(join-path $msvc 'bin\Hostx64\x64\lib.exe')
|
||||
& $lib /machine:x64 "/def:${env:RUNNER_TEMP}/openblas/lib/libopenblas.def" "/out:${env:RUNNER_TEMP}/openblas/lib/openblas.lib" /name:openblas.dll
|
||||
|
||||
- name: Install Vulkan SDK
|
||||
id: get_vulkan
|
||||
if: ${{ matrix.build == 'kompute' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
|
||||
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
|
||||
Add-Content $env:GITHUB_ENV "VULKAN_SDK=C:\VulkanSDK\${env:VULKAN_VERSION}"
|
||||
Add-Content $env:GITHUB_PATH "C:\VulkanSDK\${env:VULKAN_VERSION}\bin"
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
@ -432,7 +450,8 @@ jobs:
|
||||
|
||||
- name: Test
|
||||
id: cmake_test
|
||||
if: ${{ matrix.build != 'clblast' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} # not all machines have native AVX-512
|
||||
# not all machines have native AVX-512
|
||||
if: ${{ matrix.build != 'clblast' && matrix.build != 'kompute' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main -C Release --verbose --timeout 900
|
||||
|
3
.gitmodules
vendored
Normal file
3
.gitmodules
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
[submodule "kompute"]
|
||||
path = kompute
|
||||
url = https://github.com/nomic-ai/kompute.git
|
178
CMakeLists.txt
178
CMakeLists.txt
@ -103,6 +103,7 @@ option(LLAMA_VULKAN "llama: use Vulkan"
|
||||
option(LLAMA_METAL "llama: use Metal" ${LLAMA_METAL_DEFAULT})
|
||||
option(LLAMA_METAL_NDEBUG "llama: disable Metal debugging" OFF)
|
||||
option(LLAMA_METAL_SHADER_DEBUG "llama: compile Metal with -fno-fast-math" OFF)
|
||||
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
|
||||
option(LLAMA_MPI "llama: use MPI" OFF)
|
||||
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
|
||||
option(LLAMA_SYCL "llama: use SYCL" OFF)
|
||||
@ -422,7 +423,13 @@ if (LLAMA_VULKAN)
|
||||
if (Vulkan_FOUND)
|
||||
message(STATUS "Vulkan found")
|
||||
|
||||
set(GGML_HEADERS_VULKAN ggml-vulkan.h)
|
||||
set(GGML_SOURCES_VULKAN ggml-vulkan.cpp)
|
||||
|
||||
add_library(ggml-vulkan STATIC ggml-vulkan.cpp ggml-vulkan.h)
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(ggml-vulkan PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
target_link_libraries(ggml-vulkan PRIVATE Vulkan::Vulkan)
|
||||
|
||||
add_compile_definitions(GGML_USE_VULKAN)
|
||||
@ -478,7 +485,6 @@ if (LLAMA_HIPBLAS)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
|
||||
if (LLAMA_SYCL)
|
||||
if ( NOT DEFINED ENV{ONEAPI_ROOT})
|
||||
message(FATAL_ERROR "Not detect ENV {ONEAPI_ROOT}, please install oneAPI & source it, like: source /opt/intel/oneapi/setvars.sh")
|
||||
@ -504,6 +510,160 @@ if (LLAMA_SYCL)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} sycl OpenCL mkl_core pthread m dl mkl_sycl_blas mkl_intel_ilp64 mkl_tbb_thread)
|
||||
endif()
|
||||
|
||||
if (LLAMA_KOMPUTE)
|
||||
add_compile_definitions(VULKAN_HPP_DISPATCH_LOADER_DYNAMIC=1)
|
||||
find_package(Vulkan COMPONENTS glslc REQUIRED)
|
||||
find_program(glslc_executable NAMES glslc HINTS Vulkan::glslc)
|
||||
if (NOT glslc_executable)
|
||||
message(FATAL_ERROR "glslc not found")
|
||||
endif()
|
||||
|
||||
function(compile_shader)
|
||||
set(options)
|
||||
set(oneValueArgs)
|
||||
set(multiValueArgs SOURCES)
|
||||
cmake_parse_arguments(compile_shader "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
foreach(source ${compile_shader_SOURCES})
|
||||
get_filename_component(filename ${source} NAME)
|
||||
set(spv_file ${filename}.spv)
|
||||
add_custom_command(
|
||||
OUTPUT ${spv_file}
|
||||
DEPENDS ${CMAKE_CURRENT_SOURCE_DIR}/${source}
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/common.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_getrows.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n_pre.comp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kompute-shaders/op_mul_mv_q_n.comp
|
||||
COMMAND ${glslc_executable} --target-env=vulkan1.2 -o ${spv_file} ${CMAKE_CURRENT_SOURCE_DIR}/${source}
|
||||
COMMENT "Compiling ${source} to ${spv_file}"
|
||||
)
|
||||
|
||||
get_filename_component(RAW_FILE_NAME ${spv_file} NAME)
|
||||
set(FILE_NAME "shader${RAW_FILE_NAME}")
|
||||
string(REPLACE ".comp.spv" ".h" HEADER_FILE ${FILE_NAME})
|
||||
string(TOUPPER ${HEADER_FILE} HEADER_FILE_DEFINE)
|
||||
string(REPLACE "." "_" HEADER_FILE_DEFINE "${HEADER_FILE_DEFINE}")
|
||||
set(OUTPUT_HEADER_FILE "${HEADER_FILE}")
|
||||
message(STATUS "${HEADER_FILE} generating ${HEADER_FILE_DEFINE}")
|
||||
if(CMAKE_GENERATOR MATCHES "Visual Studio")
|
||||
add_custom_command(
|
||||
OUTPUT ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
DEPENDS ${spv_file} xxd
|
||||
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/$<CONFIG>/xxd"
|
||||
)
|
||||
else()
|
||||
add_custom_command(
|
||||
OUTPUT ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "/*THIS FILE HAS BEEN AUTOMATICALLY GENERATED - DO NOT EDIT*/" > ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#ifndef ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace kp {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "namespace shader_data {" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_BINARY_DIR}/bin/xxd -i ${RAW_FILE_NAME} >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo "}}" >> ${OUTPUT_HEADER_FILE}
|
||||
COMMAND ${CMAKE_COMMAND} -E echo \"\#endif // define ${HEADER_FILE_DEFINE}\" >> ${OUTPUT_HEADER_FILE}
|
||||
DEPENDS ${spv_file} xxd
|
||||
COMMENT "Converting to hpp: ${FILE_NAME} ${CMAKE_BINARY_DIR}/bin/xxd"
|
||||
)
|
||||
endif()
|
||||
endforeach()
|
||||
endfunction()
|
||||
|
||||
if (EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/kompute/CMakeLists.txt")
|
||||
message(STATUS "Kompute found")
|
||||
set(KOMPUTE_OPT_LOG_LEVEL Error CACHE STRING "Kompute log level")
|
||||
add_subdirectory(kompute)
|
||||
|
||||
# Compile our shaders
|
||||
compile_shader(SOURCES
|
||||
kompute-shaders/op_scale.comp
|
||||
kompute-shaders/op_scale_8.comp
|
||||
kompute-shaders/op_add.comp
|
||||
kompute-shaders/op_addrow.comp
|
||||
kompute-shaders/op_mul.comp
|
||||
kompute-shaders/op_silu.comp
|
||||
kompute-shaders/op_relu.comp
|
||||
kompute-shaders/op_gelu.comp
|
||||
kompute-shaders/op_softmax.comp
|
||||
kompute-shaders/op_norm.comp
|
||||
kompute-shaders/op_rmsnorm.comp
|
||||
kompute-shaders/op_diagmask.comp
|
||||
kompute-shaders/op_mul_mat_mat_f32.comp
|
||||
kompute-shaders/op_mul_mat_f16.comp
|
||||
kompute-shaders/op_mul_mat_q8_0.comp
|
||||
kompute-shaders/op_mul_mat_q4_0.comp
|
||||
kompute-shaders/op_mul_mat_q4_1.comp
|
||||
kompute-shaders/op_mul_mat_q6_k.comp
|
||||
kompute-shaders/op_getrows_f16.comp
|
||||
kompute-shaders/op_getrows_q4_0.comp
|
||||
kompute-shaders/op_getrows_q4_1.comp
|
||||
kompute-shaders/op_getrows_q6_k.comp
|
||||
kompute-shaders/op_rope_f16.comp
|
||||
kompute-shaders/op_rope_f32.comp
|
||||
kompute-shaders/op_cpy_f16_f16.comp
|
||||
kompute-shaders/op_cpy_f16_f32.comp
|
||||
kompute-shaders/op_cpy_f32_f16.comp
|
||||
kompute-shaders/op_cpy_f32_f32.comp
|
||||
)
|
||||
|
||||
# Create a custom target for our generated shaders
|
||||
add_custom_target(generated_shaders DEPENDS
|
||||
shaderop_scale.h
|
||||
shaderop_scale_8.h
|
||||
shaderop_add.h
|
||||
shaderop_addrow.h
|
||||
shaderop_mul.h
|
||||
shaderop_silu.h
|
||||
shaderop_relu.h
|
||||
shaderop_gelu.h
|
||||
shaderop_softmax.h
|
||||
shaderop_norm.h
|
||||
shaderop_rmsnorm.h
|
||||
shaderop_diagmask.h
|
||||
shaderop_mul_mat_mat_f32.h
|
||||
shaderop_mul_mat_f16.h
|
||||
shaderop_mul_mat_q8_0.h
|
||||
shaderop_mul_mat_q4_0.h
|
||||
shaderop_mul_mat_q4_1.h
|
||||
shaderop_mul_mat_q6_k.h
|
||||
shaderop_getrows_f16.h
|
||||
shaderop_getrows_q4_0.h
|
||||
shaderop_getrows_q4_1.h
|
||||
shaderop_getrows_q6_k.h
|
||||
shaderop_rope_f16.h
|
||||
shaderop_rope_f32.h
|
||||
shaderop_cpy_f16_f16.h
|
||||
shaderop_cpy_f16_f32.h
|
||||
shaderop_cpy_f32_f16.h
|
||||
shaderop_cpy_f32_f32.h
|
||||
)
|
||||
|
||||
# Create a custom command that depends on the generated_shaders
|
||||
add_custom_command(
|
||||
OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
|
||||
COMMAND ${CMAKE_COMMAND} -E touch ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp
|
||||
DEPENDS generated_shaders
|
||||
COMMENT "Ensuring shaders are generated before compiling ggml-kompute.cpp"
|
||||
)
|
||||
|
||||
# Add the stamp to the main sources to ensure dependency tracking
|
||||
set(GGML_SOURCES_KOMPUTE ggml-kompute.cpp ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
|
||||
set(GGML_HEADERS_KOMPUTE ggml-kompute.h ${CMAKE_CURRENT_BINARY_DIR}/ggml-kompute.stamp)
|
||||
add_compile_definitions(GGML_USE_KOMPUTE)
|
||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} kompute)
|
||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${CMAKE_BINARY_DIR})
|
||||
else()
|
||||
message(WARNING "Kompute not found")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
function(get_flags CCID CCVER)
|
||||
set(C_FLAGS "")
|
||||
set(CXX_FLAGS "")
|
||||
@ -846,12 +1006,14 @@ add_library(ggml OBJECT
|
||||
ggml-backend.h
|
||||
ggml-quants.c
|
||||
ggml-quants.h
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||
${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||
${GGML_SOURCES_SYCL} ${GGML_HEADERS_SYCL}
|
||||
${GGML_SOURCES_KOMPUTE} ${GGML_HEADERS_KOMPUTE}
|
||||
)
|
||||
|
||||
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
|
||||
@ -928,7 +1090,7 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
|
||||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama)
|
||||
|
||||
set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h"
|
||||
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}"
|
||||
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}" "${GGML_HEADERS_VULKAN}"
|
||||
"${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}")
|
||||
|
||||
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
|
13
README.md
13
README.md
@ -10,7 +10,6 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
||||
|
||||
### Hot topics
|
||||
|
||||
- ⚠️ Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
|
||||
- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow
|
||||
- Collecting Apple Silicon performance stats:
|
||||
- M-series: https://github.com/ggerganov/llama.cpp/discussions/4167
|
||||
@ -291,7 +290,7 @@ In order to build llama.cpp you have three different options.
|
||||
sudo pkg install gmake automake autoconf pkgconf llvm15 clinfo clover \
|
||||
opencl clblast openblas
|
||||
|
||||
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
|
||||
gmake CC=/usr/local/bin/clang15 CXX=/usr/local/bin/clang++15 -j4
|
||||
```
|
||||
|
||||
**Notes:** With this packages you can build llama.cpp with OPENBLAS and
|
||||
@ -614,9 +613,9 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
# obtain the original LLaMA model weights and place them in ./models
|
||||
ls ./models
|
||||
65B 30B 13B 7B tokenizer_checklist.chk tokenizer.model
|
||||
# [Optional] for models using BPE tokenizers
|
||||
ls ./models
|
||||
65B 30B 13B 7B vocab.json
|
||||
# [Optional] for models using BPE tokenizers
|
||||
ls ./models
|
||||
65B 30B 13B 7B vocab.json
|
||||
|
||||
# install Python dependencies
|
||||
python3 -m pip install -r requirements.txt
|
||||
@ -624,8 +623,8 @@ python3 -m pip install -r requirements.txt
|
||||
# convert the 7B model to ggml FP16 format
|
||||
python3 convert.py models/7B/
|
||||
|
||||
# [Optional] for models using BPE tokenizers
|
||||
python convert.py models/7B/ --vocabtype bpe
|
||||
# [Optional] for models using BPE tokenizers
|
||||
python convert.py models/7B/ --vocabtype bpe
|
||||
|
||||
# quantize the model to 4-bits (using q4_0 method)
|
||||
./quantize ./models/7B/ggml-model-f16.gguf ./models/7B/ggml-model-q4_0.gguf q4_0
|
||||
|
@ -334,7 +334,10 @@ class Params:
|
||||
class BpeVocab:
|
||||
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None:
|
||||
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
|
||||
self.vocab = self.bpe_tokenizer["model"]["vocab"]
|
||||
try:
|
||||
self.vocab = self.bpe_tokenizer["model"]["vocab"]
|
||||
except KeyError:
|
||||
self.vocab = self.bpe_tokenizer
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
||||
|
@ -39,6 +39,17 @@ static std::ostringstream * g_output_ss;
|
||||
static std::vector<llama_token> * g_output_tokens;
|
||||
static bool is_interacting = false;
|
||||
|
||||
static bool file_exists(const std::string &path) {
|
||||
std::ifstream f(path.c_str());
|
||||
return f.good();
|
||||
}
|
||||
|
||||
static bool file_is_empty(const std::string &path) {
|
||||
std::ifstream f;
|
||||
f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
|
||||
return f.tellg() == 0;
|
||||
}
|
||||
|
||||
static void write_logfile(
|
||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||
@ -215,12 +226,12 @@ int main(int argc, char ** argv) {
|
||||
|
||||
if (!path_session.empty()) {
|
||||
LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
|
||||
|
||||
// fopen to check for existing session
|
||||
FILE * fp = std::fopen(path_session.c_str(), "rb");
|
||||
if (fp != NULL) {
|
||||
std::fclose(fp);
|
||||
|
||||
if (!file_exists(path_session)) {
|
||||
LOG_TEE("%s: session file does not exist, will create.\n", __func__);
|
||||
} else if (file_is_empty(path_session)) {
|
||||
LOG_TEE("%s: The session file is empty. A new session will be initialized.\n", __func__);
|
||||
} else {
|
||||
// The file exists and is not empty
|
||||
session_tokens.resize(n_ctx);
|
||||
size_t n_token_count_out = 0;
|
||||
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
||||
@ -229,10 +240,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
session_tokens.resize(n_token_count_out);
|
||||
llama_set_rng_seed(ctx, params.seed);
|
||||
|
||||
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
|
||||
} else {
|
||||
LOG_TEE("%s: session file does not exist, will create\n", __func__);
|
||||
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -378,6 +378,8 @@ int main(int argc, char ** argv) {
|
||||
printf("testing %s ...\n", ggml_type_name(type));
|
||||
}
|
||||
|
||||
ggml_quantize_init(type);
|
||||
|
||||
error_stats global_stats {};
|
||||
|
||||
for (const auto& kv_tensor : tensors) {
|
||||
|
@ -25,6 +25,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "IQ2_XS", LLAMA_FTYPE_MOSTLY_IQ2_XS, " 2.31 bpw quantization", },
|
||||
{ "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", },
|
||||
{ "IQ3_XXS",LLAMA_FTYPE_MOSTLY_IQ3_XXS," 3.06 bpw quantization", },
|
||||
{ "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" },
|
||||
{ "Q3_K_XS",LLAMA_FTYPE_MOSTLY_Q3_K_XS,"3-bit extra small quantization" , },
|
||||
{ "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", },
|
||||
@ -36,7 +37,7 @@ static const std::vector<struct quant_option> QUANT_OPTIONS = {
|
||||
{ "Q5_K", LLAMA_FTYPE_MOSTLY_Q5_K_M, "alias for Q5_K_M", },
|
||||
{ "Q5_K_S", LLAMA_FTYPE_MOSTLY_Q5_K_S, " 4.33G, +0.0400 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q5_K_M", LLAMA_FTYPE_MOSTLY_Q5_K_M, " 4.45G, +0.0122 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, -0.0008 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q6_K", LLAMA_FTYPE_MOSTLY_Q6_K, " 5.15G, +0.0008 ppl @ LLaMA-v1-7B", },
|
||||
{ "Q8_0", LLAMA_FTYPE_MOSTLY_Q8_0, " 6.70G, +0.0004 ppl @ LLaMA-v1-7B", },
|
||||
{ "F16", LLAMA_FTYPE_MOSTLY_F16, "13.00G @ 7B", },
|
||||
{ "F32", LLAMA_FTYPE_ALL_F32, "26.00G @ 7B", },
|
||||
|
@ -4,34 +4,35 @@ This example demonstrates a simple HTTP API server and a simple web front end to
|
||||
|
||||
Command line options:
|
||||
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`.
|
||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
|
||||
- `--numa`: Attempt optimizations that help on some NUMA systems.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
|
||||
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
|
||||
- `--port`: Set the port to listen. Default: `8080`.
|
||||
- `--path`: path from which to serve static files (default examples/server/public)
|
||||
- `--api-key`: Set an api key for request authorization. By default the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||
- `--api-key-file`: path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`'s.
|
||||
- `--embedding`: Enable embedding extraction, Default: disabled.
|
||||
- `-np N`, `--parallel N`: Set the number of slots for process requests (default: 1)
|
||||
- `-cb`, `--cont-batching`: enable continuous batching (a.k.a dynamic batching) (default: disabled)
|
||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load "a system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
||||
- `--threads N`, `-t N`: Set the number of threads to use during generation.
|
||||
- `-tb N, --threads-batch N`: Set the number of threads to use during batch and prompt processing. If not specified, the number of threads will be set to the number of threads used for generation.
|
||||
- `-m FNAME`, `--model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.gguf`).
|
||||
- `-a ALIAS`, `--alias ALIAS`: Set an alias for the model. The alias will be returned in API responses.
|
||||
- `-c N`, `--ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference. The size may differ in other models, for example, baichuan models were build with a context of 4096.
|
||||
- `-ngl N`, `--n-gpu-layers N`: When compiled with appropriate support (currently CLBlast or cuBLAS), this option allows offloading some layers to the GPU for computation. Generally results in increased performance.
|
||||
- `-mg i, --main-gpu i`: When using multiple GPUs this option controls which GPU is used for small tensors for which the overhead of splitting the computation across all GPUs is not worthwhile. The GPU in question will use slightly more VRAM to store a scratch buffer for temporary results. By default GPU 0 is used. Requires cuBLAS.
|
||||
- `-ts SPLIT, --tensor-split SPLIT`: When using multiple GPUs this option controls how large tensors should be split across all GPUs. `SPLIT` is a comma-separated list of non-negative values that assigns the proportion of data that each GPU should get in order. For example, "3,2" will assign 60% of the data to GPU 0 and 40% to GPU 1. By default the data is split in proportion to VRAM but this may not be optimal for performance. Requires cuBLAS.
|
||||
- `-b N`, `--batch-size N`: Set the batch size for prompt processing. Default: `512`.
|
||||
- `--memory-f32`: Use 32-bit floats instead of 16-bit floats for memory key+value. Not recommended.
|
||||
- `--mlock`: Lock the model in memory, preventing it from being swapped out when memory-mapped.
|
||||
- `--no-mmap`: Do not memory-map the model. By default, models are mapped into memory, which allows the system to load only the necessary parts of the model as needed.
|
||||
- `--numa`: Attempt optimizations that help on some NUMA systems.
|
||||
- `--lora FNAME`: Apply a LoRA (Low-Rank Adaptation) adapter to the model (implies --no-mmap). This allows you to adapt the pretrained model to specific tasks or domains.
|
||||
- `--lora-base FNAME`: Optional model to use as a base for the layers modified by the LoRA adapter. This flag is used in conjunction with the `--lora` flag, and specifies the base model for the adaptation.
|
||||
- `-to N`, `--timeout N`: Server read/write timeout in seconds. Default `600`.
|
||||
- `--host`: Set the hostname or ip address to listen. Default `127.0.0.1`.
|
||||
- `--port`: Set the port to listen. Default: `8080`.
|
||||
- `--path`: path from which to serve static files (default examples/server/public)
|
||||
- `--api-key`: Set an api key for request authorization. By default the server responds to every request. With an api key set, the requests must have the Authorization header set with the api key as Bearer token. May be used multiple times to enable multiple valid keys.
|
||||
- `--api-key-file`: path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access. May be used in conjunction with `--api-key`'s.
|
||||
- `--embedding`: Enable embedding extraction, Default: disabled.
|
||||
- `-np N`, `--parallel N`: Set the number of slots for process requests (default: 1)
|
||||
- `-cb`, `--cont-batching`: enable continuous batching (a.k.a dynamic batching) (default: disabled)
|
||||
- `-spf FNAME`, `--system-prompt-file FNAME` Set a file to load "a system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
- `--mmproj MMPROJ_FILE`: Path to a multimodal projector file for LLaVA.
|
||||
- `--grp-attn-n`: Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`
|
||||
- `--grp-attn-w`: Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`
|
||||
|
||||
## Build
|
||||
|
||||
server is build alongside everything else from the root of the project
|
||||
@ -52,21 +53,23 @@ server is build alongside everything else from the root of the project
|
||||
|
||||
To get started right away, run the following command, making sure to use the correct path for the model you have:
|
||||
|
||||
### Unix-based systems (Linux, macOS, etc.):
|
||||
### Unix-based systems (Linux, macOS, etc.)
|
||||
|
||||
```bash
|
||||
./server -m models/7B/ggml-model.gguf -c 2048
|
||||
```
|
||||
|
||||
### Windows:
|
||||
### Windows
|
||||
|
||||
```powershell
|
||||
server.exe -m models\7B\ggml-model.gguf -c 2048
|
||||
```
|
||||
|
||||
The above command will start a server that by default listens on `127.0.0.1:8080`.
|
||||
You can consume the endpoints with Postman or NodeJS with axios library. You can visit the web front end at the same url.
|
||||
|
||||
### Docker:
|
||||
### Docker
|
||||
|
||||
```bash
|
||||
docker run -p 8080:8080 -v /path/to/models:/models ggerganov/llama.cpp:server -m models/7B/ggml-model.gguf -c 512 --host 0.0.0.0 --port 8080
|
||||
|
||||
@ -120,12 +123,13 @@ node index.js
|
||||
```
|
||||
|
||||
## API Endpoints
|
||||
- **GET** `/health`: Returns the current state of the server:
|
||||
- `{"status": "loading model"}` if the model is still being loaded.
|
||||
- `{"status": "error"}` if the model failed to load.
|
||||
- `{"status": "ok"}` if the model is successfully loaded and the server is ready for further requests mentioned below.
|
||||
|
||||
- **POST** `/completion`: Given a `prompt`, it returns the predicted completion.
|
||||
- **GET** `/health`: Returns the current state of the server:
|
||||
- `{"status": "loading model"}` if the model is still being loaded.
|
||||
- `{"status": "error"}` if the model failed to load.
|
||||
- `{"status": "ok"}` if the model is successfully loaded and the server is ready for further requests mentioned below.
|
||||
|
||||
- **POST** `/completion`: Given a `prompt`, it returns the predicted completion.
|
||||
|
||||
*Options:*
|
||||
|
||||
@ -189,14 +193,13 @@ node index.js
|
||||
|
||||
`system_prompt`: Change the system prompt (initial prompt of all slots), this is useful for chat applications. [See more](#change-system-prompt-on-runtime)
|
||||
|
||||
### Result JSON:
|
||||
|
||||
* Note: When using streaming mode (`stream`) only `content` and `stop` will be returned until end of completion.
|
||||
### Result JSON
|
||||
|
||||
- Note: When using streaming mode (`stream`) only `content` and `stop` will be returned until end of completion.
|
||||
|
||||
- `completion_probabilities`: An array of token probabilities for each completion. The array's length is `n_predict`. Each item in the array has the following structure:
|
||||
|
||||
```
|
||||
```json
|
||||
{
|
||||
"content": "<the token selected by the model>",
|
||||
"probs": [
|
||||
@ -212,6 +215,7 @@ node index.js
|
||||
]
|
||||
},
|
||||
```
|
||||
|
||||
Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
- `content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string.
|
||||
@ -228,7 +232,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
- `tokens_evaluated`: Number of tokens evaluated in total from the prompt
|
||||
- `truncated`: Boolean indicating if the context size was exceeded during generation, i.e. the number of tokens provided in the prompt (`tokens_evaluated`) plus tokens generated (`tokens predicted`) exceeded the context size (`n_ctx`)
|
||||
|
||||
- **POST** `/tokenize`: Tokenize a given text.
|
||||
- **POST** `/tokenize`: Tokenize a given text.
|
||||
|
||||
*Options:*
|
||||
|
||||
@ -236,13 +240,13 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
Note that the special `BOS` token is not added in front of the text and also a space character is not inserted automatically as it is for `/completion`.
|
||||
|
||||
- **POST** `/detokenize`: Convert tokens to text.
|
||||
- **POST** `/detokenize`: Convert tokens to text.
|
||||
|
||||
*Options:*
|
||||
|
||||
`tokens`: Set the tokens to detokenize.
|
||||
|
||||
- **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does.
|
||||
- **POST** `/embedding`: Generate embedding of a given text just as [the embedding example](../embedding) does.
|
||||
|
||||
*Options:*
|
||||
|
||||
@ -250,7 +254,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `content`. You can determine the place of the image in the content as in the following: `Image: [img-21].\nCaption: This is a picture of a house`. In this case, `[img-21]` will be replaced by the embeddings of the image with id `21` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 21}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||
|
||||
- **POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||
- **POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||
|
||||
*Options:*
|
||||
|
||||
@ -260,9 +264,9 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
It also accepts all the options of `/completion` except `stream` and `prompt`.
|
||||
|
||||
- **GET** `/props`: Return the required assistant name and anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
|
||||
- **GET** `/props`: Return the required assistant name and anti-prompt to generate the prompt in case you have specified a system prompt for all slots.
|
||||
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served.
|
||||
- **POST** `/v1/chat/completions`: OpenAI-compatible Chat Completions API. Given a ChatML-formatted json description in `messages`, it returns the predicted completion. Both synchronous and streaming mode are supported, so scripted and interactive applications work fine. While no strong claims of compatibility with OpenAI API spec is being made, in our experience it suffices to support many apps. Only ChatML-tuned models, such as Dolphin, OpenOrca, OpenHermes, OpenChat-3.5, etc can be used with this endpoint. Compared to `api_like_OAI.py` this API implementation does not require a wrapper to be served.
|
||||
|
||||
*Options:*
|
||||
|
||||
@ -290,6 +294,7 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
|
||||
print(completion.choices[0].message)
|
||||
```
|
||||
|
||||
... or raw HTTP requests:
|
||||
|
||||
```shell
|
||||
@ -311,6 +316,40 @@ Notice that each `probs` is an array of length `n_probs`.
|
||||
}'
|
||||
```
|
||||
|
||||
- **POST** `/v1/embeddings`: OpenAI-compatible embeddings API.
|
||||
|
||||
*Options:*
|
||||
|
||||
See [OpenAI Embeddings API documentation](https://platform.openai.com/docs/api-reference/embeddings).
|
||||
|
||||
*Examples:*
|
||||
|
||||
- input as string
|
||||
|
||||
```shell
|
||||
curl http://localhost:8080/v1/embeddings \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer no-key" \
|
||||
-d '{
|
||||
"input": "hello",
|
||||
"model":"GPT-4",
|
||||
"encoding_format": "float"
|
||||
}'
|
||||
```
|
||||
|
||||
- `input` as string array
|
||||
|
||||
```shell
|
||||
curl http://localhost:8080/v1/embeddings \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer no-key" \
|
||||
-d '{
|
||||
"input": ["hello", "world"],
|
||||
"model":"GPT-4",
|
||||
"encoding_format": "float"
|
||||
}'
|
||||
```
|
||||
|
||||
## More examples
|
||||
|
||||
### Change system prompt on runtime
|
||||
@ -362,6 +401,7 @@ python api_like_OAI.py
|
||||
```
|
||||
|
||||
After running the API server, you can use it in Python by setting the API base URL.
|
||||
|
||||
```python
|
||||
openai.api_base = "http://<Your api-server IP>:port"
|
||||
```
|
||||
|
@ -48,6 +48,7 @@ chat_completion() {
|
||||
top_p: 0.9,
|
||||
n_keep: $n_keep,
|
||||
n_predict: 256,
|
||||
cache_prompt: true,
|
||||
stop: ["\n### Human:"],
|
||||
stream: true
|
||||
}')"
|
||||
|
@ -206,3 +206,18 @@ inline static std::vector<json> format_partial_response_oaicompat(const task_res
|
||||
|
||||
return std::vector<json>({ret});
|
||||
}
|
||||
|
||||
inline static json format_embeddings_response_oaicompat(const json &request, const json &embeddings)
|
||||
{
|
||||
json res =
|
||||
json{
|
||||
{"model", json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
|
||||
{"object", "list"},
|
||||
{"usage",
|
||||
json{{"prompt_tokens", 0},
|
||||
{"total_tokens", 0}}},
|
||||
{"data", embeddings}
|
||||
};
|
||||
return res;
|
||||
}
|
||||
|
||||
|
@ -185,7 +185,7 @@ struct llama_client_slot
|
||||
llama_sampling_context *ctx_sampling = nullptr;
|
||||
|
||||
int32_t ga_i = 0; // group-attention state
|
||||
int32_t ga_n = 1;// group-attention factor
|
||||
int32_t ga_n = 1; // group-attention factor
|
||||
int32_t ga_w = 512; // group-attention width
|
||||
|
||||
int32_t n_past_se = 0; // self-extend
|
||||
@ -219,7 +219,8 @@ struct llama_client_slot
|
||||
sent_token_probs_index = 0;
|
||||
infill = false;
|
||||
ga_i = 0;
|
||||
n_past_se = 0;
|
||||
n_past_se = 0;
|
||||
|
||||
generated_token_probs.clear();
|
||||
|
||||
for (slot_image & img : images)
|
||||
@ -1227,7 +1228,7 @@ struct llama_server_context
|
||||
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
|
||||
for (int i = 0; i < (int) append_tokens.size(); ++i)
|
||||
{
|
||||
llama_batch_add(batch, append_tokens[i], slot.n_past, { slot.id }, true);
|
||||
llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
|
||||
slot.n_past += 1;
|
||||
}
|
||||
}
|
||||
@ -1295,6 +1296,8 @@ struct llama_server_context
|
||||
for (llama_client_slot &slot : slots)
|
||||
{
|
||||
slot.cache_tokens.clear();
|
||||
slot.n_past = 0;
|
||||
slot.n_past_se = 0;
|
||||
}
|
||||
}
|
||||
|
||||
@ -1364,26 +1367,26 @@ struct llama_server_context
|
||||
kv_cache_clear();
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
task_server task;
|
||||
task.type = TASK_TYPE_NEXT_RESPONSE;
|
||||
task.target_id = -1;
|
||||
queue_tasks.post(task);
|
||||
}
|
||||
|
||||
task_server task;
|
||||
task.type = TASK_TYPE_NEXT_RESPONSE;
|
||||
task.target_id = -1;
|
||||
queue_tasks.post(task);
|
||||
|
||||
for (llama_client_slot &slot : slots)
|
||||
{
|
||||
if (slot.ga_n == 1)
|
||||
{
|
||||
if (slot.is_processing() && slot.cache_tokens.size() >= (size_t) slot.n_ctx)
|
||||
if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
|
||||
{
|
||||
// Shift context
|
||||
const int n_left = slot.n_past - slot.params.n_keep - 1;
|
||||
const int n_left = system_tokens.size() + slot.n_past - slot.params.n_keep - 1;
|
||||
const int n_discard = n_left / 2;
|
||||
|
||||
LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard);
|
||||
llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1);
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, slot.n_past, -n_discard);
|
||||
llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, system_tokens.size() + slot.n_past, -n_discard);
|
||||
|
||||
for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++)
|
||||
{
|
||||
@ -1429,8 +1432,10 @@ struct llama_server_context
|
||||
slot.i_batch = batch.n_tokens;
|
||||
|
||||
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
|
||||
|
||||
// TODO: we always have to take into account the "system_tokens"
|
||||
// this is not great and needs to be improved somehow
|
||||
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
|
||||
slot.n_past += 1;
|
||||
}
|
||||
|
||||
@ -1481,8 +1486,8 @@ struct llama_server_context
|
||||
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
|
||||
prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
|
||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
|
||||
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||
prefix_tokens.push_back(llama_token_middle(model));
|
||||
prompt_tokens = prefix_tokens;
|
||||
}
|
||||
@ -1582,8 +1587,8 @@ struct llama_server_context
|
||||
}
|
||||
|
||||
LOG_VERBOSE("prompt ingested", {
|
||||
{"n_past", slot.n_past},
|
||||
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
|
||||
{"n_past", slot.n_past},
|
||||
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
|
||||
{"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
|
||||
});
|
||||
|
||||
@ -1591,10 +1596,13 @@ struct llama_server_context
|
||||
|
||||
// process the prefix of first image
|
||||
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
|
||||
|
||||
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
|
||||
int ga_i = slot.ga_i;
|
||||
|
||||
int32_t ga_i = slot.ga_i;
|
||||
int32_t ga_n = slot.ga_n;
|
||||
int32_t ga_w = slot.ga_w;
|
||||
|
||||
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
|
||||
{
|
||||
if (slot.ga_n != 1)
|
||||
@ -1606,7 +1614,7 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
|
||||
slot_npast += 1;
|
||||
slot_npast++;
|
||||
}
|
||||
|
||||
if (has_images && !ingest_images(slot, n_batch))
|
||||
@ -1666,6 +1674,7 @@ struct llama_server_context
|
||||
slot.n_past_se += n_tokens;
|
||||
}
|
||||
}
|
||||
|
||||
llama_batch batch_view =
|
||||
{
|
||||
n_tokens,
|
||||
@ -1782,51 +1791,51 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
if (llama_mlock_supported())
|
||||
{
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
if (llama_mmap_supported())
|
||||
{
|
||||
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
}
|
||||
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
||||
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
||||
#endif
|
||||
printf(" -m FNAME, --model FNAME\n");
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
printf(" -a ALIAS, --alias ALIAS\n");
|
||||
printf(" set an alias for the model, will be added as `model` field in completion response\n");
|
||||
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
||||
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
||||
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
|
||||
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
||||
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
|
||||
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
||||
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
||||
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
|
||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||
printf(" -spf FNAME, --system-prompt-file FNAME\n");
|
||||
printf(" Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
||||
printf(" --log-disable disables logging to a file.\n");
|
||||
printf(" set an alias for the model, will be added as `model` field in completion response\n");
|
||||
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
|
||||
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
|
||||
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
|
||||
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
|
||||
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
|
||||
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
|
||||
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
|
||||
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
|
||||
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
|
||||
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
|
||||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||
printf(" -spf FNAME, --system-prompt-file FNAME\n");
|
||||
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
|
||||
printf(" --log-disable disables logging to a file.\n");
|
||||
printf("\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -gan N, --grp-attn-n N Set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
|
||||
printf(" -gaw N, --grp-attn-w N Set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
|
||||
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
@ -2929,6 +2938,66 @@ int main(int argc, char **argv)
|
||||
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
|
||||
});
|
||||
|
||||
svr.Post("/v1/embeddings", [&llama](const httplib::Request &req, httplib::Response &res)
|
||||
{
|
||||
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
|
||||
const json body = json::parse(req.body);
|
||||
|
||||
json prompt;
|
||||
if (body.count("input") != 0)
|
||||
{
|
||||
prompt = body["input"];
|
||||
// batch
|
||||
if(prompt.is_array()) {
|
||||
json data = json::array();
|
||||
int i = 0;
|
||||
for (const json &elem : prompt) {
|
||||
const int task_id = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(task_id);
|
||||
llama.request_completion(task_id, { {"prompt", elem}, { "n_predict", 0} }, false, true, -1);
|
||||
|
||||
// get the result
|
||||
task_result result = llama.queue_results.recv(task_id);
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
|
||||
json embedding = json{
|
||||
{"embedding", json_value(result.result_json, "embedding", json::array())},
|
||||
{"index", i++},
|
||||
{"object", "embedding"}
|
||||
};
|
||||
data.push_back(embedding);
|
||||
}
|
||||
json result = format_embeddings_response_oaicompat(body, data);
|
||||
return res.set_content(result.dump(), "application/json; charset=utf-8");
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
prompt = "";
|
||||
}
|
||||
|
||||
// create and queue the task
|
||||
const int task_id = llama.queue_tasks.get_new_id();
|
||||
llama.queue_results.add_waiting_task_id(task_id);
|
||||
llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}}, false, true, -1);
|
||||
|
||||
// get the result
|
||||
task_result result = llama.queue_results.recv(task_id);
|
||||
llama.queue_results.remove_waiting_task_id(task_id);
|
||||
|
||||
json data = json::array({json{
|
||||
{"embedding", json_value(result.result_json, "embedding", json::array())},
|
||||
{"index", 0},
|
||||
{"object", "embedding"}
|
||||
}}
|
||||
);
|
||||
|
||||
json root = format_embeddings_response_oaicompat(body, data);
|
||||
|
||||
// send the result
|
||||
return res.set_content(root.dump(), "application/json; charset=utf-8");
|
||||
});
|
||||
|
||||
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
|
||||
// "Bus error: 10" - this is on macOS, it does not crash on Linux
|
||||
//std::thread t2([&]()
|
||||
|
@ -791,7 +791,7 @@ static bool alloc_tensor_range(struct ggml_context * ctx,
|
||||
for (size_t i = 0; i < *n_buffers; i++) {
|
||||
ggml_backend_buffer_free(*buffers[i]);
|
||||
}
|
||||
free(buffers);
|
||||
free(*buffers);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -373,6 +373,11 @@ GGML_CALL static void ggml_backend_registry_init(void) {
|
||||
extern GGML_CALL int ggml_backend_vk_reg_devices(void);
|
||||
ggml_backend_vk_reg_devices();
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
|
||||
ggml_backend_kompute_reg_devices();
|
||||
#endif
|
||||
}
|
||||
|
||||
GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
|
||||
|
331
ggml-cuda.cu
331
ggml-cuda.cu
@ -191,6 +191,10 @@ static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
|
||||
#endif // __has_builtin(__builtin_elementwise_sub_sat)
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int __vsub4(const int a, const int b) {
|
||||
return __vsubss4(a, b);
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
||||
#if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
|
||||
c = __builtin_amdgcn_sdot4(a, b, c, false);
|
||||
@ -505,6 +509,14 @@ typedef struct {
|
||||
} block_iq2_xs;
|
||||
static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding");
|
||||
|
||||
#define QR3_XXS 8
|
||||
#define QI3_XXS (QK_K / (4*QR3_XXS))
|
||||
typedef struct {
|
||||
half d;
|
||||
uint8_t qs[3*(QK_K/8)];
|
||||
} block_iq3_xxs;
|
||||
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
|
||||
|
||||
#define WARP_SIZE 32
|
||||
#define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
|
||||
|
||||
@ -1613,6 +1625,41 @@ static const __device__ uint64_t iq2xs_grid[512] = {
|
||||
0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
|
||||
};
|
||||
|
||||
static const __device__ uint32_t iq3xxs_grid[256] = {
|
||||
0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
|
||||
0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
|
||||
0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
|
||||
0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
|
||||
0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
|
||||
0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
|
||||
0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
|
||||
0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
|
||||
0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
|
||||
0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
|
||||
0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
|
||||
0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
|
||||
0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
|
||||
0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
|
||||
0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
|
||||
0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
|
||||
0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
|
||||
0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
|
||||
0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
|
||||
0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
|
||||
0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
|
||||
0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
|
||||
0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
|
||||
0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
|
||||
0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
|
||||
0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
|
||||
0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
|
||||
0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
|
||||
0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
|
||||
0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
|
||||
0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
|
||||
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
|
||||
};
|
||||
|
||||
static const __device__ uint8_t ksigns_iq2xs[128] = {
|
||||
0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
|
||||
144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
|
||||
@ -1624,6 +1671,43 @@ static const __device__ uint8_t ksigns_iq2xs[128] = {
|
||||
240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
|
||||
};
|
||||
|
||||
//#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
static const __device__ uint64_t ksigns64[128] = {
|
||||
0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff,
|
||||
0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff,
|
||||
0xff000000ff000000, 0x00000000ff0000ff, 0x00000000ff00ff00, 0xff000000ff00ffff,
|
||||
0x00000000ffff0000, 0xff000000ffff00ff, 0xff000000ffffff00, 0x00000000ffffffff,
|
||||
0xff0000ff00000000, 0x000000ff000000ff, 0x000000ff0000ff00, 0xff0000ff0000ffff,
|
||||
0x000000ff00ff0000, 0xff0000ff00ff00ff, 0xff0000ff00ffff00, 0x000000ff00ffffff,
|
||||
0x000000ffff000000, 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0x000000ffff00ffff,
|
||||
0xff0000ffffff0000, 0x000000ffffff00ff, 0x000000ffffffff00, 0xff0000ffffffffff,
|
||||
0xff00ff0000000000, 0x0000ff00000000ff, 0x0000ff000000ff00, 0xff00ff000000ffff,
|
||||
0x0000ff0000ff0000, 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0x0000ff0000ffffff,
|
||||
0x0000ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, 0x0000ff00ff00ffff,
|
||||
0xff00ff00ffff0000, 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0xff00ff00ffffffff,
|
||||
0x0000ffff00000000, 0xff00ffff000000ff, 0xff00ffff0000ff00, 0x0000ffff0000ffff,
|
||||
0xff00ffff00ff0000, 0x0000ffff00ff00ff, 0x0000ffff00ffff00, 0xff00ffff00ffffff,
|
||||
0xff00ffffff000000, 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0xff00ffffff00ffff,
|
||||
0x0000ffffffff0000, 0xff00ffffffff00ff, 0xff00ffffffffff00, 0x0000ffffffffffff,
|
||||
0xffff000000000000, 0x00ff0000000000ff, 0x00ff00000000ff00, 0xffff00000000ffff,
|
||||
0x00ff000000ff0000, 0xffff000000ff00ff, 0xffff000000ffff00, 0x00ff000000ffffff,
|
||||
0x00ff0000ff000000, 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0x00ff0000ff00ffff,
|
||||
0xffff0000ffff0000, 0x00ff0000ffff00ff, 0x00ff0000ffffff00, 0xffff0000ffffffff,
|
||||
0x00ff00ff00000000, 0xffff00ff000000ff, 0xffff00ff0000ff00, 0x00ff00ff0000ffff,
|
||||
0xffff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, 0xffff00ff00ffffff,
|
||||
0xffff00ffff000000, 0x00ff00ffff0000ff, 0x00ff00ffff00ff00, 0xffff00ffff00ffff,
|
||||
0x00ff00ffffff0000, 0xffff00ffffff00ff, 0xffff00ffffffff00, 0x00ff00ffffffffff,
|
||||
0x00ffff0000000000, 0xffffff00000000ff, 0xffffff000000ff00, 0x00ffff000000ffff,
|
||||
0xffffff0000ff0000, 0x00ffff0000ff00ff, 0x00ffff0000ffff00, 0xffffff0000ffffff,
|
||||
0xffffff00ff000000, 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0xffffff00ff00ffff,
|
||||
0x00ffff00ffff0000, 0xffffff00ffff00ff, 0xffffff00ffffff00, 0x00ffff00ffffffff,
|
||||
0xffffffff00000000, 0x00ffffff000000ff, 0x00ffffff0000ff00, 0xffffffff0000ffff,
|
||||
0x00ffffff00ff0000, 0xffffffff00ff00ff, 0xffffffff00ffff00, 0x00ffffff00ffffff,
|
||||
0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff,
|
||||
0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff,
|
||||
};
|
||||
//#endif
|
||||
|
||||
static const __device__ uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128};
|
||||
|
||||
inline bool ggml_cuda_supports_mmq(enum ggml_type type) {
|
||||
@ -1690,6 +1774,34 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
|
||||
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
|
||||
|
||||
const int i = blockIdx.x;
|
||||
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
|
||||
|
||||
const int tid = threadIdx.x;
|
||||
#if QK_K == 256
|
||||
const int il = tid/8; // 0...3
|
||||
const int ib = tid%8; // 0...7
|
||||
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
|
||||
const uint8_t * q3 = x[i].qs + 8*ib;
|
||||
const uint16_t * gas = (const uint16_t *)(x[i].qs + QK_K/4) + 2*ib;
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*il+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*il+1]);
|
||||
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
#else
|
||||
assert(false);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
||||
|
||||
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
||||
@ -4313,6 +4425,7 @@ static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
#if QK_K == 256
|
||||
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
|
||||
|
||||
@ -4323,20 +4436,22 @@ static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
||||
const uint8_t ls2 = bq2->scales[ib32] >> 4;
|
||||
int sumi1 = 0;
|
||||
for (int l = 0; l < 2; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi1 += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
|
||||
const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
|
||||
const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
|
||||
sumi1 = __dp4a(grid_l, *((const int *)q8 + 0), sumi1);
|
||||
sumi1 = __dp4a(grid_h, *((const int *)q8 + 1), sumi1);
|
||||
q8 += 8;
|
||||
}
|
||||
int sumi2 = 0;
|
||||
for (int l = 2; l < 4; ++l) {
|
||||
const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint8_t signs = ksigns_iq2xs[q2[l] >> 9];
|
||||
for (int j = 0; j < 8; ++j) {
|
||||
sumi2 += q8[j] * grid[j] * (signs & kmask_iq2xs[j] ? -1 : 1);
|
||||
}
|
||||
const uint32_t * grid = (const uint32_t *)(iq2xs_grid + (q2[l] & 511));
|
||||
const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9));
|
||||
const int grid_l = __vsub4(grid[0] ^ signs[0], signs[0]);
|
||||
const int grid_h = __vsub4(grid[1] ^ signs[1], signs[1]);
|
||||
sumi2 = __dp4a(grid_l, *((const int *)q8 + 0), sumi2);
|
||||
sumi2 = __dp4a(grid_h, *((const int *)q8 + 1), sumi2);
|
||||
q8 += 8;
|
||||
}
|
||||
const float d = (float)bq2->d * __low2float(bq8_1[ib32].ds) * 0.25f;
|
||||
@ -4345,6 +4460,45 @@ static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
#else
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
|
||||
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
|
||||
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
|
||||
#if QK_K == 256
|
||||
const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
|
||||
|
||||
const int ib32 = iqs;
|
||||
const uint8_t * q3 = bq2->qs + 8*ib32;
|
||||
const uint16_t * gas = (const uint16_t *)(bq2->qs + QK_K/4) + 2*ib32;
|
||||
const int8_t * q8 = bq8_1[ib32].qs;
|
||||
uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
int sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint32_t * grid1 = iq3xxs_grid + q3[2*l+0];
|
||||
const uint32_t * grid2 = iq3xxs_grid + q3[2*l+1];
|
||||
const uint32_t * signs = (const uint32_t *)(ksigns64 + (aux32 & 127));
|
||||
const int grid_l = __vsub4(grid1[0] ^ signs[0], signs[0]);
|
||||
const int grid_h = __vsub4(grid2[0] ^ signs[1], signs[1]);
|
||||
sumi = __dp4a(grid_l, *((int *)q8+0), sumi);
|
||||
sumi = __dp4a(grid_h, *((int *)q8+1), sumi);
|
||||
q8 += 8;
|
||||
aux32 >>= 7;
|
||||
}
|
||||
const float d = (float)bq2->d * (0.5f + aux32) * __low2float(bq8_1[ib32].ds) * 0.5f;
|
||||
return d * sumi;
|
||||
#else
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
#else
|
||||
assert(false);
|
||||
return 0.f;
|
||||
#endif
|
||||
}
|
||||
|
||||
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
|
||||
@ -5357,27 +5511,37 @@ static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
|
||||
const half * xi = (const half *) cxi;
|
||||
float * dsti = (float *) cdsti;
|
||||
|
||||
*dsti = *xi;
|
||||
}
|
||||
|
||||
template <cpy_kernel_t cpy_1>
|
||||
static __global__ void cpy_f32_f16(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
// determine indices i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
||||
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
|
||||
// then combine those indices with the corresponding byte offsets to get the total offsets
|
||||
const int i02 = i / (ne00*ne01);
|
||||
const int i01 = (i - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i12 = i / (ne10*ne11);
|
||||
const int i11 = (i - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
|
||||
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
@ -5471,23 +5635,26 @@ static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
|
||||
|
||||
template <cpy_kernel_t cpy_blck, int qk>
|
||||
static __global__ void cpy_f32_q(const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
|
||||
const int nb12, const int nb13) {
|
||||
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int i02 = i / (ne00*ne01);
|
||||
const int i01 = (i - i02*ne01*ne00) / ne00;
|
||||
const int i00 = (i - i02*ne01*ne00 - i01*ne00);
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02;
|
||||
const int i03 = i/(ne00 * ne01 * ne02);
|
||||
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
|
||||
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
|
||||
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
|
||||
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
|
||||
|
||||
const int i12 = i / (ne10*ne11);
|
||||
const int i11 = (i - i12*ne10*ne11) / ne10;
|
||||
const int i10 = (i - i12*ne10*ne11 - i11*ne10)/qk;
|
||||
const int dst_offset = i10*nb10 + i11*nb11 + i12*nb12;
|
||||
const int i13 = i/(ne10 * ne11 * ne12);
|
||||
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
|
||||
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
|
||||
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
|
||||
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
|
||||
|
||||
cpy_blck(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
@ -6381,6 +6548,12 @@ static void dequantize_row_iq2_xs_cuda(const void * vx, dst_t * y, const int k,
|
||||
dequantize_block_iq2_xs<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template<typename dst_t>
|
||||
static void dequantize_row_iq3_xxs_cuda(const void * vx, dst_t * y, const int k, cudaStream_t stream) {
|
||||
const int nb = k / QK_K;
|
||||
dequantize_block_iq3_xxs<<<nb, 32, 0, stream>>>(vx, y);
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_DEQUANTIZE_BLOCK_SIZE - 1) / CUDA_DEQUANTIZE_BLOCK_SIZE;
|
||||
@ -6418,6 +6591,8 @@ static to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
|
||||
return dequantize_row_iq2_xxs_cuda;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_cuda;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_F32:
|
||||
return convert_unary_cuda<float>;
|
||||
default:
|
||||
@ -6451,6 +6626,8 @@ static to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type) {
|
||||
return dequantize_row_iq2_xxs_cuda;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
return dequantize_row_iq2_xs_cuda;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return dequantize_row_iq3_xxs_cuda;
|
||||
case GGML_TYPE_F16:
|
||||
return convert_unary_cuda<half>;
|
||||
default:
|
||||
@ -6663,6 +6840,15 @@ static void mul_mat_vec_iq2_xs_q8_1_cuda(const void * vx, const void * vy, float
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void mul_mat_vec_iq3_xxs_q8_1_cuda(const void * vx, const void * vy, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % QK_K == 0);
|
||||
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
||||
const dim3 block_nums(block_num_y, 1, 1);
|
||||
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
||||
mul_mat_vec_q<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
|
||||
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols, nrows);
|
||||
}
|
||||
|
||||
static void ggml_mul_mat_q4_0_q8_1_cuda(
|
||||
const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x,
|
||||
const int ncols_y, const int nrows_y, const int nrows_dst, cudaStream_t stream) {
|
||||
@ -7135,69 +7321,82 @@ static void ggml_mul_mat_vec_nc_f16_f32_cuda(
|
||||
(vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
|
||||
}
|
||||
|
||||
|
||||
static void ggml_cpy_f16_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_f32_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_f16_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q8_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK8_0 == 0);
|
||||
const int num_blocks = ne / QK8_0;
|
||||
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_0 == 0);
|
||||
const int num_blocks = ne / QK4_0;
|
||||
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q4_1_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
GGML_ASSERT(ne % QK4_1 == 0);
|
||||
const int num_blocks = ne / QK4_1;
|
||||
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f16_f16_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int nb00, const int nb01, const int nb02,
|
||||
const int ne10, const int ne11, const int nb10, const int nb11, const int nb12, cudaStream_t stream) {
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12);
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
|
||||
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
|
||||
@ -8213,6 +8412,7 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUD
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return max_compute_capability >= CC_RDNA2 ? 128 : 64;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
@ -8235,6 +8435,7 @@ static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUD
|
||||
case GGML_TYPE_Q5_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
return max_compute_capability >= CC_VOLTA ? 128 : 64;
|
||||
case GGML_TYPE_Q6_K:
|
||||
return 64;
|
||||
@ -8306,6 +8507,9 @@ static void ggml_cuda_op_mul_mat_vec_q(
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, stream);
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
break;
|
||||
@ -9941,19 +10145,25 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
||||
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t ne01 = src0->ne[1];
|
||||
GGML_ASSERT(src0->ne[3] == 1);
|
||||
const int64_t ne02 = src0->ne[2];
|
||||
|
||||
//GGML_ASSERT(src0->ne[3] == 1);
|
||||
|
||||
const int64_t nb00 = src0->nb[0];
|
||||
const int64_t nb01 = src0->nb[1];
|
||||
const int64_t nb02 = src0->nb[2];
|
||||
const int64_t nb03 = src0->nb[3];
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
GGML_ASSERT(src1->ne[3] == 1);
|
||||
const int64_t ne12 = src1->ne[2];
|
||||
|
||||
//GGML_ASSERT(src1->ne[3] == 1);
|
||||
|
||||
const int64_t nb10 = src1->nb[0];
|
||||
const int64_t nb11 = src1->nb[1];
|
||||
const int64_t nb12 = src1->nb[2];
|
||||
const int64_t nb13 = src1->nb[3];
|
||||
|
||||
ggml_cuda_set_device(g_main_device);
|
||||
cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
|
||||
@ -9965,17 +10175,19 @@ static void ggml_cuda_cpy(const ggml_tensor * src0, const ggml_tensor * src1, gg
|
||||
char * src1_ddc = (char *) src1_extra->data_device[g_main_device];
|
||||
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
|
||||
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
|
||||
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, nb00, nb01, nb02, ne10, ne11, nb10, nb11, nb12, main_stream);
|
||||
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
|
||||
} else {
|
||||
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
|
||||
ggml_type_name(src0->type), ggml_type_name(src1->type));
|
||||
@ -10934,7 +11146,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
return false;
|
||||
}
|
||||
ggml_type a_type = a->type;
|
||||
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS) {
|
||||
if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS) {
|
||||
if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
|
||||
return false;
|
||||
}
|
||||
@ -10978,6 +11190,9 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
||||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
|
||||
return true;
|
||||
}
|
||||
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
} break;
|
||||
case GGML_OP_DUP:
|
||||
|
1990
ggml-kompute.cpp
Normal file
1990
ggml-kompute.cpp
Normal file
File diff suppressed because it is too large
Load Diff
46
ggml-kompute.h
Normal file
46
ggml-kompute.h
Normal file
@ -0,0 +1,46 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_vk_device {
|
||||
int index;
|
||||
int type; // same as VkPhysicalDeviceType
|
||||
size_t heapSize;
|
||||
const char * name;
|
||||
const char * vendor;
|
||||
int subgroupSize;
|
||||
uint64_t bufferAlignment;
|
||||
uint64_t maxAlloc;
|
||||
};
|
||||
|
||||
struct ggml_vk_device * ggml_vk_available_devices(size_t memoryRequired, size_t * count);
|
||||
bool ggml_vk_get_device(struct ggml_vk_device * device, size_t memoryRequired, const char * name);
|
||||
bool ggml_vk_has_vulkan(void);
|
||||
bool ggml_vk_has_device(void);
|
||||
struct ggml_vk_device ggml_vk_current_device(void);
|
||||
|
||||
//
|
||||
// backend API
|
||||
//
|
||||
|
||||
// forward declaration
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
|
||||
GGML_API ggml_backend_t ggml_backend_kompute_init(int device);
|
||||
|
||||
GGML_API bool ggml_backend_is_kompute(ggml_backend_t backend);
|
||||
|
||||
GGML_API ggml_backend_buffer_type_t ggml_backend_kompute_buffer_type(int device);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -57,6 +57,9 @@ GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(voi
|
||||
// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf
|
||||
GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family);
|
||||
|
||||
// capture all command buffers committed the next time `ggml_backend_graph_compute` is called
|
||||
GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
89
ggml-metal.m
89
ggml-metal.m
@ -60,6 +60,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS,
|
||||
GGML_METAL_KERNEL_TYPE_GET_ROWS_I32,
|
||||
GGML_METAL_KERNEL_TYPE_RMS_NORM,
|
||||
GGML_METAL_KERNEL_TYPE_GROUP_NORM,
|
||||
@ -81,6 +82,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32,
|
||||
//GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32,
|
||||
@ -98,6 +100,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32,
|
||||
@ -112,6 +115,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32,
|
||||
@ -126,6 +130,7 @@ enum ggml_metal_kernel_type {
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ROPE_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ALIBI_F32,
|
||||
@ -169,6 +174,8 @@ struct ggml_metal_context {
|
||||
|
||||
bool support_simdgroup_reduction;
|
||||
bool support_simdgroup_mm;
|
||||
|
||||
bool should_capture_next_compute;
|
||||
};
|
||||
|
||||
// MSL code
|
||||
@ -355,6 +362,8 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx->support_simdgroup_mm ? "true" : "false");
|
||||
GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||
|
||||
ctx->should_capture_next_compute = false;
|
||||
|
||||
#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15)
|
||||
if (@available(macOS 10.12, iOS 16.0, *)) {
|
||||
GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6);
|
||||
@ -431,6 +440,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction);
|
||||
@ -452,6 +462,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction);
|
||||
//GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction);
|
||||
@ -469,6 +480,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
@ -483,6 +495,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm);
|
||||
@ -497,6 +510,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
|
||||
@ -693,6 +707,20 @@ static bool ggml_metal_graph_compute(
|
||||
const int n_cb = ctx->n_cb;
|
||||
const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb;
|
||||
|
||||
const bool should_capture = ctx->should_capture_next_compute;
|
||||
if (should_capture) {
|
||||
ctx->should_capture_next_compute = false;
|
||||
|
||||
MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new];
|
||||
descriptor.captureObject = ctx->queue;
|
||||
|
||||
NSError * error = nil;
|
||||
if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) {
|
||||
GGML_METAL_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]);
|
||||
GGML_ASSERT(!"capture failed");
|
||||
}
|
||||
}
|
||||
|
||||
id<MTLCommandBuffer> command_buffer_builder[n_cb];
|
||||
for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) {
|
||||
id<MTLCommandBuffer> command_buffer = [ctx->queue commandBufferWithUnretainedReferences];
|
||||
@ -701,6 +729,7 @@ static bool ggml_metal_graph_compute(
|
||||
// enqueue the command buffers in order to specify their execution order
|
||||
[command_buffer enqueue];
|
||||
}
|
||||
|
||||
const id<MTLCommandBuffer> *command_buffers = command_buffer_builder;
|
||||
|
||||
dispatch_apply(n_cb, ctx->d_queue, ^(size_t iter) {
|
||||
@ -747,9 +776,9 @@ static bool ggml_metal_graph_compute(
|
||||
GGML_ASSERT(!"unsupported op");
|
||||
}
|
||||
|
||||
#ifndef GGML_METAL_NDEBUG
|
||||
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
|
||||
#endif
|
||||
if (should_capture) {
|
||||
[encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]];
|
||||
}
|
||||
|
||||
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
||||
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
||||
@ -1276,6 +1305,7 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL MAT-MAT not implemented");
|
||||
}
|
||||
|
||||
@ -1404,6 +1434,12 @@ static bool ggml_metal_graph_compute(
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t);
|
||||
@ -1446,6 +1482,11 @@ static bool ggml_metal_graph_compute(
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_IQ3_XXS) {
|
||||
const int mem_size = 256*4+128;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
@ -1540,6 +1581,7 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break;
|
||||
default: GGML_ASSERT(false && "MUL_MAT_ID not implemented");
|
||||
}
|
||||
|
||||
@ -1671,6 +1713,12 @@ static bool ggml_metal_graph_compute(
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline;
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline;
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t);
|
||||
@ -1729,6 +1777,11 @@ static bool ggml_metal_graph_compute(
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_IQ3_XXS) {
|
||||
const int mem_size = 256*4+128;
|
||||
[encoder setThreadgroupMemoryLength:mem_size atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 7)/8, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
else if (src2t == GGML_TYPE_Q4_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne21 + 3)/4, _ne1, ne01*ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
@ -1769,6 +1822,7 @@ static bool ggml_metal_graph_compute(
|
||||
case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K ].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break;
|
||||
case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break;
|
||||
case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break;
|
||||
case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
@ -2299,9 +2353,9 @@ static bool ggml_metal_graph_compute(
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef GGML_METAL_NDEBUG
|
||||
[encoder popDebugGroup];
|
||||
#endif
|
||||
if (should_capture) {
|
||||
[encoder popDebugGroup];
|
||||
}
|
||||
}
|
||||
|
||||
[encoder endEncoding];
|
||||
@ -2323,6 +2377,10 @@ static bool ggml_metal_graph_compute(
|
||||
}
|
||||
}
|
||||
|
||||
if (should_capture) {
|
||||
[[MTLCaptureManager sharedCaptureManager] stopCapture];
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -2498,6 +2556,16 @@ GGML_CALL static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backen
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) {
|
||||
id<MTLDevice> device = ggml_backend_metal_get_device();
|
||||
size_t max_size = device.maxBufferLength;
|
||||
ggml_backend_metal_free_device();
|
||||
|
||||
return max_size;
|
||||
|
||||
UNUSED(buft);
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
|
||||
return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend);
|
||||
|
||||
@ -2516,7 +2584,7 @@ GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) {
|
||||
/* .get_name = */ ggml_backend_metal_buffer_type_get_name,
|
||||
/* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // TODO: return device.maxBufferLength
|
||||
/* .get_max_size = */ ggml_backend_metal_buffer_type_get_max_size,
|
||||
/* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
|
||||
/* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend,
|
||||
/* .is_host = */ ggml_backend_metal_buffer_type_is_host,
|
||||
@ -2690,6 +2758,13 @@ bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) {
|
||||
return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)];
|
||||
}
|
||||
|
||||
void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) {
|
||||
GGML_ASSERT(ggml_backend_is_metal(backend));
|
||||
|
||||
struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context;
|
||||
ctx->should_capture_next_compute = true;
|
||||
}
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning
|
||||
|
||||
GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) {
|
||||
|
274
ggml-metal.metal
274
ggml-metal.metal
@ -2856,6 +2856,12 @@ typedef struct {
|
||||
} block_iq2_xs;
|
||||
// 74 bytes / block for QK_K = 256, so 2.3125 bpw
|
||||
|
||||
typedef struct {
|
||||
half d;
|
||||
uint8_t qs[3*QK_K/8];
|
||||
} block_iq3_xxs;
|
||||
// 98 bytes / block for QK_K = 256, so 3.0625 bpw
|
||||
|
||||
//====================================== dot products =========================
|
||||
|
||||
void kernel_mul_mv_q2_K_f32_impl(
|
||||
@ -4078,6 +4084,42 @@ constexpr constant static uint64_t iq2xs_grid[512] = {
|
||||
0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
|
||||
};
|
||||
|
||||
constexpr constant static uint32_t iq3xxs_grid[256] = {
|
||||
0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
|
||||
0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
|
||||
0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
|
||||
0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
|
||||
0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
|
||||
0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
|
||||
0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
|
||||
0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
|
||||
0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
|
||||
0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
|
||||
0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
|
||||
0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
|
||||
0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
|
||||
0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
|
||||
0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
|
||||
0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
|
||||
0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
|
||||
0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
|
||||
0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
|
||||
0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
|
||||
0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
|
||||
0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
|
||||
0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
|
||||
0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
|
||||
0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
|
||||
0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
|
||||
0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
|
||||
0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
|
||||
0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
|
||||
0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
|
||||
0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
|
||||
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
|
||||
};
|
||||
|
||||
|
||||
constexpr constant static uint8_t ksigns_iq2xs[128] = {
|
||||
0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
|
||||
144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
|
||||
@ -4367,6 +4409,143 @@ kernel void kernel_mul_mv_iq2_xs_f32(
|
||||
kernel_mul_mv_iq2_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
void kernel_mul_mv_iq3_xxs_f32_impl(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
const int r0 = tgpig.x;
|
||||
const int r1 = tgpig.y;
|
||||
const int im = tgpig.z;
|
||||
|
||||
const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
|
||||
const int ib_row = first_row * nb;
|
||||
|
||||
const uint i12 = im%ne12;
|
||||
const uint i13 = im/ne12;
|
||||
|
||||
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
|
||||
|
||||
device const block_iq3_xxs * x = (device const block_iq3_xxs *) src0 + ib_row + offset0;
|
||||
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
|
||||
|
||||
float yl[32];
|
||||
float sumf[N_DST]={0.f}, all_sum;
|
||||
|
||||
const int nb32 = nb * (QK_K / 32);
|
||||
|
||||
threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values;
|
||||
threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256);
|
||||
{
|
||||
int nval = 4;
|
||||
int pos = (32*sgitg + tiisg)*nval;
|
||||
for (int i = 0; i < nval; ++i) values[pos + i] = iq3xxs_grid[pos + i];
|
||||
nval = 2;
|
||||
pos = (32*sgitg + tiisg)*nval;
|
||||
for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
#if QK_K == 256
|
||||
const int ix = tiisg;
|
||||
|
||||
device const float * y4 = y + 32 * ix;
|
||||
|
||||
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
|
||||
|
||||
for (int i = 0; i < 32; ++i) {
|
||||
yl[i] = y4[i];
|
||||
}
|
||||
|
||||
const int ibl = ib32 / (QK_K / 32);
|
||||
const int ib = ib32 % (QK_K / 32);
|
||||
|
||||
device const block_iq3_xxs * xr = x + ibl;
|
||||
device const uint8_t * q3 = xr->qs + 8 * ib;
|
||||
device const uint16_t * gas = (device const uint16_t *)(xr->qs + QK_K/4) + 2 * ib;
|
||||
device const half * dh = &xr->d;
|
||||
|
||||
for (int row = 0; row < N_DST; row++) {
|
||||
|
||||
const float db = dh[0];
|
||||
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
const float d = db * (0.5f + (aux32 >> 28));
|
||||
|
||||
float2 sum = {0};
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + q3[2*l+0]);
|
||||
const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + q3[2*l+1]);
|
||||
const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sum[0] += yl[8*l + j + 0] * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
sum[1] += yl[8*l + j + 4] * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
}
|
||||
sumf[row] += d * (sum[0] + sum[1]);
|
||||
|
||||
dh += nb*sizeof(block_iq3_xxs)/2;
|
||||
q3 += nb*sizeof(block_iq3_xxs);
|
||||
gas += nb*sizeof(block_iq3_xxs)/2;
|
||||
}
|
||||
|
||||
y4 += 32 * 32;
|
||||
}
|
||||
#else
|
||||
// TODO
|
||||
#endif
|
||||
|
||||
for (int row = 0; row < N_DST; ++row) {
|
||||
all_sum = simd_sum(sumf[row]);
|
||||
if (tiisg == 0) {
|
||||
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.5f;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_iq3_xxs_f32")]]
|
||||
kernel void kernel_mul_mv_iq3_xxs_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
|
||||
kernel_mul_mv_iq3_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
|
||||
}
|
||||
|
||||
|
||||
//============================= templates and their specializations =============================
|
||||
|
||||
// NOTE: this is not dequantizing - we are simply fitting the template
|
||||
@ -4684,6 +4863,33 @@ void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4
|
||||
}
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) {
|
||||
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
|
||||
const float d = xb->d;
|
||||
const int ib32 = il/2;
|
||||
il = il%2;
|
||||
// il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
|
||||
device const uint8_t * q3 = xb->qs + 8*ib32;
|
||||
device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32;
|
||||
const uint32_t aux32 = gas[0] | (gas[1] << 16);
|
||||
const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||
constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]);
|
||||
constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]);
|
||||
uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127];
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
|
||||
reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
|
||||
}
|
||||
grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]);
|
||||
grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]);
|
||||
signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127];
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f);
|
||||
reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
|
||||
kernel void kernel_get_rows(
|
||||
device const void * src0,
|
||||
@ -5225,6 +5431,7 @@ template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows
|
||||
template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||
template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_t kernel_get_rows<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
||||
template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_t kernel_get_rows<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_t kernel_get_rows<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
|
||||
//
|
||||
// matrix-matrix multiplication
|
||||
@ -5263,6 +5470,7 @@ template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<b
|
||||
template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||
template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
||||
template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
|
||||
//
|
||||
// indirect matrix-matrix multiplication
|
||||
@ -5313,6 +5521,7 @@ template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mu
|
||||
template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
|
||||
template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
|
||||
template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xs, QK_NL, dequantize_iq2_xs>;
|
||||
template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq3_xxs, QK_NL, dequantize_iq3_xxs>;
|
||||
|
||||
//
|
||||
// matrix-vector multiplication
|
||||
@ -6215,3 +6424,68 @@ kernel void kernel_mul_mv_id_iq2_xs_f32(
|
||||
tiisg,
|
||||
sgitg);
|
||||
}
|
||||
|
||||
[[host_name("kernel_mul_mv_id_iq3_xxs_f32")]]
|
||||
kernel void kernel_mul_mv_id_iq3_xxs_f32(
|
||||
device const char * ids,
|
||||
device const char * src1,
|
||||
device float * dst,
|
||||
constant uint64_t & nbi1,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant int64_t & ne13,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
constant uint64_t & nb1,
|
||||
constant uint & r2,
|
||||
constant uint & r3,
|
||||
constant int & idx,
|
||||
device const char * src00,
|
||||
device const char * src01,
|
||||
device const char * src02,
|
||||
device const char * src03,
|
||||
device const char * src04,
|
||||
device const char * src05,
|
||||
device const char * src06,
|
||||
device const char * src07,
|
||||
threadgroup int8_t * shared_values [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiitg[[thread_index_in_threadgroup]],
|
||||
uint tiisg[[thread_index_in_simdgroup]],
|
||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||
device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
|
||||
|
||||
const int64_t bid = tgpig.z/(ne12*ne13);
|
||||
|
||||
tgpig.z = tgpig.z%(ne12*ne13);
|
||||
|
||||
const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
|
||||
|
||||
kernel_mul_mv_iq3_xxs_f32_impl(
|
||||
src0[id],
|
||||
(device const float *) (src1 + bid*nb11),
|
||||
dst + bid*ne0,
|
||||
ne00,
|
||||
ne01,
|
||||
ne02,
|
||||
ne10,
|
||||
ne12,
|
||||
ne0,
|
||||
ne1,
|
||||
r2,
|
||||
r3,
|
||||
shared_values,
|
||||
tgpig,
|
||||
tiisg,
|
||||
sgitg);
|
||||
}
|
||||
|
@ -2125,6 +2125,15 @@ static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_
|
||||
GGML_UNUSED(buffer_type);
|
||||
}
|
||||
|
||||
static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
|
||||
static size_t max_size = -1;
|
||||
if (max_size == (size_t)-1) {
|
||||
ggml_cl_init();
|
||||
clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &max_size, NULL);
|
||||
}
|
||||
return max_size;
|
||||
}
|
||||
|
||||
static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buffer_type, ggml_backend_t backend) {
|
||||
//return ggml_backend_is_opencl(backend); // opencl must be used through the cpu backend
|
||||
return ggml_backend_is_cpu(backend);
|
||||
@ -2136,7 +2145,7 @@ static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
|
||||
/* .get_name = */ ggml_backend_opencl_buffer_type_name,
|
||||
/* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
|
||||
/* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
|
||||
/* .get_max_size = */ NULL, // TODO: return from device info
|
||||
/* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
|
||||
/* .get_alloc_size = */ NULL,
|
||||
/* .supports_backend = */ ggml_backend_opencl_buffer_type_supports_backend,
|
||||
/* .is_host = */ NULL,
|
||||
|
721
ggml-quants.c
721
ggml-quants.c
@ -3441,6 +3441,41 @@ static const uint64_t iq2xs_grid[512] = {
|
||||
0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b,
|
||||
};
|
||||
|
||||
static const uint32_t iq3xxs_grid[256] = {
|
||||
0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414,
|
||||
0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14,
|
||||
0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404,
|
||||
0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e,
|
||||
0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c,
|
||||
0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c,
|
||||
0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34,
|
||||
0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c,
|
||||
0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c,
|
||||
0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04,
|
||||
0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c,
|
||||
0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414,
|
||||
0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434,
|
||||
0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c,
|
||||
0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e,
|
||||
0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24,
|
||||
0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24,
|
||||
0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c,
|
||||
0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c,
|
||||
0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14,
|
||||
0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414,
|
||||
0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e,
|
||||
0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404,
|
||||
0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c,
|
||||
0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c,
|
||||
0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14,
|
||||
0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c,
|
||||
0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c,
|
||||
0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14,
|
||||
0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14,
|
||||
0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c,
|
||||
0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04,
|
||||
};
|
||||
|
||||
static const uint8_t ksigns_iq2xs[128] = {
|
||||
0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
|
||||
144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
|
||||
@ -3507,6 +3542,38 @@ void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y,
|
||||
}
|
||||
}
|
||||
|
||||
// ====================== 3.0625 bpw (de)-quantization
|
||||
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
const int nb = k / QK_K;
|
||||
|
||||
uint32_t aux32;
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d);
|
||||
const uint8_t * qs = x[i].qs;
|
||||
const uint8_t * scales_and_signs = qs + QK_K/4;
|
||||
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t));
|
||||
const float db = d * (0.5f + (aux32 >> 28)) * 0.5f;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]);
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
|
||||
y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
|
||||
}
|
||||
y += 8;
|
||||
}
|
||||
qs += 8;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//===================================== Q8_K ==============================================
|
||||
|
||||
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) {
|
||||
@ -8458,17 +8525,36 @@ void ggml_vec_dot_iq2_xs_q8_K(const int n, float * restrict s, const void * rest
|
||||
|
||||
const __m128i m4 = _mm_set1_epi8(0xf);
|
||||
const __m128i m1 = _mm_set1_epi8(1);
|
||||
const __m128i m511 = _mm_set1_epi16(511);
|
||||
const __m128i m127 = _mm_set1_epi16(127);
|
||||
const __m256i m511 = _mm256_set1_epi16(511);
|
||||
const __m256i mone = _mm256_set1_epi8(1);
|
||||
|
||||
const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
|
||||
static const uint8_t k_bit_helper[32] = {
|
||||
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
|
||||
0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00,
|
||||
};
|
||||
static const char block_sign_shuffle_mask_1[32] = {
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
|
||||
0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06,
|
||||
};
|
||||
static const char block_sign_shuffle_mask_2[32] = {
|
||||
0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a,
|
||||
0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e,
|
||||
};
|
||||
static const uint8_t bit_selector_mask_bytes[32] = {
|
||||
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
|
||||
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
|
||||
};
|
||||
|
||||
const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper);
|
||||
const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes);
|
||||
const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1);
|
||||
const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2);
|
||||
|
||||
uint64_t aux64;
|
||||
|
||||
// somewhat hacky, but gives a significant boost in performance
|
||||
__m128i aux_gindex, aux_sindex;
|
||||
__m256i aux_gindex;
|
||||
const uint16_t * gindex = (const uint16_t *)&aux_gindex;
|
||||
const uint16_t * sindex = (const uint16_t *)&aux_sindex;
|
||||
|
||||
__m256 accumf = _mm256_setzero_ps();
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
@ -8483,26 +8569,68 @@ void ggml_vec_dot_iq2_xs_q8_K(const int n, float * restrict s, const void * rest
|
||||
|
||||
__m256i sumi1 = _mm256_setzero_si256();
|
||||
__m256i sumi2 = _mm256_setzero_si256();
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) {
|
||||
|
||||
const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16;
|
||||
aux_gindex = _mm256_and_si256(q2_data, m511);
|
||||
|
||||
const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9);
|
||||
const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13);
|
||||
const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper);
|
||||
|
||||
const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting);
|
||||
const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits);
|
||||
|
||||
const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
const __m128i q2_data = _mm_loadu_si128((const __m128i*)q2); q2 += 8;
|
||||
aux_gindex = _mm_and_si128(q2_data, m511);
|
||||
aux_sindex = _mm_and_si128(_mm_srli_epi16(q2_data, 9), m127);
|
||||
const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[3]], iq2xs_grid[gindex[2]], iq2xs_grid[gindex[1]], iq2xs_grid[gindex[0]]);
|
||||
const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[7]], iq2xs_grid[gindex[6]], iq2xs_grid[gindex[5]], iq2xs_grid[gindex[4]]);
|
||||
const __m256i s2_1 = _mm256_set_epi64x(signs64[sindex[3]], signs64[sindex[2]], signs64[sindex[1]], signs64[sindex[0]]);
|
||||
const __m256i s2_2 = _mm256_set_epi64x(signs64[sindex[7]], signs64[sindex[6]], signs64[sindex[5]], signs64[sindex[4]]);
|
||||
const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
|
||||
const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
|
||||
const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
|
||||
const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]],
|
||||
iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]);
|
||||
const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]],
|
||||
iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]);
|
||||
const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]],
|
||||
iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]);
|
||||
const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]],
|
||||
iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]);
|
||||
|
||||
const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits);
|
||||
const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1);
|
||||
const __m256i full_signs_1 = _mm256_set_m128i(full_signs_l, full_signs_l);
|
||||
const __m256i full_signs_2 = _mm256_set_m128i(full_signs_h, full_signs_h);
|
||||
|
||||
__m256i signs;
|
||||
signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1);
|
||||
signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
|
||||
const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone));
|
||||
|
||||
signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2);
|
||||
signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
|
||||
const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone));
|
||||
|
||||
signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1);
|
||||
signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
|
||||
const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone));
|
||||
|
||||
signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2);
|
||||
signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask);
|
||||
const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone));
|
||||
|
||||
const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
|
||||
const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
|
||||
const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3);
|
||||
const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4);
|
||||
|
||||
const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0)));
|
||||
const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1)));
|
||||
const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2)));
|
||||
const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3)));
|
||||
|
||||
sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1));
|
||||
sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2));
|
||||
sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3));
|
||||
sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4));
|
||||
}
|
||||
|
||||
accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
|
||||
@ -8551,6 +8679,136 @@ void ggml_vec_dot_iq2_xs_q8_K(const int n, float * restrict s, const void * rest
|
||||
#endif
|
||||
}
|
||||
|
||||
// TODO
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
|
||||
assert(n % QK_K == 0);
|
||||
|
||||
const block_iq3_xxs * restrict x = vx;
|
||||
const block_q8_K * restrict y = vy;
|
||||
|
||||
const int nb = n / QK_K;
|
||||
|
||||
#if defined(__ARM_NEON)
|
||||
|
||||
const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
|
||||
|
||||
uint32_t aux32[2];
|
||||
|
||||
ggml_int8x16x4_t q3s;
|
||||
ggml_int8x16x4_t q8b;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * restrict q3 = x[i].qs;
|
||||
const uint8_t * restrict gas = x[i].qs + QK_K/4;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
float sumf1 = 0, sumf2 = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
|
||||
q8b = ggml_vld1q_s8_x4(q8); q8 += 64;
|
||||
memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t);
|
||||
const uint32x4_t aux32x4_0 = {iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]};
|
||||
const uint32x4_t aux32x4_1 = {iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]};
|
||||
const uint32x4_t aux32x4_2 = {iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]};
|
||||
const uint32x4_t aux32x4_3 = {iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]};
|
||||
q3 += 16;
|
||||
q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127))));
|
||||
q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127))));
|
||||
q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127))));
|
||||
q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127))));
|
||||
q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0));
|
||||
q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1));
|
||||
q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2));
|
||||
q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3));
|
||||
const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]);
|
||||
const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]);
|
||||
sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28));
|
||||
sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28));
|
||||
}
|
||||
sumf += d*(sumf1 + sumf2);
|
||||
}
|
||||
*s = 0.5f * sumf;
|
||||
|
||||
#elif defined(__AVX2__)
|
||||
|
||||
const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs;
|
||||
|
||||
uint32_t aux32[2];
|
||||
|
||||
__m256 accumf = _mm256_setzero_ps();
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * restrict q3 = x[i].qs;
|
||||
const uint8_t * restrict gas = x[i].qs + QK_K/4;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
__m256i sumi1 = _mm256_setzero_si256();
|
||||
__m256i sumi2 = _mm256_setzero_si256();
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) {
|
||||
const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32;
|
||||
const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
|
||||
iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
|
||||
q3 += 8;
|
||||
const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]],
|
||||
iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]);
|
||||
q3 += 8;
|
||||
memcpy(aux32, gas, 8); gas += 8;
|
||||
const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127],
|
||||
signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]);
|
||||
const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127],
|
||||
signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]);
|
||||
const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1);
|
||||
const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2);
|
||||
const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1);
|
||||
const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2);
|
||||
const uint16_t ls1 = aux32[0] >> 28;
|
||||
const uint16_t ls2 = aux32[1] >> 28;
|
||||
const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1));
|
||||
const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1));
|
||||
sumi1 = _mm256_add_epi32(sumi1, p1);
|
||||
sumi2 = _mm256_add_epi32(sumi2, p2);
|
||||
}
|
||||
|
||||
accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf);
|
||||
|
||||
}
|
||||
|
||||
*s = 0.25f * hsum_float_8(accumf);
|
||||
|
||||
#else
|
||||
|
||||
uint32_t aux32;
|
||||
|
||||
float sumf = 0.f;
|
||||
for (int i = 0; i < nb; ++i) {
|
||||
const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d;
|
||||
const uint8_t * restrict q3 = x[i].qs;
|
||||
const uint8_t * restrict gas = x[i].qs + QK_K/4;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
int32_t bsum = 0;
|
||||
for (int ib32 = 0; ib32 < QK_K/32; ++ib32) {
|
||||
memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t);
|
||||
const uint32_t ls = 2*(aux32 >> 28) + 1;
|
||||
int32_t sumi = 0;
|
||||
for (int l = 0; l < 4; ++l) {
|
||||
const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]);
|
||||
const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]);
|
||||
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1);
|
||||
sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1);
|
||||
}
|
||||
q8 += 8;
|
||||
}
|
||||
q3 += 8;
|
||||
bsum += sumi * ls;
|
||||
}
|
||||
sumf += d * bsum;
|
||||
}
|
||||
*s = 0.25f * sumf;
|
||||
#endif
|
||||
}
|
||||
|
||||
// ================================ IQ2 quantization =============================================
|
||||
|
||||
typedef struct {
|
||||
@ -9189,3 +9447,436 @@ size_t quantize_iq2_xs(const float * src, void * dst, int nrow, int n_per_row, i
|
||||
return nrow * nblock * sizeof(block_iq2_xs);
|
||||
}
|
||||
|
||||
//
|
||||
// ============================================= 3-bit using D4 lattice
|
||||
//
|
||||
|
||||
typedef struct {
|
||||
uint32_t * grid;
|
||||
int * map;
|
||||
uint16_t * neighbours;
|
||||
} iq3_entry_t;
|
||||
|
||||
static iq3_entry_t iq3_data[1] = {
|
||||
{NULL, NULL, NULL},
|
||||
};
|
||||
|
||||
static inline int iq3_data_index(int grid_size) {
|
||||
(void)grid_size;
|
||||
GGML_ASSERT(grid_size == 256);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int iq3_compare_func(const void * left, const void * right) {
|
||||
const int * l = (const int *)left;
|
||||
const int * r = (const int *)right;
|
||||
return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0;
|
||||
}
|
||||
|
||||
void iq3xs_init_impl(int grid_size) {
|
||||
const int gindex = iq3_data_index(grid_size);
|
||||
if (iq3_data[gindex].grid) {
|
||||
return;
|
||||
}
|
||||
static const uint16_t kgrid_256[256] = {
|
||||
0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74,
|
||||
81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159,
|
||||
169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321,
|
||||
327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531,
|
||||
536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664,
|
||||
698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978,
|
||||
992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105,
|
||||
1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228,
|
||||
1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553,
|
||||
1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722,
|
||||
1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063,
|
||||
2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389,
|
||||
2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746,
|
||||
2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153,
|
||||
3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610,
|
||||
3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992,
|
||||
};
|
||||
const int kmap_size = 4096;
|
||||
const int nwant = 2;
|
||||
const uint16_t * kgrid = kgrid_256;
|
||||
uint32_t * kgrid_q3xs;
|
||||
int * kmap_q3xs;
|
||||
uint16_t * kneighbors_q3xs;
|
||||
|
||||
printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
|
||||
uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
|
||||
for (int k = 0; k < grid_size; ++k) {
|
||||
int8_t * pos = (int8_t *)(the_grid + k);
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
int l = (kgrid[k] >> 3*i) & 0x7;
|
||||
pos[i] = 2*l + 1;
|
||||
}
|
||||
}
|
||||
kgrid_q3xs = the_grid;
|
||||
iq3_data[gindex].grid = the_grid;
|
||||
kmap_q3xs = (int *)malloc(kmap_size*sizeof(int));
|
||||
iq3_data[gindex].map = kmap_q3xs;
|
||||
for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1;
|
||||
uint32_t aux32;
|
||||
uint8_t * aux8 = (uint8_t *)&aux32;
|
||||
for (int i = 0; i < grid_size; ++i) {
|
||||
aux32 = kgrid_q3xs[i];
|
||||
uint16_t index = 0;
|
||||
for (int k=0; k<4; ++k) {
|
||||
uint16_t q = (aux8[k] - 1)/2;
|
||||
index |= (q << 3*k);
|
||||
}
|
||||
kmap_q3xs[index] = i;
|
||||
}
|
||||
int8_t pos[4];
|
||||
int * dist2 = (int *)malloc(2*grid_size*sizeof(int));
|
||||
int num_neighbors = 0, num_not_in_map = 0;
|
||||
for (int i = 0; i < kmap_size; ++i) {
|
||||
if (kmap_q3xs[i] >= 0) continue;
|
||||
++num_not_in_map;
|
||||
for (int k = 0; k < 4; ++k) {
|
||||
int l = (i >> 3*k) & 0x7;
|
||||
pos[k] = 2*l + 1;
|
||||
}
|
||||
for (int j = 0; j < grid_size; ++j) {
|
||||
const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
|
||||
int d2 = 0;
|
||||
for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
|
||||
dist2[2*j+0] = d2;
|
||||
dist2[2*j+1] = j;
|
||||
}
|
||||
qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
|
||||
int n = 0; int d2 = dist2[0];
|
||||
int nhave = 1;
|
||||
for (int j = 0; j < grid_size; ++j) {
|
||||
if (dist2[2*j] > d2) {
|
||||
if (nhave == nwant) break;
|
||||
d2 = dist2[2*j];
|
||||
++nhave;
|
||||
}
|
||||
++n;
|
||||
}
|
||||
num_neighbors += n;
|
||||
}
|
||||
printf("%s: %d neighbours in total\n", __func__, num_neighbors);
|
||||
kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
|
||||
iq3_data[gindex].neighbours = kneighbors_q3xs;
|
||||
int counter = 0;
|
||||
for (int i = 0; i < kmap_size; ++i) {
|
||||
if (kmap_q3xs[i] >= 0) continue;
|
||||
for (int k = 0; k < 4; ++k) {
|
||||
int l = (i >> 3*k) & 0x7;
|
||||
pos[k] = 2*l + 1;
|
||||
}
|
||||
for (int j = 0; j < grid_size; ++j) {
|
||||
const int8_t * pg = (const int8_t *)(kgrid_q3xs + j);
|
||||
int d2 = 0;
|
||||
for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]);
|
||||
dist2[2*j+0] = d2;
|
||||
dist2[2*j+1] = j;
|
||||
}
|
||||
qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func);
|
||||
kmap_q3xs[i] = -(counter + 1);
|
||||
int d2 = dist2[0];
|
||||
uint16_t * start = &kneighbors_q3xs[counter++];
|
||||
int n = 0, nhave = 1;
|
||||
for (int j = 0; j < grid_size; ++j) {
|
||||
if (dist2[2*j] > d2) {
|
||||
if (nhave == nwant) break;
|
||||
d2 = dist2[2*j];
|
||||
++nhave;
|
||||
}
|
||||
kneighbors_q3xs[counter++] = dist2[2*j+1];
|
||||
++n;
|
||||
}
|
||||
*start = n;
|
||||
}
|
||||
free(dist2);
|
||||
}
|
||||
|
||||
void iq3xs_free_impl(int grid_size) {
|
||||
GGML_ASSERT(grid_size == 256);
|
||||
const int gindex = iq3_data_index(grid_size);
|
||||
if (iq3_data[gindex].grid) {
|
||||
free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL;
|
||||
free(iq3_data[gindex].map); iq3_data[gindex].map = NULL;
|
||||
free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid,
|
||||
const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) {
|
||||
int num_neighbors = neighbours[0];
|
||||
GGML_ASSERT(num_neighbors > 0);
|
||||
float best_d2 = FLT_MAX;
|
||||
int grid_index = -1;
|
||||
for (int j = 1; j <= num_neighbors; ++j) {
|
||||
const int8_t * pg = (const int8_t *)(grid + neighbours[j]);
|
||||
float d2 = 0;
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
float q = pg[i];
|
||||
float diff = scale*q - xval[i];
|
||||
d2 += weight[i]*diff*diff;
|
||||
}
|
||||
if (d2 < best_d2) {
|
||||
best_d2 = d2; grid_index = neighbours[j];
|
||||
}
|
||||
}
|
||||
GGML_ASSERT(grid_index >= 0);
|
||||
const int8_t * pg = (const int8_t *)(grid + grid_index);
|
||||
for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2;
|
||||
return grid_index;
|
||||
}
|
||||
|
||||
static void quantize_row_iq3_xxs_impl(const float * restrict x, void * restrict vy, int n, const float * restrict quant_weights) {
|
||||
|
||||
const int gindex = iq3_data_index(256);
|
||||
|
||||
const uint32_t * kgrid_q3xs = iq3_data[gindex].grid;
|
||||
const int * kmap_q3xs = iq3_data[gindex].map;
|
||||
const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours;
|
||||
|
||||
//GGML_ASSERT(quant_weights && "missing quantization weights");
|
||||
GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?");
|
||||
GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?");
|
||||
GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?");
|
||||
GGML_ASSERT(n%QK_K == 0);
|
||||
|
||||
const int kMaxQ = 8;
|
||||
|
||||
const int nbl = n/256;
|
||||
|
||||
block_iq3_xxs * y = vy;
|
||||
|
||||
float scales[QK_K/32];
|
||||
float weight[32];
|
||||
float xval[32];
|
||||
int8_t L[32];
|
||||
int8_t Laux[32];
|
||||
float waux[32];
|
||||
bool is_on_grid[8];
|
||||
bool is_on_grid_aux[8];
|
||||
uint8_t block_signs[8];
|
||||
uint8_t q3[3*(QK_K/8)];
|
||||
uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4);
|
||||
|
||||
for (int ibl = 0; ibl < nbl; ++ibl) {
|
||||
|
||||
y[ibl].d = GGML_FP32_TO_FP16(0.f);
|
||||
memset(q3, 0, 3*QK_K/8);
|
||||
|
||||
float max_scale = 0;
|
||||
|
||||
const float * xbl = x + QK_K*ibl;
|
||||
float sumx2 = 0;
|
||||
for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i];
|
||||
float sigma2 = sumx2/QK_K;
|
||||
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
const float * xb = xbl + 32*ib;
|
||||
if (quant_weights) {
|
||||
const float * qw = quant_weights + QK_K*ibl + 32*ib;
|
||||
for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
|
||||
} else {
|
||||
for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
|
||||
}
|
||||
for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]);
|
||||
for (int k = 0; k < 4; ++k) {
|
||||
int nflip = 0;
|
||||
uint8_t s = 0;
|
||||
for (int i = 0; i < 8; ++i) {
|
||||
if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i];
|
||||
else {
|
||||
xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i);
|
||||
}
|
||||
}
|
||||
if (nflip%2) {
|
||||
int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin];
|
||||
for (int i = 1; i < 8; ++i) {
|
||||
float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i];
|
||||
if (ax < min) {
|
||||
min = ax; imin = i;
|
||||
}
|
||||
}
|
||||
xval[8*k+imin] = -xval[8*k+imin];
|
||||
s ^= (1 << imin);
|
||||
}
|
||||
block_signs[k] = s & 127;
|
||||
}
|
||||
float max = xval[0];
|
||||
for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]);
|
||||
if (!max) {
|
||||
scales[ib] = 0;
|
||||
memset(L, 0, 32);
|
||||
continue;
|
||||
}
|
||||
float best = 0;
|
||||
float scale = max/(2*kMaxQ-1);
|
||||
for (int is = -15; is <= 15; ++is) {
|
||||
float id = (2*kMaxQ-1+is*0.2f)/max;
|
||||
float this_scale = 1/id;
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
|
||||
Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l));
|
||||
}
|
||||
uint16_t u = 0;
|
||||
for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i);
|
||||
int grid_index = kmap_q3xs[u];
|
||||
is_on_grid_aux[k] = true;
|
||||
if (grid_index < 0) {
|
||||
is_on_grid_aux[k] = false;
|
||||
const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
|
||||
grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k);
|
||||
}
|
||||
}
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int i = 0; i < 32; ++i) {
|
||||
float w = weight[i];
|
||||
float q = 2*Laux[i] + 1;
|
||||
sumqx += w*xval[i]*q;
|
||||
sumq2 += w*q*q;
|
||||
}
|
||||
if (sumq2 > 0 && sumqx*sumqx > best*sumq2) {
|
||||
scale = sumqx/sumq2; best = scale*sumqx;
|
||||
for (int i = 0; i < 32; ++i) L[i] = Laux[i];
|
||||
for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k];
|
||||
}
|
||||
}
|
||||
int n_not_ongrid = 0;
|
||||
for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid;
|
||||
if (n_not_ongrid > 0 && scale > 0) {
|
||||
float id = 1/scale;
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
if (is_on_grid[k]) continue;
|
||||
uint16_t u = 0;
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
int l = nearest_int(0.5f*(id*xval[4*k+i]-1));
|
||||
l = MAX(0, MIN(kMaxQ-1, l));
|
||||
u |= (l << 3*i);
|
||||
}
|
||||
int grid_index = kmap_q3xs[u];
|
||||
if (grid_index < 0) {
|
||||
const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1;
|
||||
grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k);
|
||||
}
|
||||
const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index);
|
||||
for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2;
|
||||
}
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int i = 0; i < 32; ++i) {
|
||||
float w = weight[i];
|
||||
float q = 2*L[i] + 1;
|
||||
sumqx += w*xval[i]*q;
|
||||
sumq2 += w*q*q;
|
||||
}
|
||||
if (sumq2 > 0) scale = sumqx/sumq2;
|
||||
}
|
||||
if (scale < 0) {
|
||||
// This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale)
|
||||
// and correspondingly flip quant signs.
|
||||
scale = -scale;
|
||||
for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127;
|
||||
}
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
uint16_t u = 0;
|
||||
for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i);
|
||||
int grid_index = kmap_q3xs[u];
|
||||
if (grid_index < 0) {
|
||||
printf("Oops: found point %u not on grid:", u);
|
||||
for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]);
|
||||
printf("\n");
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
q3[8*ib+k] = grid_index;
|
||||
}
|
||||
scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21);
|
||||
GGML_ASSERT(scale >= 0);
|
||||
scales[ib] = scale;
|
||||
max_scale = MAX(max_scale, scale);
|
||||
}
|
||||
|
||||
if (!max_scale) {
|
||||
memset(y[ibl].qs, 0, 3*QK_K/8);
|
||||
continue;
|
||||
}
|
||||
|
||||
float d = max_scale/31;
|
||||
y[ibl].d = GGML_FP32_TO_FP16(d);
|
||||
float id = 1/d;
|
||||
float sumqx = 0, sumq2 = 0;
|
||||
for (int ib = 0; ib < QK_K/32; ++ib) {
|
||||
int l = nearest_int(0.5f*(id*scales[ib]-1));
|
||||
l = MAX(0, MIN(15, l));
|
||||
scales_and_signs[ib] |= ((uint32_t)l << 28);
|
||||
if (false) {
|
||||
const float * xb = xbl + 32*ib;
|
||||
if (quant_weights) {
|
||||
const float * qw = quant_weights + QK_K*ibl + 32*ib;
|
||||
for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]);
|
||||
} else {
|
||||
for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i];
|
||||
}
|
||||
const float db = 0.25f * d * (1 + 2*l);
|
||||
for (int k = 0; k < 8; ++k) {
|
||||
const int8_t * signs = keven_signs_q2xs + 8*((scales_and_signs[ib] >> 7*(k/2)) & 127) + 4*(k%2);
|
||||
const float * xk = xb + 4*k;
|
||||
const float * wk = weight + 4*k;
|
||||
//const uint8_t * grid = (const uint8_t *)(kgrid_q3xs + q3[8*ib+k]);
|
||||
const uint8_t * grid = (const uint8_t *)(iq3xxs_grid + q3[8*ib+k]);
|
||||
float best_mse = 0; int best_index = q3[8*ib+k];
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
float diff = db * grid[j] * signs[j] - xk[j];
|
||||
best_mse += wk[j] * diff * diff;
|
||||
}
|
||||
for (int idx = 0; idx < 256; ++idx) {
|
||||
//grid = (const uint8_t *)(kgrid_q3xs + idx);
|
||||
grid = (const uint8_t *)(iq3xxs_grid + idx);
|
||||
float mse = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
float diff = db * grid[j] * signs[j] - xk[j];
|
||||
mse += wk[j] * diff * diff;
|
||||
}
|
||||
if (mse < best_mse) {
|
||||
best_mse = mse; best_index = idx;
|
||||
}
|
||||
}
|
||||
q3[8*ib+k] = best_index;
|
||||
//grid = (const uint8_t *)(kgrid_q3xs + best_index);
|
||||
grid = (const uint8_t *)(iq3xxs_grid + best_index);
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
float q = db * grid[j] * signs[j];
|
||||
sumqx += wk[j] * q * xk[j];
|
||||
sumq2 += wk[j] * q * q;
|
||||
}
|
||||
}
|
||||
if (sumq2 > 0) y[ibl].d = GGML_FP32_TO_FP16(d*sumqx/sumq2);
|
||||
}
|
||||
}
|
||||
memcpy(y[ibl].qs, q3, 3*QK_K/8);
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_iq3_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
int nblock = n_per_row/QK_K;
|
||||
char * qrow = (char *)dst;
|
||||
for (int row = 0; row < nrow; ++row) {
|
||||
quantize_row_iq3_xxs_impl(src, qrow, n_per_row, quant_weights);
|
||||
src += n_per_row;
|
||||
qrow += nblock*sizeof(block_iq3_xxs);
|
||||
}
|
||||
return nrow * nblock * sizeof(block_iq3_xxs);
|
||||
}
|
||||
|
||||
void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
block_iq3_xxs * restrict y = vy;
|
||||
quantize_row_iq3_xxs_reference(x, y, k);
|
||||
}
|
||||
|
||||
void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
quantize_row_iq3_xxs_impl(x, y, k, NULL);
|
||||
}
|
||||
|
@ -166,7 +166,7 @@ typedef struct {
|
||||
static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding");
|
||||
|
||||
// (Almost) "true" 2-bit quantization.
|
||||
// Due to the need to use blocks as per ggml dsign, it ends up using
|
||||
// Due to the need to use blocks as per ggml design, it ends up using
|
||||
// 2.0625 bpw because of the 16-bit scale for each block of 256.
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
@ -182,6 +182,15 @@ typedef struct {
|
||||
} block_iq2_xs;
|
||||
static_assert(sizeof(block_iq2_xs) == sizeof(ggml_fp16_t) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding");
|
||||
|
||||
// (Almost) "true" 3-bit quantization.
|
||||
// Due to the need to use blocks as per ggml design, it ends up using
|
||||
// 3.0625 bpw because of the 16-bit scale for each block of 256.
|
||||
typedef struct {
|
||||
ggml_fp16_t d;
|
||||
uint8_t qs[3*QK_K/8];
|
||||
} block_iq3_xxs;
|
||||
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
|
||||
|
||||
// Quantization
|
||||
void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k);
|
||||
void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k);
|
||||
@ -196,6 +205,7 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict
|
||||
void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k);
|
||||
void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k);
|
||||
void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k);
|
||||
void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int k);
|
||||
|
||||
void quantize_row_q4_0(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q4_1(const float * restrict x, void * restrict y, int k);
|
||||
@ -210,6 +220,7 @@ void quantize_row_q4_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q5_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q6_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_q8_K(const float * restrict x, void * restrict y, int k);
|
||||
void quantize_row_iq3_xxs(const float * restrict x, void * restrict y, int k);
|
||||
|
||||
// Dequantization
|
||||
void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k);
|
||||
@ -227,6 +238,7 @@ void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int
|
||||
void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * restrict x, float * restrict y, int k);
|
||||
void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int k);
|
||||
|
||||
// Dot product
|
||||
void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
@ -242,12 +254,14 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx,
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy);
|
||||
|
||||
//
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
//
|
||||
size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
@ -260,3 +274,5 @@ size_t quantize_q5_1 (const float * src, void * dst, int nrows, int n_per_row,
|
||||
|
||||
void iq2xs_init_impl(int grid_size);
|
||||
void iq2xs_free_impl(int grid_size);
|
||||
void iq3xs_init_impl(int grid_size);
|
||||
void iq3xs_free_impl(int grid_size);
|
||||
|
425
ggml-vulkan.cpp
425
ggml-vulkan.cpp
@ -116,7 +116,7 @@ struct vk_device {
|
||||
vk_queue transfer_queue;
|
||||
uint32_t descriptor_set_mode;
|
||||
uint32_t subgroup_size;
|
||||
bool is_igpu;
|
||||
bool uma;
|
||||
};
|
||||
|
||||
struct vk_op_push_constants {
|
||||
@ -675,7 +675,7 @@ static vk_buffer ggml_vk_create_buffer(size_t size, vk::MemoryPropertyFlags req_
|
||||
|
||||
vk::PhysicalDeviceMemoryProperties mem_props = vk_device.physical_device.getMemoryProperties();
|
||||
|
||||
uint32_t memory_type_index = uint32_t(~0);
|
||||
uint32_t memory_type_index = UINT32_MAX;
|
||||
|
||||
for (uint32_t i = 0; i < mem_props.memoryTypeCount; ++i) {
|
||||
vk::MemoryType memory_type = mem_props.memoryTypes[i];
|
||||
@ -685,7 +685,18 @@ static vk_buffer ggml_vk_create_buffer(size_t size, vk::MemoryPropertyFlags req_
|
||||
}
|
||||
}
|
||||
|
||||
buf.device_memory = vk_device.device.allocateMemory({ mem_req.size, memory_type_index });
|
||||
if (memory_type_index >= mem_props.memoryTypeCount) {
|
||||
throw vk::OutOfDeviceMemoryError("No suitable memory type found");
|
||||
}
|
||||
|
||||
try {
|
||||
buf.device_memory = vk_device.device.allocateMemory({ mem_req.size, memory_type_index });
|
||||
} catch (const vk::SystemError& e) {
|
||||
// Out of Host/Device memory, clean up buffer
|
||||
vk_device.device.destroyBuffer(buf.buffer);
|
||||
buf.size = 0;
|
||||
throw e;
|
||||
}
|
||||
buf.memory_property_flags = req_flags;
|
||||
buf.ptr = nullptr;
|
||||
|
||||
@ -700,6 +711,47 @@ static vk_buffer ggml_vk_create_buffer(size_t size, vk::MemoryPropertyFlags req_
|
||||
return buf;
|
||||
}
|
||||
|
||||
static vk_buffer ggml_vk_create_buffer_check(size_t size, vk::MemoryPropertyFlags req_flags) {
|
||||
try {
|
||||
return ggml_vk_create_buffer(size, req_flags);
|
||||
} catch (const vk::SystemError& e) {
|
||||
std::cerr << "ggml_vulkan: Memory allocation of size " << size << " failed." << std::endl;
|
||||
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
|
||||
throw e;
|
||||
}
|
||||
}
|
||||
|
||||
static vk_buffer ggml_vk_create_buffer_device(size_t size) {
|
||||
vk_buffer buf;
|
||||
try {
|
||||
buf = ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
} catch (const vk::SystemError& e) {
|
||||
if (vk_device.uma) {
|
||||
// Fall back to host memory type
|
||||
buf = ggml_vk_create_buffer_check(size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent);
|
||||
} else {
|
||||
std::cerr << "ggml_vulkan: Device memory allocation of size " << size << " failed." << std::endl;
|
||||
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
|
||||
throw e;
|
||||
}
|
||||
}
|
||||
|
||||
return buf;
|
||||
}
|
||||
|
||||
static void ggml_vk_destroy_buffer(vk_buffer& buf) {
|
||||
if (buf.size == 0) {
|
||||
return;
|
||||
}
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_vk_destroy_buffer(" << buf.size << ")" << std::endl;
|
||||
#endif
|
||||
|
||||
buf.size = 0;
|
||||
vk_device.device.freeMemory(buf.device_memory);
|
||||
vk_device.device.destroyBuffer(buf.buffer);
|
||||
}
|
||||
|
||||
static vk_subbuffer ggml_vk_subbuffer(vk_buffer& buf) {
|
||||
return { buf, 0, VK_WHOLE_SIZE };
|
||||
}
|
||||
@ -738,19 +790,6 @@ static void ggml_vk_wait_events(vk::CommandBuffer& cmd_buffer, std::vector<vk::E
|
||||
);
|
||||
}
|
||||
|
||||
static void ggml_vk_destroy_buffer(vk_buffer& buf) {
|
||||
if (buf.size == 0) {
|
||||
return;
|
||||
}
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_vk_destroy_buffer(" << buf.size << ")" << std::endl;
|
||||
#endif
|
||||
|
||||
buf.size = 0;
|
||||
vk_device.device.freeMemory(buf.device_memory);
|
||||
vk_device.device.destroyBuffer(buf.buffer);
|
||||
}
|
||||
|
||||
static bool ggml_vk_build_shader(ggml_type type) {
|
||||
switch(type) {
|
||||
case GGML_TYPE_F16:
|
||||
@ -1015,7 +1054,7 @@ std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
|
||||
|
||||
vk_device.vendor_id = vk_device.properties.vendorID;
|
||||
vk_device.subgroup_size = subgroup_props.subgroupSize;
|
||||
vk_device.is_igpu = vk_device.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
|
||||
vk_device.uma = vk_device.properties.deviceType == vk::PhysicalDeviceType::eIntegratedGpu;
|
||||
|
||||
bool fp16_storage = false;
|
||||
bool fp16_compute = false;
|
||||
@ -1088,7 +1127,7 @@ std::cerr << "ggml_vulkan: Validation layers enabled" << std::endl;
|
||||
if (vk_device.fp16) {
|
||||
device_extensions.push_back("VK_KHR_shader_float16_int8");
|
||||
}
|
||||
std::cerr << "ggml_vulkan: Using " << vk_device.properties.deviceName << " | fp16: " << vk_device.fp16 << " | warp size: " << vk_device.subgroup_size << std::endl;
|
||||
std::cerr << "ggml_vulkan: Using " << vk_device.properties.deviceName << " | uma: " << vk_device.uma << " | fp16: " << vk_device.fp16 << " | warp size: " << vk_device.subgroup_size << std::endl;
|
||||
device_create_info = {
|
||||
vk::DeviceCreateFlags(),
|
||||
device_queue_create_infos,
|
||||
@ -1210,7 +1249,7 @@ static vk_buffer ggml_vk_pool_malloc(size_t size) {
|
||||
ggml_vk_destroy_buffer(b);
|
||||
}
|
||||
|
||||
return ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
return ggml_vk_create_buffer_check(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
}
|
||||
|
||||
static void ggml_vk_pool_free(vk_buffer& buffer) {
|
||||
@ -1250,10 +1289,6 @@ static void * ggml_vk_host_malloc(size_t size) {
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_vk_host_malloc(" << size << ")" << std::endl;
|
||||
#endif
|
||||
if (getenv("GGML_VK_NO_PINNED") != nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
vk_buffer buf = ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
|
||||
if(!(buf.memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible)) {
|
||||
@ -1298,6 +1333,20 @@ static void ggml_vk_host_free(void* ptr) {
|
||||
vk_pinned_memory.erase(vk_pinned_memory.begin() + index);
|
||||
}
|
||||
|
||||
static void ggml_vk_host_get(const void * ptr, vk_buffer *& buf, size_t& buf_offset) {
|
||||
buf = nullptr;
|
||||
buf_offset = 0;
|
||||
for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
|
||||
const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
|
||||
const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
|
||||
if (ptr >= addr && ptr < endr) {
|
||||
buf = &std::get<2>(vk_pinned_memory[i]);
|
||||
buf_offset = ((const uint8_t *)ptr) - addr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static vk_submission ggml_vk_begin_submission(vk_queue& q, bool one_time = true) {
|
||||
vk_submission s;
|
||||
s.buffer = ggml_vk_create_cmd_buffer(q);
|
||||
@ -1384,6 +1433,13 @@ static void deferred_memcpy(void * dst, const void * src, size_t size, std::vect
|
||||
}
|
||||
}
|
||||
|
||||
static void ensure_sync_staging_buffer(size_t size) {
|
||||
if (vk_sync_staging.size < size) {
|
||||
ggml_vk_destroy_buffer(vk_sync_staging);
|
||||
vk_sync_staging = ggml_vk_create_buffer_check(size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_vk_buffer_write_nc_async(vk_context * ctx, vk_buffer* dst, size_t offset, const ggml_tensor * tensor, bool sync_staging = false) {
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_vk_buffer_write_nc_async(" << tensor << ")" << std::endl;
|
||||
@ -1391,21 +1447,13 @@ static void ggml_vk_buffer_write_nc_async(vk_context * ctx, vk_buffer* dst, size
|
||||
GGML_ASSERT(!ggml_is_contiguous(tensor));
|
||||
// Buffer is already mapped
|
||||
if(dst->memory_property_flags & vk::MemoryPropertyFlagBits::eHostVisible) {
|
||||
std::cerr << "ggml_vulkan: buffer_write_async dst buffer is host_visible. Use synchronous write." << std::endl;
|
||||
std::cerr << "ggml_vulkan: buffer_write_nc_async dst buffer is host_visible. Use synchronous write." << std::endl;
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
// Check if src is pinned memory
|
||||
vk_buffer* buf = nullptr;
|
||||
size_t buf_offset = 0;
|
||||
for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
|
||||
const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
|
||||
const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
|
||||
if (tensor->data >= addr && tensor->data < endr) {
|
||||
buf = &std::get<2>(vk_pinned_memory[i]);
|
||||
buf_offset = ((const uint8_t *)tensor->data) - addr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
vk_buffer * buf = nullptr;
|
||||
size_t buf_offset;
|
||||
ggml_vk_host_get(tensor->data, buf, buf_offset);
|
||||
|
||||
const uint64_t ne0 = tensor->ne[0];
|
||||
const uint64_t ne1 = tensor->ne[1];
|
||||
@ -1463,10 +1511,7 @@ static void ggml_vk_buffer_write_nc_async(vk_context * ctx, vk_buffer* dst, size
|
||||
if (vk_staging.size < vk_staging_offset + copy_size) {
|
||||
if (sync_staging) {
|
||||
// Create temporary larger buffer
|
||||
if (vk_sync_staging.size < copy_size) {
|
||||
ggml_vk_destroy_buffer(vk_sync_staging);
|
||||
vk_sync_staging = ggml_vk_create_buffer(copy_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
}
|
||||
ensure_sync_staging_buffer(copy_size);
|
||||
|
||||
staging = &vk_sync_staging;
|
||||
staging_offset = 0;
|
||||
@ -1512,17 +1557,9 @@ static void ggml_vk_buffer_write_2d_async(vk_context * ctx, vk_buffer* dst, size
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
// Check if src is pinned memory
|
||||
vk_buffer* buf = nullptr;
|
||||
size_t buf_offset = 0;
|
||||
for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
|
||||
const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
|
||||
const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
|
||||
if (src >= addr && src < endr) {
|
||||
buf = &std::get<2>(vk_pinned_memory[i]);
|
||||
buf_offset = ((const uint8_t *)src) - addr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
vk_buffer * buf = nullptr;
|
||||
size_t buf_offset;
|
||||
ggml_vk_host_get(src, buf, buf_offset);
|
||||
|
||||
if (buf != nullptr) {
|
||||
// Memory is pinned, use as staging buffer
|
||||
@ -1555,10 +1592,7 @@ static void ggml_vk_buffer_write_2d_async(vk_context * ctx, vk_buffer* dst, size
|
||||
const size_t copy_size = width*height;
|
||||
if (vk_staging.size < vk_staging_offset + copy_size) {
|
||||
if (sync_staging) {
|
||||
if (vk_sync_staging.size < copy_size) {
|
||||
ggml_vk_destroy_buffer(vk_sync_staging);
|
||||
vk_sync_staging = ggml_vk_create_buffer(copy_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
}
|
||||
ensure_sync_staging_buffer(copy_size);
|
||||
|
||||
staging = &vk_sync_staging;
|
||||
staging_offset = 0;
|
||||
@ -1633,17 +1667,9 @@ static void ggml_vk_buffer_read_2d_async(vk_context * ctx, vk_buffer* src, size_
|
||||
GGML_ASSERT(height > 0);
|
||||
GGML_ASSERT(src->size > 0);
|
||||
// Check if dst is pinned memory
|
||||
vk_buffer* buf = nullptr;
|
||||
size_t buf_offset = 0;
|
||||
for (size_t i = 0; i < vk_pinned_memory.size(); i++) {
|
||||
const uint8_t* addr = (const uint8_t*) std::get<0>(vk_pinned_memory[i]);
|
||||
const uint8_t* endr = addr + std::get<1>(vk_pinned_memory[i]);
|
||||
if (dst >= addr && dst < endr) {
|
||||
buf = &std::get<2>(vk_pinned_memory[i]);
|
||||
buf_offset = ((const uint8_t *)dst) - addr;
|
||||
break;
|
||||
}
|
||||
}
|
||||
vk_buffer * buf = nullptr;
|
||||
size_t buf_offset;
|
||||
ggml_vk_host_get(dst, buf, buf_offset);
|
||||
|
||||
std::vector<vk::BufferCopy> slices(1);
|
||||
if (width == spitch && width == dpitch) {
|
||||
@ -1677,10 +1703,7 @@ static void ggml_vk_buffer_read_2d_async(vk_context * ctx, vk_buffer* src, size_
|
||||
if (vk_staging.size < vk_staging_offset + copy_size) {
|
||||
if (sync_staging) {
|
||||
// Create temporary larger buffer
|
||||
if (vk_sync_staging.size < copy_size) {
|
||||
ggml_vk_destroy_buffer(vk_sync_staging);
|
||||
vk_sync_staging = ggml_vk_create_buffer(copy_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
}
|
||||
ensure_sync_staging_buffer(copy_size);
|
||||
|
||||
staging = &vk_sync_staging;
|
||||
} else {
|
||||
@ -1819,7 +1842,7 @@ static void ggml_vk_d2h_tensor_2d(vk_context * ctx, vk_buffer * src, size_t offs
|
||||
|
||||
static uint32_t ggml_vk_guess_split_k(int m, int n, int k) {
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ", " << aligned << ")";
|
||||
std::cerr << "ggml_vk_guess_split_k(" << m << ", " << n << ", " << k << ")";
|
||||
#endif
|
||||
if (k > 128 && (m < 128 || n < 128) && m > 2 && n > 2) {
|
||||
#ifdef VK_DEBUG
|
||||
@ -2003,8 +2026,27 @@ static void ggml_vk_mul_mat_q_f16(vk_context * ctx, const ggml_tensor * src0, co
|
||||
const uint64_t r2 = ne12 / ne02;
|
||||
const uint64_t r3 = ne13 / ne03;
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer * d_Qx = nullptr;
|
||||
size_t qx_buf_offset = 0;
|
||||
vk_buffer * d_Qy = nullptr;
|
||||
size_t qy_buf_offset = 0;
|
||||
|
||||
bool src0_uma = false;
|
||||
bool src1_uma = false;
|
||||
|
||||
if (vk_device.uma) {
|
||||
ggml_vk_host_get(src0->data, d_Qx, qx_buf_offset);
|
||||
ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
|
||||
src0_uma = d_Qx != nullptr;
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
|
||||
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
||||
@ -2034,32 +2076,24 @@ static void ggml_vk_mul_mat_q_f16(vk_context * ctx, const ggml_tensor * src0, co
|
||||
const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
|
||||
const uint64_t d_sz = sizeof(float) * d_ne;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer* d_D = &extra->buffer_gpu;
|
||||
const uint64_t d_buf_offset = extra->offset;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
GGML_ASSERT(d_D->size >= d_buf_offset + d_sz * ne02 * ne03);
|
||||
vk_buffer * d_Qx;
|
||||
uint64_t qx_buf_offset = 0;
|
||||
vk_buffer * d_Qy;
|
||||
uint64_t qy_buf_offset = 0;
|
||||
vk_buffer* d_X;
|
||||
uint64_t x_buf_offset = 0;
|
||||
vk_buffer* d_Y;
|
||||
uint64_t y_buf_offset = 0;
|
||||
if (load_x) {
|
||||
d_Qx = &vk_prealloc_qx;
|
||||
} else {
|
||||
} else if (!src0_uma) {
|
||||
d_Qx = &extra_src0->buffer_gpu;
|
||||
qx_buf_offset = extra_src0->offset;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
}
|
||||
if (load_y) {
|
||||
d_Qy = &vk_prealloc_qy;
|
||||
} else {
|
||||
} else if (!src1_uma) {
|
||||
d_Qy = &extra_src1->buffer_gpu;
|
||||
qy_buf_offset = extra_src1->offset;
|
||||
GGML_ASSERT(d_Qy != nullptr);
|
||||
@ -2178,8 +2212,27 @@ static void ggml_vk_mul_mat_vec_q_f16(vk_context * ctx, const ggml_tensor * src0
|
||||
const uint64_t r2 = ne12 / ne02;
|
||||
const uint64_t r3 = ne13 / ne03;
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer * d_Qx = nullptr;
|
||||
size_t qx_buf_offset = 0;
|
||||
vk_buffer * d_Qy = nullptr;
|
||||
size_t qy_buf_offset = 0;
|
||||
|
||||
bool src0_uma = false;
|
||||
bool src1_uma = false;
|
||||
|
||||
if (vk_device.uma) {
|
||||
ggml_vk_host_get(src0->data, d_Qx, qx_buf_offset);
|
||||
ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
|
||||
src0_uma = d_Qx != nullptr;
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_x = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
|
||||
const bool x_non_contig = !load_x && !ggml_vk_dim01_contiguous(src0);
|
||||
const bool y_non_contig = !load_y && !ggml_vk_dim01_contiguous(src1);
|
||||
@ -2199,31 +2252,23 @@ static void ggml_vk_mul_mat_vec_q_f16(vk_context * ctx, const ggml_tensor * src0
|
||||
const uint64_t y_sz = f16_f32_kernel ? sizeof(float) * y_ne : sizeof(ggml_fp16_t) * y_ne;
|
||||
const uint64_t d_sz = sizeof(float) * d_ne;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer* d_D = &extra->buffer_gpu;
|
||||
const uint64_t d_buf_offset = extra->offset;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
vk_buffer* d_Qx;
|
||||
uint32_t qx_buf_offset = 0;
|
||||
vk_buffer* d_Qy;
|
||||
uint32_t qy_buf_offset = 0;
|
||||
vk_buffer* d_X;
|
||||
uint64_t x_buf_offset = 0;
|
||||
vk_buffer* d_Y;
|
||||
uint64_t y_buf_offset = 0;
|
||||
if (load_x) {
|
||||
d_Qx = &vk_prealloc_qx;
|
||||
} else {
|
||||
} else if(!src1_uma) {
|
||||
d_Qx = &extra_src0->buffer_gpu;
|
||||
qx_buf_offset = extra_src0->offset;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
}
|
||||
if (load_y) {
|
||||
d_Qy = &vk_prealloc_qy;
|
||||
} else {
|
||||
} else if(!src1_uma) {
|
||||
d_Qy = &extra_src1->buffer_gpu;
|
||||
qy_buf_offset = extra_src1->offset;
|
||||
GGML_ASSERT(d_Qy != nullptr);
|
||||
@ -2345,7 +2390,21 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(vk_context * ctx, const ggml_tensor
|
||||
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer * d_Qy = nullptr;
|
||||
size_t qy_buf_offset = 0;
|
||||
|
||||
bool src1_uma = false;
|
||||
|
||||
if (vk_device.uma) {
|
||||
ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
|
||||
const uint64_t x_ne = ne00 * ne01 * ne02;
|
||||
const uint64_t y_ne = ne10 * ne11 * ne12;
|
||||
@ -2355,22 +2414,15 @@ static void ggml_vk_mul_mat_vec_p021_f16_f32(vk_context * ctx, const ggml_tensor
|
||||
const uint64_t qy_sz = ggml_type_size(src1->type) * y_ne / ggml_blck_size(src1->type);
|
||||
const uint64_t d_sz = sizeof(float) * d_ne;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer* d_D = &extra->buffer_gpu;
|
||||
const uint64_t d_buf_offset = extra->offset;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
vk_buffer* d_Qx;
|
||||
vk_buffer* d_Qx = &extra_src0->buffer_gpu;
|
||||
const uint64_t qx_buf_offset = extra_src0->offset;
|
||||
vk_buffer* d_Qy;
|
||||
uint64_t qy_buf_offset = 0;
|
||||
d_Qx = &extra_src0->buffer_gpu;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
if (load_y) {
|
||||
d_Qy = &vk_prealloc_qy;
|
||||
} else {
|
||||
} else if (!src1_uma) {
|
||||
d_Qy = &extra_src1->buffer_gpu;
|
||||
qy_buf_offset = extra_src1->offset;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
@ -2430,7 +2482,21 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(vk_context * ctx, const ggml_tensor *
|
||||
|
||||
GGML_ASSERT(ne11 == 1);
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer * d_Qy = nullptr;
|
||||
size_t qy_buf_offset = 0;
|
||||
|
||||
bool src1_uma = false;
|
||||
|
||||
if (vk_device.uma) {
|
||||
ggml_vk_host_get(src1->data, d_Qy, qy_buf_offset);
|
||||
src1_uma = d_Qy != nullptr;
|
||||
}
|
||||
|
||||
const bool load_y = src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
|
||||
const uint64_t d_ne = ne01 * ne11 * ne12;
|
||||
|
||||
@ -2441,18 +2507,11 @@ static void ggml_vk_mul_mat_vec_nc_f16_f32(vk_context * ctx, const ggml_tensor *
|
||||
const uint64_t qy_sz = ggml_nbytes(src1);
|
||||
const uint64_t d_sz = sizeof(float) * d_ne;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = (ggml_tensor_extra_gpu *) src1->extra;
|
||||
|
||||
vk_buffer* d_D = &extra->buffer_gpu;
|
||||
const uint64_t d_buf_offset = extra->offset;
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
vk_buffer* d_Qx;
|
||||
vk_buffer* d_Qx = &extra_src0->buffer_gpu;
|
||||
const uint64_t qx_buf_offset = extra_src0->offset;
|
||||
vk_buffer* d_Qy;
|
||||
uint64_t qy_buf_offset = 0;
|
||||
d_Qx = &extra_src0->buffer_gpu;
|
||||
GGML_ASSERT(d_Qx != nullptr);
|
||||
if (load_y) {
|
||||
d_Qy = &vk_prealloc_qy;
|
||||
@ -2709,7 +2768,8 @@ static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) {
|
||||
}
|
||||
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name);
|
||||
static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name);
|
||||
static void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor);
|
||||
#endif
|
||||
|
||||
template<typename PC>
|
||||
@ -2758,17 +2818,34 @@ static void ggml_vk_op_f32(vk_context * ctx, const ggml_tensor * src0, const ggm
|
||||
return;
|
||||
}
|
||||
|
||||
const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU;
|
||||
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU;
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||
|
||||
vk_buffer * d_X = nullptr;
|
||||
size_t x_buf_offset = 0;
|
||||
vk_buffer * d_Y = nullptr;
|
||||
size_t y_buf_offset = 0;
|
||||
|
||||
bool src0_uma = false;
|
||||
bool src1_uma = false;
|
||||
|
||||
if (vk_device.uma) {
|
||||
ggml_vk_host_get(src0->data, d_X, x_buf_offset);
|
||||
src0_uma = d_X != nullptr;
|
||||
if (use_src1) {
|
||||
ggml_vk_host_get(src1->data, d_Y, y_buf_offset);
|
||||
src1_uma = d_Y != nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
const bool transfer_src0 = src0->backend != GGML_BACKEND_GPU && !src0_uma;
|
||||
const bool transfer_src1 = use_src1 && src1->backend != GGML_BACKEND_GPU && !src1_uma;
|
||||
|
||||
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type) * ne0, vk_device.properties.limits.minStorageBufferOffsetAlignment);
|
||||
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, vk_device.properties.limits.minStorageBufferOffsetAlignment) : 0;
|
||||
uint64_t d_sz = ggml_type_size(dst->type) * ne0;
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
|
||||
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||
|
||||
// Workaround for tiny tensor inputs on ROPE
|
||||
if (use_src1 && src1->backend == GGML_BACKEND_GPU && y_sz > extra_src1->buffer_gpu.size) {
|
||||
y_sz = VK_WHOLE_SIZE;
|
||||
@ -2778,20 +2855,16 @@ static void ggml_vk_op_f32(vk_context * ctx, const ggml_tensor * src0, const ggm
|
||||
GGML_ASSERT(d_D != nullptr);
|
||||
uint64_t d_buf_offset = (extra->offset / vk_device.properties.limits.minStorageBufferOffsetAlignment) * vk_device.properties.limits.minStorageBufferOffsetAlignment;
|
||||
GGML_ASSERT(d_buf_offset == extra->offset || op == GGML_OP_CPY); // NOLINT
|
||||
vk_buffer* d_X = nullptr;
|
||||
uint64_t x_buf_offset = 0;
|
||||
vk_buffer* d_Y = nullptr;
|
||||
uint64_t y_buf_offset = 0;
|
||||
if (transfer_src0) {
|
||||
d_X = &vk_prealloc_qx;
|
||||
} else {
|
||||
} else if(!src0_uma) {
|
||||
d_X = &extra_src0->buffer_gpu;
|
||||
x_buf_offset = extra_src0->offset;
|
||||
GGML_ASSERT(d_X != nullptr);
|
||||
}
|
||||
if (transfer_src1) {
|
||||
d_Y = &vk_prealloc_qy;
|
||||
} else if (use_src1) {
|
||||
} else if (use_src1 && !src1_uma) {
|
||||
d_Y = &extra_src1->buffer_gpu;
|
||||
y_buf_offset = extra_src1->offset;
|
||||
GGML_ASSERT(d_Y != nullptr);
|
||||
@ -3148,13 +3221,13 @@ static void ggml_vk_test_matmul(size_t m, size_t n, size_t k, size_t batch, size
|
||||
if (vk_prealloc_split_k.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_split_k);
|
||||
}
|
||||
vk_prealloc_split_k = ggml_vk_create_buffer(sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_split_k = ggml_vk_create_buffer_check(sizeof(float) * d_ne * split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
}
|
||||
}
|
||||
|
||||
vk_buffer d_X = ggml_vk_create_buffer(sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer d_Y = ggml_vk_create_buffer(sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer d_D = ggml_vk_create_buffer(sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer d_X = ggml_vk_create_buffer_check(sizeof(X_TYPE) * x_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer d_Y = ggml_vk_create_buffer_check(sizeof(Y_TYPE) * y_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer d_D = ggml_vk_create_buffer_check(sizeof(float) * d_ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
|
||||
X_TYPE* x = (X_TYPE *) malloc(sizeof(X_TYPE) * x_ne);
|
||||
Y_TYPE* y = (Y_TYPE *) malloc(sizeof(Y_TYPE) * y_ne);
|
||||
@ -3315,6 +3388,10 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, int i0, int i1
|
||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
||||
return;
|
||||
}
|
||||
i0 = std::max(i0, 5);
|
||||
i1 = std::max(i1, 5);
|
||||
i2 = std::max(i2, 0);
|
||||
i3 = std::max(i3, 0);
|
||||
fprintf(stderr, " ");
|
||||
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
|
||||
fprintf(stderr, "%7d ", idx1);
|
||||
@ -3376,7 +3453,7 @@ static void ggml_vk_test_h2d_nc(size_t ne0, size_t ne1, size_t ne2, size_t ne3)
|
||||
vk_context * ctx = ggml_vk_create_context(vk_device.compute_queue);
|
||||
ggml_vk_ctx_begin(ctx);
|
||||
|
||||
vk_buffer buffer = ggml_vk_create_buffer(ggml_nbytes(tensor), vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer buffer = ggml_vk_create_buffer_check(ggml_nbytes(tensor), vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
|
||||
ggml_vk_h2d_tensor_2d(ctx, &buffer, 0, tensor, 0, 0, ggml_nrows(tensor));
|
||||
|
||||
@ -3439,7 +3516,7 @@ static void ggml_vk_test_transfer(size_t ne, bool pinned) {
|
||||
std::cerr << "ggml_vk_test_transfer(" << ne << ")" << std::endl;
|
||||
#endif
|
||||
// Check transfers are correct
|
||||
vk_buffer buffer = ggml_vk_create_buffer(sizeof(float) * ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer buffer = ggml_vk_create_buffer_check(sizeof(float) * ne, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
|
||||
float * x;
|
||||
float * y;
|
||||
@ -3666,7 +3743,7 @@ void ggml_vk_preallocate_buffers() {
|
||||
std::cerr << "qx_size: " << vk_prealloc_size_qx << " qy_size: " << vk_prealloc_size_qy << " x_size: " << vk_prealloc_size_x << " y_size: " << vk_prealloc_size_y << " split_k_size: " << vk_prealloc_size_split_k << std::endl;
|
||||
#endif
|
||||
#if defined(VK_RUN_TESTS)
|
||||
vk_staging = ggml_vk_create_buffer(100ul * 1024ul * 1024ul, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
vk_staging = ggml_vk_create_buffer_check(100ul * 1024ul * 1024ul, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
ggml_vk_test_transfer(8192 * 1000, false);
|
||||
ggml_vk_test_transfer(8192 * 1000, true);
|
||||
|
||||
@ -3712,42 +3789,42 @@ void ggml_vk_preallocate_buffers() {
|
||||
if (vk_prealloc_qx.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_qx);
|
||||
}
|
||||
vk_prealloc_qx = ggml_vk_create_buffer(vk_prealloc_size_qx, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_qx = ggml_vk_create_buffer_device(vk_prealloc_size_qx);
|
||||
}
|
||||
if (vk_prealloc_size_qy > 0 && vk_prealloc_qy.size < vk_prealloc_size_qy) {
|
||||
// Resize buffer
|
||||
if (vk_prealloc_qy.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_qy);
|
||||
}
|
||||
vk_prealloc_qy = ggml_vk_create_buffer(vk_prealloc_size_qy, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_qy = ggml_vk_create_buffer_device(vk_prealloc_size_qy);
|
||||
}
|
||||
if (vk_prealloc_size_x > 0 && vk_prealloc_x.size < vk_prealloc_size_x) {
|
||||
// Resize buffer
|
||||
if (vk_prealloc_x.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_x);
|
||||
}
|
||||
vk_prealloc_x = ggml_vk_create_buffer(vk_prealloc_size_x, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_x = ggml_vk_create_buffer_device(vk_prealloc_size_x);
|
||||
}
|
||||
if (vk_prealloc_size_y > 0 && vk_prealloc_y.size < vk_prealloc_size_y) {
|
||||
// Resize buffer
|
||||
if (vk_prealloc_y.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_y);
|
||||
}
|
||||
vk_prealloc_y = ggml_vk_create_buffer(vk_prealloc_size_y, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_y = ggml_vk_create_buffer_device(vk_prealloc_size_y);
|
||||
}
|
||||
if (vk_prealloc_size_split_k > 0 && vk_prealloc_split_k.size < vk_prealloc_size_split_k) {
|
||||
// Resize buffer
|
||||
if (vk_prealloc_split_k.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_prealloc_split_k);
|
||||
}
|
||||
vk_prealloc_split_k = ggml_vk_create_buffer(vk_prealloc_size_split_k, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_prealloc_split_k = ggml_vk_create_buffer_device(vk_prealloc_size_split_k);
|
||||
}
|
||||
if (vk_staging_size > 0 && vk_staging.size < vk_staging_size) {
|
||||
// Resize buffer
|
||||
if (vk_staging.size > 0) {
|
||||
ggml_vk_destroy_buffer(vk_staging);
|
||||
}
|
||||
vk_staging = ggml_vk_create_buffer(vk_staging_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
vk_staging = ggml_vk_create_buffer_check(vk_staging_size, vk::MemoryPropertyFlagBits::eHostVisible | vk::MemoryPropertyFlagBits::eHostCoherent | vk::MemoryPropertyFlagBits::eHostCached);
|
||||
}
|
||||
}
|
||||
|
||||
@ -4138,6 +4215,7 @@ GGML_CALL static bool ggml_backend_buffer_is_vk(ggml_backend_buffer_t buffer) {
|
||||
|
||||
GGML_CALL static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
|
||||
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
|
||||
ggml_vk_destroy_buffer(ctx->dev_buffer);
|
||||
delete ctx;
|
||||
}
|
||||
|
||||
@ -4163,14 +4241,6 @@ GGML_CALL static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t b
|
||||
extra->offset = (uint8_t *) tensor->data - (uint8_t *) vk_ptr_base;
|
||||
}
|
||||
|
||||
if (extra->offset + ggml_nbytes(tensor) > extra->buffer_gpu.size) {
|
||||
std::cerr << "ERROR: Trying to assign tensor " << tensor << " outside of buffer size " << ctx->dev_buffer.size << " requested offset: " << extra->offset << " tensor size: " << ggml_nbytes(tensor) << std::endl;
|
||||
if (tensor->view_src != nullptr) {
|
||||
std::cerr << "view_src: " << tensor->view_src << " extra: " << tensor->view_src->extra << std::endl;
|
||||
}
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
||||
tensor->backend = GGML_BACKEND_GPU;
|
||||
tensor->extra = extra;
|
||||
}
|
||||
@ -4248,7 +4318,7 @@ GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_buffer_type_alloc_buffer(
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_backend_vk_buffer_type_alloc_buffer(" << size << ")" << std::endl;
|
||||
#endif
|
||||
vk_buffer dev_buffer = ggml_vk_create_buffer(size, vk::MemoryPropertyFlagBits::eDeviceLocal);
|
||||
vk_buffer dev_buffer = ggml_vk_create_buffer_device(size);
|
||||
|
||||
ggml_backend_vk_buffer_context * ctx = new ggml_backend_vk_buffer_context(dev_buffer);
|
||||
|
||||
@ -4326,9 +4396,12 @@ GGML_CALL static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffe
|
||||
}
|
||||
|
||||
GGML_CALL static ggml_backend_buffer_t ggml_backend_vk_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
|
||||
void * ptr = ggml_vk_host_malloc(size);
|
||||
|
||||
if (ptr == nullptr) {
|
||||
void * ptr = nullptr;
|
||||
try {
|
||||
ptr = ggml_vk_host_malloc(size);
|
||||
} catch (vk::SystemError& e) {
|
||||
std::cerr << "ggml_vulkan: Failed to allocate pinned memory." << std::endl;
|
||||
std::cerr << "ggml_vulkan: " << e.what() << std::endl;
|
||||
// fallback to cpu buffer
|
||||
return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
|
||||
}
|
||||
@ -4389,7 +4462,7 @@ GGML_CALL static void ggml_backend_vk_set_tensor_async(ggml_backend_t backend, g
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_backend_vk_set_tensor_async(" << size << ")" << std::endl;
|
||||
#endif
|
||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_vk_buffer_type() && "unsupported buffer type");
|
||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type() || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
@ -4409,7 +4482,7 @@ GGML_CALL static void ggml_backend_vk_get_tensor_async(ggml_backend_t backend, c
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_backend_vk_get_tensor_async(" << size << ")" << std::endl;
|
||||
#endif
|
||||
GGML_ASSERT(tensor->buffer->buft == ggml_backend_vk_buffer_type() && "unsupported buffer type");
|
||||
GGML_ASSERT((tensor->buffer->buft == ggml_backend_vk_buffer_type() || tensor->buffer->buft == ggml_backend_vk_host_buffer_type()) && "unsupported buffer type");
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU);
|
||||
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
@ -4429,7 +4502,7 @@ GGML_CALL static bool ggml_backend_vk_cpy_tensor_async(ggml_backend_t backend, c
|
||||
#ifdef VK_DEBUG
|
||||
std::cerr << "ggml_backend_vk_cpy_tensor_async()" << std::endl;
|
||||
#endif
|
||||
if (dst->buffer->buft == ggml_backend_vk_buffer_type() && ggml_backend_buffer_is_vk(src->buffer)) {
|
||||
if ((dst->buffer->buft == ggml_backend_vk_buffer_type() || dst->buffer->buft == ggml_backend_vk_host_buffer_type()) && ggml_backend_buffer_is_vk(src->buffer)) {
|
||||
ggml_tensor_extra_gpu * src_extra = (ggml_tensor_extra_gpu *) src->extra;
|
||||
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
|
||||
@ -4499,7 +4572,6 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml
|
||||
|
||||
bool ok = ggml_vk_compute_forward(¶ms, node);
|
||||
if (!ok) {
|
||||
std::cerr << "Vulkan disable: " << vk_disable << std::endl;
|
||||
fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
|
||||
}
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
@ -4665,7 +4737,7 @@ GGML_CALL int ggml_backend_vk_reg_devices() {
|
||||
// checks
|
||||
|
||||
#ifdef GGML_VULKAN_CHECK_RESULTS
|
||||
void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const ggml_tensor *>& done, int level = 0) {
|
||||
static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const ggml_tensor *>& done, int level = 0) {
|
||||
if (std::find(done.begin(), done.end(), tensor) != done.end() || level > 10) {
|
||||
return;
|
||||
}
|
||||
@ -4683,10 +4755,14 @@ void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<const gg
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
|
||||
static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, int i0, int i1, int i2, int i3) {
|
||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
||||
return;
|
||||
}
|
||||
i0 = std::max(i0, 5);
|
||||
i1 = std::max(i1, 5);
|
||||
i2 = std::max(i2, 0);
|
||||
i3 = std::max(i3, 0);
|
||||
fprintf(stderr, " ");
|
||||
for (int idx1 = i1 - 5; idx1 < i1 + 5; idx1++) {
|
||||
fprintf(stderr, "%7d ", idx1);
|
||||
@ -4698,9 +4774,9 @@ void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, in
|
||||
if (idx0 >= 0 && idx0 < tensor->ne[0] && idx1 >= 0 && idx1 < tensor->ne[1] && i2 >= 0 && i2 < tensor->ne[2] && i3 >= 0 && i3 < tensor->ne[3]) {
|
||||
float val;
|
||||
if (tensor->type == GGML_TYPE_F32) {
|
||||
val = *(float *) ((char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
||||
val = *(const float *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]);
|
||||
} else if (tensor->type == GGML_TYPE_F16) {
|
||||
val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
|
||||
val = ggml_fp16_to_fp32(*(const ggml_fp16_t *) ((const char *) data + i3*tensor->nb[3] + i2*tensor->nb[2] + idx1*tensor->nb[1] + idx0*tensor->nb[0]));
|
||||
}
|
||||
fprintf(stderr, "% 7.2f ", val);
|
||||
} else {
|
||||
@ -4711,14 +4787,16 @@ void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * data, in
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
|
||||
static void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
|
||||
void * tensor_data = tensor->data;
|
||||
|
||||
if (tensor->backend == GGML_BACKEND_GPU) {
|
||||
const size_t tensor_size = ggml_nbytes(tensor);
|
||||
tensor_data = malloc(tensor_size);
|
||||
|
||||
ggml_vk_buffer_read((vk_buffer *)tensor->data, 0, tensor_data, tensor_size, vk_device.transfer_queue);
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra;
|
||||
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
|
||||
@ -4730,10 +4808,10 @@ void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
|
||||
std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " backend=" << tensor->src[1]->backend << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
|
||||
}
|
||||
std::cerr << std::endl << "Result:" << std::endl;
|
||||
ggml_vk_print_tensor_area(tensor, tensor->data, 5, 5, 0, 0);
|
||||
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
|
||||
std::cerr << std::endl;
|
||||
std::cerr << std::endl << "Result:" << std::endl;
|
||||
ggml_vk_print_tensor_area(tensor, tensor->data, 5, 5, 1, 0);
|
||||
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 1, 0);
|
||||
std::cerr << std::endl;
|
||||
std::vector<const ggml_tensor *> done;
|
||||
ggml_vk_print_graph_origin(tensor, done);
|
||||
@ -4743,7 +4821,7 @@ void ggml_vk_print_tensor(const ggml_tensor * tensor, const char * name) {
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
|
||||
static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
|
||||
return;
|
||||
GGML_ASSERT(tensor->backend == GGML_BACKEND_CPU);
|
||||
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
|
||||
@ -4779,7 +4857,7 @@ void * comp_result;
|
||||
size_t comp_size;
|
||||
size_t comp_nb[GGML_MAX_DIMS];
|
||||
size_t check_counter = 0;
|
||||
void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor) {
|
||||
static void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor) {
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
@ -4796,8 +4874,9 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
||||
ggml_tensor * src1 = tensor->src[1];
|
||||
|
||||
struct ggml_init_params iparams = {
|
||||
.mem_size = 1024*1024*1024,
|
||||
.mem_buffer = NULL,
|
||||
/*.mem_size =*/ 1024*1024*1024,
|
||||
/*.mem_buffer =*/ NULL,
|
||||
/*.no_alloc =*/ false,
|
||||
};
|
||||
|
||||
struct ggml_context * ctx = ggml_init(iparams);
|
||||
@ -4829,7 +4908,7 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
||||
for (int i3 = 0; i3 < src0->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src0->ne[2]; i2++) {
|
||||
const int idx = i3*src0->ne[2] + i2;
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1], vk_device.transfer_queue);
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src0->nb[2], ((char *)src0_clone->data + idx * src0_clone->nb[2]), src0->ne[1] * src0->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -4842,7 +4921,7 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
||||
if (offset + src0_size >= extra->buffer_gpu.size) {
|
||||
src0_size = extra->buffer_gpu.size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset, src0_clone->data, src0_size, vk_device.transfer_queue);
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset, src0_clone->data, src0_size);
|
||||
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
@ -4872,7 +4951,7 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
||||
for (int i3 = 0; i3 < src1->ne[3]; i3++) {
|
||||
for (int i2 = 0; i2 < src1->ne[2]; i2++) {
|
||||
const int idx = i3*src1->ne[2] + i2;
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1], vk_device.transfer_queue);
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset + idx * src1->nb[2], ((char *)src1_clone->data + idx * src1_clone->nb[2]), src1->ne[1] * src1->nb[1]);
|
||||
}
|
||||
}
|
||||
|
||||
@ -4885,7 +4964,7 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
||||
if (offset + src1_size >= extra->buffer_gpu.size) {
|
||||
src1_size = extra->buffer_gpu.size - offset;
|
||||
}
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset, src1_clone->data, src1_size, vk_device.transfer_queue);
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, offset, src1_clone->data, src1_size);
|
||||
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
|
||||
}
|
||||
} else {
|
||||
@ -4969,7 +5048,7 @@ void ggml_vk_check_results_0(ggml_compute_params * params, ggml_tensor * tensor)
|
||||
} else if (tensor->op == GGML_OP_CPY || tensor->op == GGML_OP_DUP) {
|
||||
if (src1 == nullptr) {
|
||||
tensor_clone = ggml_dup(ctx, src0_clone);
|
||||
tensor_clone->type == tensor->type;
|
||||
tensor_clone->type = tensor->type;
|
||||
} else {
|
||||
tensor_clone = ggml_cpy(ctx, src0_clone, src1_clone);
|
||||
}
|
||||
@ -5046,7 +5125,7 @@ void ggml_vk_check_results_1(ggml_compute_params * params, ggml_tensor * tensor)
|
||||
tensor_size = extra->buffer_gpu.size - (extra->offset);
|
||||
}
|
||||
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, extra->offset, tensor_data, tensor_size, vk_device.transfer_queue);
|
||||
ggml_vk_buffer_read(&extra->buffer_gpu, extra->offset, tensor_data, tensor_size);
|
||||
}
|
||||
|
||||
float first_error_result = -1.0f;
|
||||
|
189
ggml.c
189
ggml.c
@ -218,6 +218,7 @@ inline static void * ggml_aligned_malloc(size_t size) {
|
||||
break;
|
||||
}
|
||||
GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
|
||||
GGML_ASSERT(false);
|
||||
return NULL;
|
||||
}
|
||||
return aligned_memory;
|
||||
@ -230,6 +231,38 @@ inline static void * ggml_aligned_malloc(size_t size) {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
inline static void * ggml_malloc(size_t size) {
|
||||
if (size == 0) {
|
||||
GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
|
||||
return NULL;
|
||||
}
|
||||
void * result = malloc(size);
|
||||
if (result == NULL) {
|
||||
GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
// calloc
|
||||
inline static void * ggml_calloc(size_t num, size_t size) {
|
||||
if (num == 0 || size == 0) {
|
||||
GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
|
||||
return NULL;
|
||||
}
|
||||
void * result = calloc(num, size);
|
||||
if (result == NULL) {
|
||||
GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
#define GGML_MALLOC(size) ggml_malloc(size)
|
||||
#define GGML_CALLOC(num, size) ggml_calloc(num, size)
|
||||
|
||||
#define GGML_FREE(ptr) free(ptr)
|
||||
|
||||
#define UNUSED GGML_UNUSED
|
||||
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
|
||||
|
||||
@ -599,6 +632,17 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
|
||||
.vec_dot = ggml_vec_dot_iq2_xs_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
},
|
||||
[GGML_TYPE_IQ3_XXS] = {
|
||||
.type_name = "iq3_xxs",
|
||||
.blck_size = QK_K,
|
||||
.type_size = sizeof(block_iq3_xxs),
|
||||
.is_quantized = true,
|
||||
.to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
|
||||
.from_float = quantize_row_iq3_xxs,
|
||||
.from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
|
||||
.vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
|
||||
.vec_dot_type = GGML_TYPE_Q8_K,
|
||||
},
|
||||
[GGML_TYPE_Q8_K] = {
|
||||
.type_name = "q8_K",
|
||||
.blck_size = QK_K,
|
||||
@ -2206,6 +2250,7 @@ enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
|
||||
case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
|
||||
case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
|
||||
case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
|
||||
case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
|
||||
}
|
||||
@ -7652,6 +7697,7 @@ static void ggml_compute_forward_add(
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
ggml_compute_forward_add_q_f32(params, src0, src1, dst);
|
||||
} break;
|
||||
@ -7918,6 +7964,7 @@ static void ggml_compute_forward_add1(
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
|
||||
} break;
|
||||
@ -8037,6 +8084,7 @@ static void ggml_compute_forward_acc(
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
@ -10788,6 +10836,7 @@ static void ggml_compute_forward_out_prod(
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
|
||||
} break;
|
||||
@ -10967,6 +11016,7 @@ static void ggml_compute_forward_set(
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
@ -11163,6 +11213,7 @@ static void ggml_compute_forward_get_rows(
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
ggml_compute_forward_get_rows_q(params, src0, src1, dst);
|
||||
} break;
|
||||
@ -11810,6 +11861,7 @@ static void ggml_compute_forward_alibi(
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
@ -11886,6 +11938,7 @@ static void ggml_compute_forward_clamp(
|
||||
case GGML_TYPE_Q6_K:
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_Q8_K:
|
||||
case GGML_TYPE_I8:
|
||||
case GGML_TYPE_I16:
|
||||
@ -15439,13 +15492,13 @@ struct ggml_hash_set ggml_hash_set_new(size_t size) {
|
||||
size = ggml_hash_size(size);
|
||||
struct ggml_hash_set result;
|
||||
result.size = size;
|
||||
result.keys = malloc(sizeof(struct ggml_tensor *) * size);
|
||||
result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
|
||||
memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
|
||||
return result;
|
||||
}
|
||||
|
||||
static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
|
||||
free(hash_set.keys);
|
||||
GGML_FREE(hash_set.keys);
|
||||
}
|
||||
|
||||
struct hash_map {
|
||||
@ -15454,17 +15507,17 @@ struct hash_map {
|
||||
};
|
||||
|
||||
static struct hash_map * ggml_new_hash_map(size_t size) {
|
||||
struct hash_map * result = malloc(sizeof(struct hash_map));
|
||||
struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
|
||||
result->set = ggml_hash_set_new(size);
|
||||
result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
|
||||
result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
|
||||
memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
|
||||
return result;
|
||||
}
|
||||
|
||||
static void ggml_hash_map_free(struct hash_map * map) {
|
||||
ggml_hash_set_free(map->set);
|
||||
free(map->vals);
|
||||
free(map);
|
||||
GGML_FREE(map->vals);
|
||||
GGML_FREE(map);
|
||||
}
|
||||
|
||||
// gradient checkpointing
|
||||
@ -19145,6 +19198,7 @@ void ggml_quantize_init(enum ggml_type type) {
|
||||
switch (type) {
|
||||
case GGML_TYPE_IQ2_XXS: iq2xs_init_impl(256); break;
|
||||
case GGML_TYPE_IQ2_XS: iq2xs_init_impl(512); break;
|
||||
case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
|
||||
default: // nothing
|
||||
break;
|
||||
}
|
||||
@ -19407,6 +19461,15 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
|
||||
result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
size_t elemsize = sizeof(ggml_fp16_t);
|
||||
@ -19533,6 +19596,25 @@ struct gguf_context {
|
||||
void * data;
|
||||
};
|
||||
|
||||
static size_t gguf_type_size(enum gguf_type type) {
|
||||
GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
|
||||
return GGUF_TYPE_SIZE[type];
|
||||
}
|
||||
|
||||
static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
|
||||
GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
|
||||
GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
|
||||
|
||||
for (uint32_t i = 0; i < info->n_dims; ++i) {
|
||||
GGML_ASSERT(info->ne[i] > 0);
|
||||
}
|
||||
|
||||
// prevent overflow for total number of elements
|
||||
GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
|
||||
GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
|
||||
GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
|
||||
}
|
||||
|
||||
static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
|
||||
const size_t n = fread(dst, 1, size, file);
|
||||
*offset += n;
|
||||
@ -19545,8 +19627,17 @@ static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
|
||||
|
||||
bool ok = true;
|
||||
|
||||
ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
|
||||
ok = ok && gguf_fread_el(file, p->data, p->n, offset);
|
||||
ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
|
||||
|
||||
// early exit if string length is invalid, prevents from integer overflow
|
||||
if (p->n == SIZE_MAX) {
|
||||
fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
|
||||
return false;
|
||||
}
|
||||
|
||||
p->data = GGML_CALLOC(p->n + 1, 1);
|
||||
|
||||
ok = ok && gguf_fread_el(file, p->data, p->n, offset);
|
||||
|
||||
return ok;
|
||||
}
|
||||
@ -19618,6 +19709,12 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// sanity-checks to prevent from integer/buffer overflows
|
||||
|
||||
ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
|
||||
ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
|
||||
ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
|
||||
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: failed to read header\n", __func__);
|
||||
fclose(file);
|
||||
@ -19628,7 +19725,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
|
||||
// read the kv pairs
|
||||
{
|
||||
ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
|
||||
ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
|
||||
|
||||
for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
|
||||
struct gguf_kv * kv = &ctx->kv[i];
|
||||
@ -19656,7 +19753,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
case GGUF_TYPE_ARRAY:
|
||||
{
|
||||
ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
|
||||
ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
|
||||
ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
|
||||
|
||||
switch (kv->value.arr.type) {
|
||||
case GGUF_TYPE_UINT8:
|
||||
@ -19671,21 +19768,39 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
case GGUF_TYPE_FLOAT64:
|
||||
case GGUF_TYPE_BOOL:
|
||||
{
|
||||
kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
|
||||
ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
|
||||
// prevent from integer overflow in the malloc below
|
||||
if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
|
||||
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
|
||||
fclose(file);
|
||||
gguf_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
|
||||
|
||||
ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
|
||||
} break;
|
||||
case GGUF_TYPE_STRING:
|
||||
{
|
||||
kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
|
||||
// prevent from integer overflow in the malloc below
|
||||
if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
|
||||
fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
|
||||
fclose(file);
|
||||
gguf_free(ctx);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
|
||||
|
||||
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
|
||||
ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
|
||||
}
|
||||
} break;
|
||||
case GGUF_TYPE_ARRAY:
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
|
||||
default: GGML_ASSERT(false && "invalid type"); break;
|
||||
}
|
||||
} break;
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
|
||||
default: GGML_ASSERT(false && "invalid type");
|
||||
}
|
||||
|
||||
if (!ok) {
|
||||
@ -19703,7 +19818,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
|
||||
// read the tensor infos
|
||||
{
|
||||
ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
|
||||
ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
|
||||
|
||||
for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
|
||||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||||
@ -19714,12 +19829,18 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
|
||||
|
||||
ok = ok && gguf_fread_str(file, &info->name, &offset);
|
||||
ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
|
||||
|
||||
ok = ok && (info->n_dims <= GGML_MAX_DIMS);
|
||||
|
||||
for (uint32_t j = 0; j < info->n_dims; ++j) {
|
||||
ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
|
||||
}
|
||||
|
||||
ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
|
||||
ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
|
||||
|
||||
gguf_tensor_info_sanitize(info);
|
||||
|
||||
if (!ok) {
|
||||
fprintf(stderr, "%s: failed to read tensor info\n", __func__);
|
||||
fclose(file);
|
||||
@ -19873,12 +19994,12 @@ void gguf_free(struct gguf_context * ctx) {
|
||||
struct gguf_kv * kv = &ctx->kv[i];
|
||||
|
||||
if (kv->key.data) {
|
||||
free(kv->key.data);
|
||||
GGML_FREE(kv->key.data);
|
||||
}
|
||||
|
||||
if (kv->type == GGUF_TYPE_STRING) {
|
||||
if (kv->value.str.data) {
|
||||
free(kv->value.str.data);
|
||||
GGML_FREE(kv->value.str.data);
|
||||
}
|
||||
}
|
||||
|
||||
@ -19888,16 +20009,16 @@ void gguf_free(struct gguf_context * ctx) {
|
||||
for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
|
||||
struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
|
||||
if (str->data) {
|
||||
free(str->data);
|
||||
GGML_FREE(str->data);
|
||||
}
|
||||
}
|
||||
}
|
||||
free(kv->value.arr.data);
|
||||
GGML_FREE(kv->value.arr.data);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
free(ctx->kv);
|
||||
GGML_FREE(ctx->kv);
|
||||
}
|
||||
|
||||
if (ctx->infos) {
|
||||
@ -19905,11 +20026,11 @@ void gguf_free(struct gguf_context * ctx) {
|
||||
struct gguf_tensor_info * info = &ctx->infos[i];
|
||||
|
||||
if (info->name.data) {
|
||||
free(info->name.data);
|
||||
GGML_FREE(info->name.data);
|
||||
}
|
||||
}
|
||||
|
||||
free(ctx->infos);
|
||||
GGML_FREE(ctx->infos);
|
||||
}
|
||||
|
||||
GGML_ALIGNED_FREE(ctx);
|
||||
@ -20210,8 +20331,8 @@ void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_ty
|
||||
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
|
||||
ctx->kv[idx].value.arr.type = type;
|
||||
ctx->kv[idx].value.arr.n = n;
|
||||
ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
|
||||
memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
|
||||
ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
|
||||
memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
|
||||
}
|
||||
|
||||
void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
|
||||
@ -20220,7 +20341,7 @@ void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char **
|
||||
ctx->kv[idx].type = GGUF_TYPE_ARRAY;
|
||||
ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
|
||||
ctx->kv[idx].value.arr.n = n;
|
||||
ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
|
||||
ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
|
||||
for (int i = 0; i < n; i++) {
|
||||
struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
|
||||
str->n = strlen(data[i]);
|
||||
@ -20247,19 +20368,19 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
|
||||
case GGUF_TYPE_ARRAY:
|
||||
{
|
||||
if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
|
||||
const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
|
||||
const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
|
||||
for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
|
||||
data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
|
||||
}
|
||||
gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
|
||||
free((void *)data);
|
||||
GGML_FREE((void *)data);
|
||||
} else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
|
||||
GGML_ASSERT(false && "nested arrays not supported");
|
||||
} else {
|
||||
gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
|
||||
}
|
||||
} break;
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
|
||||
default: GGML_ASSERT(false && "invalid type"); break;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -20335,7 +20456,7 @@ struct gguf_buf {
|
||||
|
||||
static struct gguf_buf gguf_buf_init(size_t size) {
|
||||
struct gguf_buf buf = {
|
||||
/*buf.data =*/ size == 0 ? NULL : malloc(size),
|
||||
/*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
|
||||
/*buf.size =*/ size,
|
||||
/*buf.offset =*/ 0,
|
||||
};
|
||||
@ -20345,7 +20466,7 @@ static struct gguf_buf gguf_buf_init(size_t size) {
|
||||
|
||||
static void gguf_buf_free(struct gguf_buf buf) {
|
||||
if (buf.data) {
|
||||
free(buf.data);
|
||||
GGML_FREE(buf.data);
|
||||
}
|
||||
}
|
||||
|
||||
@ -20426,7 +20547,7 @@ static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf *
|
||||
case GGUF_TYPE_FLOAT64:
|
||||
case GGUF_TYPE_BOOL:
|
||||
{
|
||||
gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
|
||||
gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
|
||||
} break;
|
||||
case GGUF_TYPE_STRING:
|
||||
{
|
||||
@ -20435,10 +20556,10 @@ static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf *
|
||||
}
|
||||
} break;
|
||||
case GGUF_TYPE_ARRAY:
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
|
||||
default: GGML_ASSERT(false && "invalid type"); break;
|
||||
}
|
||||
} break;
|
||||
case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
|
||||
default: GGML_ASSERT(false && "invalid type");
|
||||
}
|
||||
}
|
||||
|
||||
|
2
ggml.h
2
ggml.h
@ -353,6 +353,7 @@ extern "C" {
|
||||
GGML_TYPE_Q8_K = 15,
|
||||
GGML_TYPE_IQ2_XXS = 16,
|
||||
GGML_TYPE_IQ2_XS = 17,
|
||||
GGML_TYPE_IQ3_XXS = 18,
|
||||
GGML_TYPE_I8,
|
||||
GGML_TYPE_I16,
|
||||
GGML_TYPE_I32,
|
||||
@ -389,6 +390,7 @@ extern "C" {
|
||||
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
|
||||
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
|
||||
};
|
||||
|
||||
// available tensor operations:
|
||||
|
1
kompute
Submodule
1
kompute
Submodule
@ -0,0 +1 @@
|
||||
Subproject commit 4565194ed7c32d1d2efa32ceab4d3c6cae006306
|
102
kompute-shaders/common.comp
Normal file
102
kompute-shaders/common.comp
Normal file
@ -0,0 +1,102 @@
|
||||
#extension GL_EXT_shader_16bit_storage: require
|
||||
#extension GL_EXT_shader_8bit_storage: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int8: require
|
||||
#extension GL_EXT_shader_explicit_arithmetic_types_int16: require
|
||||
#extension GL_EXT_control_flow_attributes: enable
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : require
|
||||
#extension GL_EXT_debug_printf : enable
|
||||
|
||||
#define QK4_0 32
|
||||
#define QK4_1 32
|
||||
|
||||
#define GELU_COEF_A 0.044715
|
||||
#define SQRT_2_OVER_PI 0.79788456080286535587989211986876
|
||||
#define TWOPI_F 6.283185307179586f
|
||||
|
||||
#define QK_K 256
|
||||
|
||||
#define u8BufToU16(buf, idx) (((uint16_t(buf[idx + 1]) << 8)) | buf[idx])
|
||||
#define u8BufToFloat16(buf, idx) uint16BitsToHalf u8BufToU16(buf, idx)
|
||||
#define u8BufToU32(buf, idx) (((uint32_t u8BufToU16(buf, idx + 2) << 8 | buf[idx + 1]) << 8) | buf[idx])
|
||||
#define u8BufToFloat(buf, idx) uintBitsToFloat u8BufToU32(buf, idx)
|
||||
|
||||
#define sizeof_block_q4_0 0x12
|
||||
struct block_q4_0 {
|
||||
float16_t d;
|
||||
uint8_t qs[QK4_0 / 2];
|
||||
};
|
||||
mat4 dequantize_q4_0(const block_q4_0 xb, uint il) {
|
||||
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
|
||||
const float d2 = d1 / 256.f;
|
||||
const float md = -8.f * xb.d;
|
||||
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
|
||||
const uint16_t mask1 = mask0 << 8;
|
||||
|
||||
mat4 reg;
|
||||
for (int i=0;i<8;i++) {
|
||||
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
|
||||
reg[i/2][2*(i%2)+0] = d1 * (b & mask0) + md;
|
||||
reg[i/2][2*(i%2)+1] = d2 * (b & mask1) + md;
|
||||
}
|
||||
return reg;
|
||||
}
|
||||
|
||||
#define sizeof_block_q4_1 0x14
|
||||
struct block_q4_1 {
|
||||
float16_t d;
|
||||
float16_t m;
|
||||
uint8_t qs[QK4_1 / 2];
|
||||
};
|
||||
mat4 dequantize_q4_1(const block_q4_1 xb, uint il) {
|
||||
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
|
||||
const float d2 = d1 / 256.f;
|
||||
const float m = xb.m;
|
||||
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
|
||||
const uint16_t mask1 = mask0 << 8;
|
||||
|
||||
mat4 reg;
|
||||
for (int i=0;i<8;i++) {
|
||||
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
|
||||
reg[i/2][2*(i%2)+0] = ((b & mask0) * d1) + m;
|
||||
reg[i/2][2*(i%2)+1] = ((b & mask1) * d2) + m;
|
||||
}
|
||||
return reg;
|
||||
}
|
||||
|
||||
#define sizeof_block_q6_k 210
|
||||
struct block_q6_k {
|
||||
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
||||
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
||||
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
||||
float16_t d; // super-block scale
|
||||
};
|
||||
mat4 dequantize_q6_k(const block_q6_k xb, uint il) {
|
||||
const float16_t d_all = xb.d;
|
||||
|
||||
const uint qlIndex = 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
||||
const uint qhIndex = 32*(il/8) + 16*(il&1);
|
||||
float16_t sc = xb.scales[(il%2) + 2 * ((il/2))];
|
||||
il = (il/2) & 3;
|
||||
|
||||
const uint16_t kmask1 = il>1 ? uint16_t(il>2 ? 192 : 48) : uint16_t(il>0 ? 12 : 3);
|
||||
const uint16_t kmask2 = il>1 ? uint8_t(0xF0) : uint8_t(0x0F);
|
||||
const float16_t coef = il>1 ? float16_t(1.f/16.f) : float16_t(1.f);
|
||||
const float16_t ml = float16_t(d_all * sc * 32.f);
|
||||
const float16_t dl = float16_t(d_all * sc * coef);
|
||||
mat4 reg;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
const float16_t q = (il&1) != 0 ? ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 2))
|
||||
: ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 4));
|
||||
reg[i/4][i%4] = dl * q - ml;
|
||||
}
|
||||
return reg;
|
||||
}
|
||||
|
||||
|
||||
#define QK8_0 32
|
||||
// struct block_q8_0 {
|
||||
// float16_t d; // delta
|
||||
// int8_t qs[QK8_0]; // quants
|
||||
// };
|
||||
#define sizeof_block_q8_0 34
|
58
kompute-shaders/op_add.comp
Normal file
58
kompute-shaders/op_add.comp
Normal file
@ -0,0 +1,58 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb00;
|
||||
int nb01;
|
||||
int nb02;
|
||||
int nb03;
|
||||
int ne10;
|
||||
int ne11;
|
||||
int ne12;
|
||||
int ne13;
|
||||
int nb10;
|
||||
int nb11;
|
||||
int nb12;
|
||||
int nb13;
|
||||
int ne0;
|
||||
int nb0;
|
||||
int nb1;
|
||||
int nb2;
|
||||
int nb3;
|
||||
//int offs; // TODO: needed for GGML_OP_ACC, see metal code
|
||||
} pcs;
|
||||
|
||||
// general-purpose kernel for addition of two tensors
|
||||
// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3
|
||||
// cons: not very efficient
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const uint i13 = i03 % pcs.ne13;
|
||||
const uint i12 = i02 % pcs.ne12;
|
||||
const uint i11 = i01 % pcs.ne11;
|
||||
|
||||
int offs = 0; // TMP (see above)
|
||||
|
||||
uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + offs) / 4);
|
||||
uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11 ) / 4);
|
||||
uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1 + offs) / 4);
|
||||
|
||||
for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
|
||||
const uint i10 = i0 % pcs.ne10;
|
||||
out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] + inB[pcs.inBOff + src1_off + i10];
|
||||
}
|
||||
}
|
25
kompute-shaders/op_addrow.comp
Normal file
25
kompute-shaders/op_addrow.comp
Normal file
@ -0,0 +1,25 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
uint row;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 4;
|
||||
|
||||
for (uint x = 0; x < 4; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
out_[i + pcs.outOff] = inA[i + pcs.inAOff] + inB[(i % pcs.row) + pcs.inBOff];
|
||||
}
|
||||
}
|
52
kompute-shaders/op_cpy_f16_f16.comp
Normal file
52
kompute-shaders/op_cpy_f16_f16.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float16_t
|
||||
#define IN_TYPE_SIZE 2
|
||||
#define OUT_TYPE float16_t
|
||||
#define OUT_TYPE_SIZE 2
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
52
kompute-shaders/op_cpy_f16_f32.comp
Normal file
52
kompute-shaders/op_cpy_f16_f32.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float16_t
|
||||
#define IN_TYPE_SIZE 2
|
||||
#define OUT_TYPE float
|
||||
#define OUT_TYPE_SIZE 4
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
52
kompute-shaders/op_cpy_f32_f16.comp
Normal file
52
kompute-shaders/op_cpy_f32_f16.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float
|
||||
#define IN_TYPE_SIZE 4
|
||||
#define OUT_TYPE float16_t
|
||||
#define OUT_TYPE_SIZE 2
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
52
kompute-shaders/op_cpy_f32_f32.comp
Normal file
52
kompute-shaders/op_cpy_f32_f32.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define IN_TYPE float
|
||||
#define IN_TYPE_SIZE 4
|
||||
#define OUT_TYPE float
|
||||
#define OUT_TYPE_SIZE 4
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
|
||||
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne2;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
|
||||
|
||||
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
|
||||
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
|
||||
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
|
||||
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
|
||||
|
||||
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
|
||||
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
|
||||
out_[dst_data+i00] = OUT_TYPE(in_[src]);
|
||||
}
|
||||
}
|
30
kompute-shaders/op_diagmask.comp
Normal file
30
kompute-shaders/op_diagmask.comp
Normal file
@ -0,0 +1,30 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
uint n_past;
|
||||
int ne00;
|
||||
int ne01;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i02 = gl_WorkGroupID.z;
|
||||
const uint i01 = gl_WorkGroupID.y;
|
||||
const uint i00 = gl_WorkGroupID.x;
|
||||
|
||||
const uint index = i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00 + i00;
|
||||
|
||||
if (i00 > pcs.n_past + i01) {
|
||||
out_[index + pcs.outOff] = uintBitsToFloat(0xFF800000);
|
||||
} else {
|
||||
out_[index + pcs.outOff] = in_[index + pcs.inOff];
|
||||
}
|
||||
}
|
22
kompute-shaders/op_gelu.comp
Normal file
22
kompute-shaders/op_gelu.comp
Normal file
@ -0,0 +1,22 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 8;
|
||||
|
||||
for (uint x = 0; x < 8; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
const float y = in_[i + pcs.inOff];
|
||||
out_[i + pcs.outOff] = 0.5*y*(1.0 + tanh(clamp(SQRT_2_OVER_PI*y*(1.0 + GELU_COEF_A*y*y), -15.0, 15.0)));
|
||||
}
|
||||
}
|
17
kompute-shaders/op_getrows.comp
Normal file
17
kompute-shaders/op_getrows.comp
Normal file
@ -0,0 +1,17 @@
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x;
|
||||
const int r = inB[i + pcs.inBOff];
|
||||
|
||||
int z = 0;
|
||||
for (uint ind = gl_LocalInvocationID.x; ind < pcs.ne00/16; ind += gl_WorkGroupSize.x) {
|
||||
const uint inIndex = (r * pcs.nb01 + pcs.inAOff) + ind/NL * SIZE_OF_BLOCK;
|
||||
const mat4 result = dequantize_block(inIndex, ind%NL);
|
||||
for (uint j = 0; j < 4; ++j) {
|
||||
for (uint k = 0; k < 4; ++k) {
|
||||
const uint outIndex = i * pcs.nb1/BYTES_FOR_TYPE + pcs.outOff + z;
|
||||
out_[outIndex] = result[j][k];
|
||||
++z;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
31
kompute-shaders/op_getrows_f16.comp
Normal file
31
kompute-shaders/op_getrows_f16.comp
Normal file
@ -0,0 +1,31 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
void dequantize_row_f16(uint x /*Based from inA unaligned*/, uint y /*Based from out_*/, int k) {
|
||||
for (int j = 0; j < k; j++) {
|
||||
out_[y + j] = inA[x + j];
|
||||
}
|
||||
}
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x;
|
||||
const int r = inB[i + pcs.inBOff];
|
||||
|
||||
dequantize_row_f16(r*pcs.nb01/2/*bytes for float16*/ + pcs.inAOff, i*pcs.nb1/4 + pcs.outOff, pcs.ne00);
|
||||
}
|
38
kompute-shaders/op_getrows_q4_0.comp
Normal file
38
kompute-shaders/op_getrows_q4_0.comp
Normal file
@ -0,0 +1,38 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define NL 2
|
||||
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_0
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
block_q4_0 get_unaligned_block_q4_0(uint index) {
|
||||
block_q4_0 fres;
|
||||
fres.d = u8BufToFloat16(inA, index);
|
||||
[[unroll]] for (uint it = 0; it != QK4_0 / 2; it++) {
|
||||
fres.qs[it] = inA[index+2+it];
|
||||
}
|
||||
return fres;
|
||||
}
|
||||
|
||||
mat4 dequantize_block(uint index, uint il) {
|
||||
const block_q4_0 block = get_unaligned_block_q4_0(index);
|
||||
return dequantize_q4_0(block, il);
|
||||
}
|
||||
|
||||
#include "op_getrows.comp"
|
39
kompute-shaders/op_getrows_q4_1.comp
Normal file
39
kompute-shaders/op_getrows_q4_1.comp
Normal file
@ -0,0 +1,39 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define NL 2
|
||||
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_1
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
block_q4_1 get_unaligned_block_q4_1(uint index) {
|
||||
block_q4_1 fres;
|
||||
fres.d = u8BufToFloat16(inA, index);
|
||||
fres.m = u8BufToFloat16(inA, index+2);
|
||||
[[unroll]] for (uint it = 0; it != QK4_1 / 2; it++) {
|
||||
fres.qs[it] = inA[index+4+it];
|
||||
}
|
||||
return fres;
|
||||
}
|
||||
|
||||
mat4 dequantize_block(uint index, uint il) {
|
||||
const block_q4_1 block = get_unaligned_block_q4_1(index);
|
||||
return dequantize_q4_1(block, il);
|
||||
}
|
||||
|
||||
#include "op_getrows.comp"
|
44
kompute-shaders/op_getrows_q6_k.comp
Normal file
44
kompute-shaders/op_getrows_q6_k.comp
Normal file
@ -0,0 +1,44 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define NL 16
|
||||
#define BYTES_FOR_TYPE 4 /*bytes for float*/
|
||||
#define SIZE_OF_BLOCK sizeof_block_q6_k
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { int inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb01;
|
||||
int nb1;
|
||||
} pcs;
|
||||
|
||||
block_q6_k get_unaligned_block_q6_k(uint index) {
|
||||
block_q6_k fres;
|
||||
[[unroll]] for (uint it = 0; it != QK_K / 2; it++) {
|
||||
fres.ql[it] = inA[index + it];
|
||||
}
|
||||
[[unroll]] for (uint it = 0; it != QK_K / 4; it++) {
|
||||
fres.qh[it] = inA[index + QK_K/2 + it];
|
||||
}
|
||||
[[unroll]] for (uint it = 0; it != QK_K / 16; it++) {
|
||||
fres.scales[it] = int8_t(inA[index + QK_K/2 + QK_K/4 + it]);
|
||||
}
|
||||
fres.d = u8BufToFloat16(inA, index + QK_K/2 + QK_K/4 + QK_K/16);
|
||||
return fres;
|
||||
}
|
||||
|
||||
mat4 dequantize_block(uint index, uint il) {
|
||||
const block_q6_k block = get_unaligned_block_q6_k(index);
|
||||
return dequantize_q6_k(block, il);
|
||||
}
|
||||
|
||||
#include "op_getrows.comp"
|
52
kompute-shaders/op_mul.comp
Normal file
52
kompute-shaders/op_mul.comp
Normal file
@ -0,0 +1,52 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1024) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int nb00;
|
||||
int nb01;
|
||||
int nb02;
|
||||
int nb03;
|
||||
int ne10;
|
||||
int ne11;
|
||||
int ne12;
|
||||
int ne13;
|
||||
int nb10;
|
||||
int nb11;
|
||||
int nb12;
|
||||
int nb13;
|
||||
int ne0;
|
||||
int nb0;
|
||||
int nb1;
|
||||
int nb2;
|
||||
int nb3;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const uint i13 = i03 % pcs.ne13;
|
||||
const uint i12 = i02 % pcs.ne12;
|
||||
const uint i11 = i01 % pcs.ne11;
|
||||
|
||||
uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01) / 4);
|
||||
uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11) / 4);
|
||||
uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1) / 4);
|
||||
|
||||
for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
|
||||
const uint i10 = i0 % pcs.ne10;
|
||||
out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] * inB[pcs.inBOff + src1_off + i10];
|
||||
}
|
||||
}
|
67
kompute-shaders/op_mul_mat_f16.comp
Normal file
67
kompute-shaders/op_mul_mat_f16.comp
Normal file
@ -0,0 +1,67 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : require
|
||||
|
||||
layout(local_size_x_id = 0) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { float16_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
int ne10;
|
||||
int ne11;
|
||||
int ne12;
|
||||
uint nb10;
|
||||
uint nb11;
|
||||
uint nb12;
|
||||
int ne0;
|
||||
int ne1;
|
||||
uint r2;
|
||||
uint r3;
|
||||
} pcs;
|
||||
|
||||
#define N_F16_F32 4
|
||||
|
||||
void main() {
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint rb = gl_WorkGroupID.y*N_F16_F32;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = r0*pcs.nb01 + (i12/pcs.r2)*pcs.nb02 + (i13/pcs.r3)*pcs.nb02*pcs.ne02;
|
||||
|
||||
const uint x = offset0 / 2 + pcs.inAOff; // Based from inA
|
||||
|
||||
for (uint row = 0; row < N_F16_F32; ++row) {
|
||||
uint r1 = rb + row;
|
||||
if (r1 >= pcs.ne11) {
|
||||
break;
|
||||
}
|
||||
|
||||
const uint y = (r1*pcs.nb11 + im*pcs.nb12) / 4 + pcs.inBOff; // Based from inB
|
||||
|
||||
float sumf = 0;
|
||||
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
|
||||
sumf += float(inA[x+i]) * float(inB[y+i]);
|
||||
}
|
||||
|
||||
const float all_sum = subgroupAdd(sumf);
|
||||
if (subgroupElect()) {
|
||||
out_[im*pcs.ne1*pcs.ne0 + r1*pcs.ne0 + r0 + pcs.outOff] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
51
kompute-shaders/op_mul_mat_mat_f32.comp
Normal file
51
kompute-shaders/op_mul_mat_mat_f32.comp
Normal file
@ -0,0 +1,51 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#extension GL_KHR_shader_subgroup_arithmetic : require
|
||||
#extension GL_EXT_debug_printf : enable
|
||||
|
||||
// device subgroup size
|
||||
layout (local_size_x_id = 0) in;
|
||||
|
||||
layout(binding = 0) readonly buffer tensorInA { float inA[]; };
|
||||
layout(binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout(binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
int ne11;
|
||||
int ne12;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb11;
|
||||
uint nb12;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
}
|
||||
pcs;
|
||||
|
||||
|
||||
void main() {
|
||||
uvec3 gid = gl_WorkGroupID;
|
||||
|
||||
uint bc_ab = pcs.ne12 > pcs.ne02 ? gid.z / (pcs.ne12 / pcs.ne02) : gid.z;
|
||||
uint bc_ba = pcs.ne02 > pcs.ne12 ? gid.z / (pcs.ne02 / pcs.ne12) : gid.z;
|
||||
|
||||
const uint x = (gid.x*pcs.nb01 + bc_ab*pcs.nb02) / 4 + pcs.inAOff; // Based from inA
|
||||
const uint y = (gid.y*pcs.nb11 + bc_ba*pcs.nb12) / 4 + pcs.inBOff; // based from inB
|
||||
float sum = 0.0f;
|
||||
for (uint i = gl_SubgroupInvocationID.x; i < pcs.ne00; i += gl_SubgroupSize) {
|
||||
sum += float(inA[x+i]) * float(inB[y+i]);
|
||||
}
|
||||
|
||||
const float all_sum = subgroupAdd(sum);
|
||||
if (subgroupElect()) {
|
||||
out_[gid.z*(pcs.nb2/4) + gid.y*(pcs.nb1/4) + gid.x + pcs.outOff] = all_sum;
|
||||
}
|
||||
}
|
33
kompute-shaders/op_mul_mat_q4_0.comp
Normal file
33
kompute-shaders/op_mul_mat_q4_0.comp
Normal file
@ -0,0 +1,33 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define BLOCKS_IN_QUANT QK4_0
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_0
|
||||
#define N_ROWS 4
|
||||
|
||||
#include "op_mul_mv_q_n_pre.comp"
|
||||
|
||||
// The q4_0 version of this function
|
||||
float block_q_n_dot_y(uint block_index, uint yb, uint il) {
|
||||
vec2 acc = vec2(0.0, 0.0);
|
||||
const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
|
||||
float d = float(u8BufToFloat16(inA, index));
|
||||
float sumy = 0.0f;
|
||||
for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
|
||||
const uint16_t b = u8BufToU16(inA, index + 2 + il + i);
|
||||
|
||||
const float yl0 = inB[yb + i];
|
||||
const float yl1 = inB[yb + i + 1];
|
||||
const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
|
||||
const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
|
||||
|
||||
sumy += yl0 + yl1 + yl8 + yl9;
|
||||
|
||||
acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
|
||||
acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
|
||||
}
|
||||
return d * (sumy * -8.f + acc[0] + acc[1]);
|
||||
}
|
||||
|
||||
#include "op_mul_mv_q_n.comp"
|
35
kompute-shaders/op_mul_mat_q4_1.comp
Normal file
35
kompute-shaders/op_mul_mat_q4_1.comp
Normal file
@ -0,0 +1,35 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define BLOCKS_IN_QUANT QK4_1
|
||||
#define SIZE_OF_BLOCK sizeof_block_q4_1
|
||||
#define N_ROWS 4
|
||||
|
||||
#include "op_mul_mv_q_n_pre.comp"
|
||||
|
||||
// The q4_1 version of this function
|
||||
float block_q_n_dot_y(uint block_index, uint yb, uint il) {
|
||||
vec2 acc = vec2(0.0, 0.0);
|
||||
const uint index = (block_index) * SIZE_OF_BLOCK + pcs.inAOff;
|
||||
float d = float(u8BufToFloat16(inA, index));
|
||||
float m = float(u8BufToFloat16(inA, index+2));
|
||||
|
||||
float sumy = 0.0f;
|
||||
for (int i = 0; i < BLOCKS_IN_QUANT/4; i+=2) {
|
||||
const uint16_t b = u8BufToU16(inA, index + 4 + il + i);
|
||||
|
||||
const float yl0 = inB[yb + i];
|
||||
const float yl1 = inB[yb + i + 1];
|
||||
const float yl8 = inB[yb + i + BLOCKS_IN_QUANT/2];
|
||||
const float yl9 = inB[yb + i + BLOCKS_IN_QUANT/2 + 1];
|
||||
|
||||
sumy += yl0 + yl1 + yl8 + yl9;
|
||||
|
||||
acc[0] += yl0 * (b & 0x000F) + yl1 / 256.f * (b & 0x0F00);
|
||||
acc[1] += yl8 / 16.f * (b & 0x00F0) + yl9 / 4096.f * (b & 0xF000);
|
||||
}
|
||||
return d * (acc[0] + acc[1]) + sumy * m;
|
||||
}
|
||||
|
||||
#include "op_mul_mv_q_n.comp"
|
94
kompute-shaders/op_mul_mat_q6_k.comp
Normal file
94
kompute-shaders/op_mul_mat_q6_k.comp
Normal file
@ -0,0 +1,94 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#define SIZE_OF_BLOCK sizeof_block_q6_k
|
||||
|
||||
layout(local_size_x_id = 0) in;
|
||||
layout(local_size_y_id = 1) in;
|
||||
layout(local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne10;
|
||||
int ne0;
|
||||
int ne1;
|
||||
int ne01;
|
||||
int gqa;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint8_t kmask1 = uint8_t(0x03);
|
||||
const uint8_t kmask2 = uint8_t(0x0C);
|
||||
const uint8_t kmask3 = uint8_t(0x30);
|
||||
const uint8_t kmask4 = uint8_t(0xC0);
|
||||
|
||||
const uint nb = pcs.ne00/QK_K;
|
||||
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint r2 = gl_WorkGroupID.z;
|
||||
|
||||
const uint row = (r0 * gl_NumSubgroups + gl_SubgroupID);
|
||||
const uint offset0 = r2/pcs.gqa*(nb*pcs.ne0);
|
||||
const uint x = row * nb + offset0; // Based from inA without base offset
|
||||
const uint yy = r1*pcs.ne10 + r2*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB
|
||||
|
||||
float sumf = 0;
|
||||
|
||||
// bits of invocation ID for gl_SubgroupSize=32:
|
||||
// x x x x x
|
||||
// 4 3 2 1 0
|
||||
// ( tid ) ix
|
||||
// ip ( il )
|
||||
|
||||
const uint block_stride = gl_SubgroupSize / 16; // number of blocks each subgroup processes
|
||||
const uint tid = gl_SubgroupInvocationID/block_stride; // first block_stride groups have tid=0
|
||||
const uint ix = gl_SubgroupInvocationID%block_stride; // first block is 0..block_stride-1
|
||||
const uint ip = tid/8; // first or second half of block (0 or 1)
|
||||
const uint il = tid%8; // each half has 8 parts, one per scale
|
||||
const uint n = 4; // 4 scales at a time (and 4 sums)
|
||||
const uint l0 = n*il; // offset into half-block, 0..28
|
||||
const uint is = 8*ip + l0/16; // 0, 1, 8, 9
|
||||
|
||||
const uint y_offset = 128*ip + l0;
|
||||
const uint q_offset_l = 64*ip + l0;
|
||||
const uint q_offset_h = 32*ip + l0;
|
||||
|
||||
for (uint i = ix; i < nb; i += block_stride) {
|
||||
|
||||
const uint baseIndex = (x + i) * SIZE_OF_BLOCK + pcs.inAOff;
|
||||
|
||||
const uint qlIndex = q_offset_l;
|
||||
const uint q2Index = qlIndex + QK_K/8;
|
||||
const uint qhIndex = q_offset_h;
|
||||
const uint y = yy + i * QK_K + y_offset;
|
||||
|
||||
float sums[4] = {0.0f, 0.0f, 0.0f, 0.0f};
|
||||
for (uint l = 0; l < n; ++l) {
|
||||
const uint8_t currentQ1 = inA[baseIndex + qlIndex + l];
|
||||
const uint8_t currentQ2 = inA[baseIndex + q2Index + l];
|
||||
const uint8_t currentQh = inA[baseIndex + QK_K/2 + qhIndex + l];
|
||||
|
||||
sums[0] += inB[y+l+ 0] * (int8_t((currentQ1 & 0xF) | ((currentQh & kmask1) << 4)) - 32);
|
||||
sums[1] += inB[y+l+32] * (int8_t((currentQ2 & 0xF) | ((currentQh & kmask2) << 2)) - 32);
|
||||
sums[2] += inB[y+l+64] * (int8_t((currentQ1 >> 4) | ((currentQh & kmask3) << 0)) - 32);
|
||||
sums[3] += inB[y+l+96] * (int8_t((currentQ2 >> 4) | ((currentQh & kmask4) >> 2)) - 32);
|
||||
}
|
||||
|
||||
float d = u8BufToFloat16(inA, baseIndex + QK_K/2 + QK_K/4 + QK_K/16);
|
||||
sumf += d * (sums[0] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + is]) + sums[1] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 2 + is]) + sums[2] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 4 + is]) + sums[3] * int8_t(inA[baseIndex + QK_K/2 + QK_K/4 + 6 + is]));
|
||||
}
|
||||
|
||||
const float tot = subgroupAdd(sumf);
|
||||
if (subgroupElect()) {
|
||||
out_[r1*pcs.ne0 + r2*pcs.ne0*pcs.ne1 + row + pcs.outOff] = tot;
|
||||
}
|
||||
}
|
73
kompute-shaders/op_mul_mat_q8_0.comp
Normal file
73
kompute-shaders/op_mul_mat_q8_0.comp
Normal file
@ -0,0 +1,73 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
#include "op_mul_mv_q_n_pre.comp"
|
||||
|
||||
#define SIZE_OF_D 2
|
||||
|
||||
#define N_DST 4 // each SIMD group works on 4 rows
|
||||
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
||||
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
|
||||
|
||||
#define NB_Q8_0 8
|
||||
|
||||
void main() {
|
||||
// NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
|
||||
if (gl_SubgroupInvocationID > 31)
|
||||
return;
|
||||
|
||||
const int nr = N_DST;
|
||||
const int nsg = N_SIMDGROUP;
|
||||
const int nw = N_SIMDWIDTH;
|
||||
|
||||
const int nb = pcs.ne00/QK8_0;
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint first_row = (r0 * nsg + gl_SubgroupID) * nr;
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
|
||||
|
||||
const uint x = offset0*sizeof_block_q8_0 + pcs.inAOff; // Based from inA
|
||||
const uint y = r1*pcs.ne10 + im*pcs.ne00*pcs.ne1 + pcs.inBOff; // based from inB
|
||||
|
||||
float yl[NB_Q8_0];
|
||||
float sumf[N_DST]={0.f, 0.f, 0.f, 0.f};
|
||||
|
||||
const uint ix = gl_SubgroupInvocationID.x/4;
|
||||
const uint il = gl_SubgroupInvocationID.x%4;
|
||||
|
||||
uint yb = y + ix * QK8_0 + NB_Q8_0*il;
|
||||
|
||||
// each thread in a SIMD group deals with NB_Q8_0 quants at a time
|
||||
for (uint ib = ix; ib < nb; ib += nw/4) {
|
||||
for (int i = 0; i < NB_Q8_0; ++i) {
|
||||
yl[i] = inB[yb + i];
|
||||
}
|
||||
|
||||
for (int row = 0; row < nr; row++) {
|
||||
const uint block_offset = (ib+row*nb) * sizeof_block_q8_0;
|
||||
float sumq = 0.f;
|
||||
for (int iq = 0; iq < NB_Q8_0; ++iq) {
|
||||
const int8_t qs_iq = int8_t(inA[x + block_offset + SIZE_OF_D + NB_Q8_0*il + iq]);
|
||||
sumq += qs_iq * yl[iq];
|
||||
}
|
||||
const float16_t d = u8BufToFloat16(inA, x + block_offset);
|
||||
sumf[row] += sumq*d;
|
||||
}
|
||||
|
||||
yb += NB_Q8_0 * nw;
|
||||
}
|
||||
|
||||
for (int row = 0; row < nr; ++row) {
|
||||
const float tot = subgroupAdd(sumf[row]);
|
||||
if (subgroupElect() && first_row + row < pcs.ne01) {
|
||||
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row] = tot;
|
||||
}
|
||||
}
|
||||
}
|
48
kompute-shaders/op_mul_mv_q_n.comp
Normal file
48
kompute-shaders/op_mul_mv_q_n.comp
Normal file
@ -0,0 +1,48 @@
|
||||
void main() {
|
||||
// NB: hack to make compatible with AMD GPUs that have a subgroup size of 64
|
||||
if (gl_SubgroupInvocationID > 31)
|
||||
return;
|
||||
|
||||
const uint nb = uint(pcs.ne00/BLOCKS_IN_QUANT);
|
||||
|
||||
const uint r0 = gl_WorkGroupID.x;
|
||||
const uint r1 = gl_WorkGroupID.y;
|
||||
const uint im = gl_WorkGroupID.z;
|
||||
|
||||
const uint first_row = (r0 * gl_NumSubgroups + gl_SubgroupID) * N_ROWS;
|
||||
|
||||
const uint i12 = im%pcs.ne12;
|
||||
const uint i13 = im/pcs.ne12;
|
||||
|
||||
const uint offset0 = first_row * nb + (i12/pcs.r2)*(nb*pcs.ne01) + (i13/pcs.r3)*(nb*pcs.ne01*pcs.ne02);
|
||||
|
||||
const uint x = offset0; // Based from inA without base offset
|
||||
const uint y = r1*uint(pcs.ne10)+im*pcs.ne00*pcs.ne1+pcs.inBOff; // Based from inB
|
||||
|
||||
float sumf[N_ROWS] = {0.0f, 0.0f, 0.0f, 0.0f};
|
||||
|
||||
const uint ix = gl_SubgroupInvocationID/2;
|
||||
const uint il = (BLOCKS_IN_QUANT/4)*(gl_SubgroupInvocationID%2);
|
||||
|
||||
uint yb = y + ix * BLOCKS_IN_QUANT + il;
|
||||
|
||||
//debugPrintfEXT("gl_NumSubgroups=%d, gl_SubgroupID=%d, gl_SubgroupInvocationID=%d, glSubgroupSize=%d, gl_WorkGroupSize.x=%d, gl_WorkGroupSize.y=%d, gl_WorkGroupSize.z=%d\n",
|
||||
// gl_NumSubgroups, gl_SubgroupID, gl_SubgroupInvocationID, gl_SubgroupSize,
|
||||
// gl_WorkGroupSize.x, gl_WorkGroupSize.y, gl_WorkGroupSize.z);
|
||||
|
||||
for (uint ib = ix; ib < nb; ib += 16) {
|
||||
for (int row = 0; row < N_ROWS; row++) {
|
||||
const uint block_index = x + ib + row * nb;
|
||||
sumf[row] += block_q_n_dot_y(block_index, yb, il);
|
||||
}
|
||||
|
||||
yb += BLOCKS_IN_QUANT * 16;
|
||||
}
|
||||
|
||||
for (int row = 0; row < N_ROWS; ++row) {
|
||||
const float tot = subgroupAdd(sumf[row]);
|
||||
if (first_row + row < pcs.ne01 && subgroupElect()) {
|
||||
out_[r1*pcs.ne0 + im*pcs.ne0*pcs.ne1 + first_row + row + pcs.outOff] = tot;
|
||||
}
|
||||
}
|
||||
}
|
22
kompute-shaders/op_mul_mv_q_n_pre.comp
Normal file
22
kompute-shaders/op_mul_mv_q_n_pre.comp
Normal file
@ -0,0 +1,22 @@
|
||||
layout(local_size_x_id = 0) in;
|
||||
layout(local_size_y = 1) in;
|
||||
layout(local_size_z = 1) in;
|
||||
|
||||
layout (binding = 0) readonly buffer tensorInA { uint8_t inA[]; };
|
||||
layout (binding = 1) readonly buffer tensorInB { float inB[]; };
|
||||
layout (binding = 2) writeonly buffer tensorOut { float out_[]; };
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
int ne10;
|
||||
int ne12;
|
||||
int ne0;
|
||||
int ne1;
|
||||
uint r2;
|
||||
uint r3;
|
||||
} pcs;
|
84
kompute-shaders/op_norm.comp
Normal file
84
kompute-shaders/op_norm.comp
Normal file
@ -0,0 +1,84 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 256) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
uint ne00;
|
||||
uint nb01;
|
||||
float eps;
|
||||
} pcs;
|
||||
|
||||
shared float sum[gl_WorkGroupSize.x];
|
||||
|
||||
void main() {
|
||||
const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_
|
||||
// MEAN
|
||||
// parallel sum
|
||||
sum[gl_LocalInvocationID.x] = 0.0;
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
sum[gl_LocalInvocationID.x] += in_[x+i00];
|
||||
}
|
||||
|
||||
// reduce
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
||||
if (gl_LocalInvocationID.x < i) {
|
||||
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
}
|
||||
|
||||
// broadcast
|
||||
if (gl_LocalInvocationID.x == 0) {
|
||||
sum[0] /= float(pcs.ne00);
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
const float mean = sum[0];
|
||||
|
||||
// recenter
|
||||
const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
out_[y+i00] = in_[x+i00] - mean;
|
||||
}
|
||||
|
||||
// VARIANCE
|
||||
// parallel sum
|
||||
sum[gl_LocalInvocationID.x] = 0.0;
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
sum[gl_LocalInvocationID.x] += out_[y+i00] * out_[y+i00];
|
||||
}
|
||||
|
||||
// reduce
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
||||
if (gl_LocalInvocationID.x < i) {
|
||||
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
}
|
||||
|
||||
// broadcast
|
||||
if (gl_LocalInvocationID.x == 0) {
|
||||
sum[0] /= float(pcs.ne00);
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
const float variance = sum[0];
|
||||
|
||||
const float scale = 1.0f/sqrt(variance + pcs.eps);
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
out_[y+i00] *= scale;
|
||||
}
|
||||
}
|
21
kompute-shaders/op_relu.comp
Normal file
21
kompute-shaders/op_relu.comp
Normal file
@ -0,0 +1,21 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 4;
|
||||
|
||||
for (uint x = 0; x < 4; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
out_[i + pcs.outOff] = max(0.0, in_[i + pcs.inOff]);
|
||||
}
|
||||
}
|
53
kompute-shaders/op_rmsnorm.comp
Normal file
53
kompute-shaders/op_rmsnorm.comp
Normal file
@ -0,0 +1,53 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 512) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
uint ne00;
|
||||
uint nb01;
|
||||
float eps;
|
||||
} pcs;
|
||||
|
||||
shared float sum[gl_WorkGroupSize.x];
|
||||
|
||||
void main() {
|
||||
const uint x = (gl_WorkGroupID.x*pcs.nb01/4) + pcs.inOff; // Based from in_
|
||||
|
||||
// parallel sum
|
||||
sum[gl_LocalInvocationID.x] = 0.0;
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
sum[gl_LocalInvocationID.x] += in_[x+i00] * in_[x+i00];
|
||||
}
|
||||
|
||||
// reduce
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
[[unroll]] for (uint i = gl_WorkGroupSize.x/2; i > 0; i /= 2) {
|
||||
if (gl_LocalInvocationID.x < i) {
|
||||
sum[gl_LocalInvocationID.x] += sum[gl_LocalInvocationID.x + i];
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
}
|
||||
|
||||
// broadcast
|
||||
if (gl_LocalInvocationID.x == 0) {
|
||||
sum[0] /= float(pcs.ne00);
|
||||
}
|
||||
barrier();
|
||||
memoryBarrierShared();
|
||||
|
||||
const float scale = 1.0f/sqrt(sum[0] + pcs.eps);
|
||||
|
||||
const uint y = (gl_WorkGroupID.x*pcs.ne00) + pcs.outOff; // Based from out_
|
||||
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
|
||||
out_[y+i00] = in_[x+i00] * scale;
|
||||
}
|
||||
}
|
73
kompute-shaders/op_rope_f16.comp
Normal file
73
kompute-shaders/op_rope_f16.comp
Normal file
@ -0,0 +1,73 @@
|
||||
#version 450
|
||||
|
||||
#include "rope_common.comp"
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float16_t inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float16_t out_[]; };
|
||||
|
||||
void main() {
|
||||
const uint i3 = gl_WorkGroupID.z;
|
||||
const uint i2 = gl_WorkGroupID.y;
|
||||
const uint i1 = gl_WorkGroupID.x;
|
||||
|
||||
const bool is_neox = (pcs.mode & 2) != 0;
|
||||
|
||||
float corr_dims[2];
|
||||
rope_yarn_corr_dims(pcs.n_dims, pcs.n_orig_ctx, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
||||
|
||||
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
||||
|
||||
const int p = inB[pcs.inBOff + i2];
|
||||
|
||||
float theta = float(p);
|
||||
|
||||
if (!is_neox) {
|
||||
for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = float(inA[src]);
|
||||
const float x1 = float(inA[src+1]);
|
||||
|
||||
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
||||
out_[dst_data+1] = float16_t(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
} else {
|
||||
const float inv_ndims = -1.f/pcs.n_dims;
|
||||
for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
|
||||
const uint cur_rot = ic;
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint i0 = ic/2;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = float(inA[src]);
|
||||
const float x1 = float(inA[src+pcs.n_dims/2]);
|
||||
|
||||
out_[dst_data] = float16_t(x0*cos_theta - x1*sin_theta);
|
||||
out_[dst_data+pcs.n_dims/2] = float16_t(x0*sin_theta + x1*cos_theta);
|
||||
}
|
||||
|
||||
for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) {
|
||||
const uint i0 = ic;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 2) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 2) + pcs.outOff; // Based from out_
|
||||
|
||||
out_[dst_data + 0] = inA[src + 0];
|
||||
out_[dst_data + 1] = inA[src + 1];
|
||||
}
|
||||
}
|
||||
}
|
73
kompute-shaders/op_rope_f32.comp
Normal file
73
kompute-shaders/op_rope_f32.comp
Normal file
@ -0,0 +1,73 @@
|
||||
#version 450
|
||||
|
||||
#include "rope_common.comp"
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { int inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
void main() {
|
||||
const uint i3 = gl_WorkGroupID.z;
|
||||
const uint i2 = gl_WorkGroupID.y;
|
||||
const uint i1 = gl_WorkGroupID.x;
|
||||
|
||||
const bool is_neox = (pcs.mode & 2) != 0;
|
||||
|
||||
float corr_dims[2];
|
||||
rope_yarn_corr_dims(pcs.n_dims, pcs.n_orig_ctx, pcs.freq_base, pcs.beta_fast, pcs.beta_slow, corr_dims);
|
||||
|
||||
const float theta_scale = pow(pcs.freq_base, -2.0/pcs.n_dims);
|
||||
|
||||
const int p = inB[pcs.inBOff + i2];
|
||||
|
||||
float theta = float(p);
|
||||
|
||||
if (!is_neox) {
|
||||
for (uint i0 = 0; i0 < pcs.ne0; i0 += 2) {
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, i0, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = inA[src];
|
||||
const float x1 = inA[src+1];
|
||||
|
||||
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
||||
out_[dst_data+1] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
} else {
|
||||
const float inv_ndims = -1.f/pcs.n_dims;
|
||||
for (uint ic = 0; ic < pcs.n_dims; ic += 2) {
|
||||
const uint cur_rot = ic;
|
||||
|
||||
float cos_theta, sin_theta;
|
||||
rope_yarn(theta, pcs.freq_scale, corr_dims, cur_rot, pcs.ext_factor, pcs.attn_factor, cos_theta, sin_theta);
|
||||
|
||||
theta *= theta_scale;
|
||||
|
||||
const uint i0 = ic/2;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
const float x0 = inA[src];
|
||||
const float x1 = inA[src+pcs.n_dims/2];
|
||||
|
||||
out_[dst_data] = x0*cos_theta - x1*sin_theta;
|
||||
out_[dst_data+pcs.n_dims/2] = x0*sin_theta + x1*cos_theta;
|
||||
}
|
||||
|
||||
for (uint ic = pcs.n_dims; ic < pcs.ne0; ic += 2) {
|
||||
const uint i0 = ic;
|
||||
|
||||
const uint src = uint((i3*pcs.nb03 + i2*pcs.nb02 + i1*pcs.nb01 + i0*pcs.nb00) / 4) + pcs.inAOff; // Based from in
|
||||
const uint dst_data = uint((i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / 4) + pcs.outOff; // Based from out_
|
||||
|
||||
out_[dst_data + 0] = inA[src + 0];
|
||||
out_[dst_data + 1] = inA[src + 1];
|
||||
}
|
||||
}
|
||||
}
|
19
kompute-shaders/op_scale.comp
Normal file
19
kompute-shaders/op_scale.comp
Normal file
@ -0,0 +1,19 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
float scale;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint i = gl_WorkGroupID.x;
|
||||
out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale;
|
||||
}
|
23
kompute-shaders/op_scale_8.comp
Normal file
23
kompute-shaders/op_scale_8.comp
Normal file
@ -0,0 +1,23 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
float scale;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 8;
|
||||
|
||||
for (uint x = 0; x < 8; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
out_[i + pcs.outOff] = in_[i + pcs.inOff] * pcs.scale;
|
||||
}
|
||||
}
|
22
kompute-shaders/op_silu.comp
Normal file
22
kompute-shaders/op_silu.comp
Normal file
@ -0,0 +1,22 @@
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorIn { float in_[]; };
|
||||
layout(binding = 1) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inOff;
|
||||
uint outOff;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
const uint baseIndex = gl_WorkGroupID.x * 4;
|
||||
|
||||
for (uint x = 0; x < 4; x++) {
|
||||
const uint i = baseIndex + x;
|
||||
const float y = in_[i + pcs.inOff];
|
||||
out_[i + pcs.outOff] = y / (1.0 + exp(-y));
|
||||
}
|
||||
}
|
56
kompute-shaders/op_softmax.comp
Normal file
56
kompute-shaders/op_softmax.comp
Normal file
@ -0,0 +1,56 @@
|
||||
// TODO: implement multi-simd softmax (llama.cpp commit e16b9fa4)
|
||||
|
||||
#version 450
|
||||
|
||||
#include "common.comp"
|
||||
|
||||
layout(local_size_x_id = 0) in;
|
||||
|
||||
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
|
||||
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
|
||||
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
|
||||
|
||||
layout(push_constant) uniform PushConstants {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int ne00;
|
||||
int ne01;
|
||||
int ne02;
|
||||
float scale;
|
||||
int mask;
|
||||
} pcs;
|
||||
|
||||
void main() {
|
||||
if (gl_SubgroupInvocationID > 31)
|
||||
return;
|
||||
|
||||
const uint i03 = gl_WorkGroupID.z;
|
||||
const uint i02 = gl_WorkGroupID.y;
|
||||
const uint i01 = gl_WorkGroupID.x;
|
||||
|
||||
const uint extra_off = i03*pcs.ne02*pcs.ne01*pcs.ne00 + i02*pcs.ne01*pcs.ne00 + i01*pcs.ne00;
|
||||
const uint psrc0 = extra_off + pcs.inAOff; // Based from inA
|
||||
const uint pmask = i01*pcs.ne00 + pcs.inBOff; // Based from inB
|
||||
const uint pdst = extra_off + pcs.outOff; // Based from out_
|
||||
|
||||
// parallel max
|
||||
float localMax = uintBitsToFloat(0xFF800000);
|
||||
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
||||
localMax = max(localMax, inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? inB[pmask + i00] : 0.0f));
|
||||
}
|
||||
float max_ = subgroupMax(localMax);
|
||||
|
||||
// parallel sum
|
||||
float localSum = 0.0f;
|
||||
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
||||
const float exp_psrc0 = exp(inA[psrc0 + i00]*pcs.scale + (pcs.mask!=0 ? inB[pmask + i00] : 0.0f) - max_);
|
||||
localSum += exp_psrc0;
|
||||
out_[pdst + i00] = exp_psrc0;
|
||||
}
|
||||
|
||||
const float sum = subgroupAdd(localSum);
|
||||
for (uint i00 = gl_SubgroupInvocationID.x; i00 < pcs.ne00; i00 += 32) {
|
||||
out_[pdst + i00] /= sum;
|
||||
}
|
||||
}
|
67
kompute-shaders/rope_common.comp
Normal file
67
kompute-shaders/rope_common.comp
Normal file
@ -0,0 +1,67 @@
|
||||
#include "common.comp"
|
||||
|
||||
// TODO: use a local size of 32 or more (Metal uses 1024)
|
||||
layout(local_size_x = 1) in;
|
||||
|
||||
layout (push_constant) uniform parameter {
|
||||
uint inAOff;
|
||||
uint inBOff;
|
||||
uint outOff;
|
||||
int n_dims;
|
||||
int mode;
|
||||
int n_orig_ctx;
|
||||
float freq_base;
|
||||
float freq_scale;
|
||||
float ext_factor;
|
||||
float attn_factor;
|
||||
float beta_fast;
|
||||
float beta_slow;
|
||||
uint nb00;
|
||||
uint nb01;
|
||||
uint nb02;
|
||||
uint nb03;
|
||||
int ne0;
|
||||
uint nb0;
|
||||
uint nb1;
|
||||
uint nb2;
|
||||
uint nb3;
|
||||
} pcs;
|
||||
|
||||
float rope_yarn_ramp(const float low, const float high, const float i0) {
|
||||
const float y = (i0 / 2 - low) / max(0.001f, high - low);
|
||||
return 1.0f - min(1.0f, max(0.0f, y));
|
||||
}
|
||||
|
||||
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
|
||||
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
|
||||
void rope_yarn(
|
||||
float theta_extrap, float freq_scale, float corr_dims[2], float i0, float ext_factor, float mscale,
|
||||
out float cos_theta, out float sin_theta
|
||||
) {
|
||||
// Get n-d rotational scaling corrected for extrapolation
|
||||
float theta_interp = freq_scale * theta_extrap;
|
||||
float theta = theta_interp;
|
||||
if (ext_factor != 0.0f) {
|
||||
float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
|
||||
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
|
||||
|
||||
// Get n-d magnitude scaling corrected for interpolation
|
||||
mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
|
||||
}
|
||||
cos_theta = cos(theta) * mscale;
|
||||
sin_theta = sin(theta) * mscale;
|
||||
}
|
||||
|
||||
// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
|
||||
// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
|
||||
float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
|
||||
return n_dims * log(n_orig_ctx / (n_rot * TWOPI_F)) / (2 * log(base));
|
||||
}
|
||||
|
||||
void rope_yarn_corr_dims(
|
||||
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, out float dims[2]
|
||||
) {
|
||||
// start and end correction dims
|
||||
dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
|
||||
dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
|
||||
}
|
63
llama.cpp
63
llama.cpp
@ -15,6 +15,8 @@
|
||||
# include "ggml-vulkan.h"
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
# include "ggml-sycl.h"
|
||||
#elif defined(GGML_USE_KOMPUTE)
|
||||
# include "ggml-kompute.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_METAL
|
||||
@ -1160,10 +1162,10 @@ struct llama_mlock {
|
||||
#ifdef __APPLE__
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
|
||||
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
|
||||
"decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
|
||||
#else
|
||||
#define MLOCK_SUGGESTION \
|
||||
"Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
|
||||
"Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
|
||||
#endif
|
||||
|
||||
bool raw_lock(const void * addr, size_t size) const {
|
||||
@ -1315,6 +1317,11 @@ static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
|
||||
buft = ggml_backend_sycl_buffer_type(gpu);
|
||||
#elif defined(GGML_USE_CLBLAST)
|
||||
buft = ggml_backend_opencl_buffer_type();
|
||||
#elif defined(GGML_USE_KOMPUTE)
|
||||
buft = ggml_backend_kompute_buffer_type(gpu);
|
||||
if (buft == nullptr) {
|
||||
LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (buft == nullptr) {
|
||||
@ -2362,6 +2369,7 @@ struct llama_model_loader {
|
||||
case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
|
||||
case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
|
||||
case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
|
||||
case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
|
||||
default:
|
||||
{
|
||||
LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
|
||||
@ -2710,6 +2718,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) {
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XSS - 2.0625 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
|
||||
case LLAMA_FTYPE_MOSTLY_Q3_K_XS:return "Q3_K - Extra small";
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XSS - 3.0625 bpw";
|
||||
|
||||
default: return "unknown, may not work";
|
||||
}
|
||||
@ -4109,7 +4118,7 @@ static bool llm_load_tensors(
|
||||
}
|
||||
|
||||
// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
|
||||
static int llama_model_load(const std::string & fname, llama_model & model, const llama_model_params & params) {
|
||||
static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
|
||||
try {
|
||||
llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
|
||||
|
||||
@ -4130,6 +4139,22 @@ static int llama_model_load(const std::string & fname, llama_model & model, cons
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
if (params.n_gpu_layers > 0 && (
|
||||
!(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
|
||||
|| !(
|
||||
model.ftype == LLAMA_FTYPE_ALL_F32 ||
|
||||
model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
|
||||
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
|
||||
model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
|
||||
)
|
||||
)) {
|
||||
// TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
|
||||
LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
|
||||
params.n_gpu_layers = 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (!llm_load_tensors(
|
||||
ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
|
||||
params.progress_callback, params.progress_callback_user_data
|
||||
@ -9250,6 +9275,13 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
else if (new_type != GGML_TYPE_Q8_0) {
|
||||
new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
} else if (name == "token_embd.weight") {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) {
|
||||
new_type = GGML_TYPE_Q2_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS) {
|
||||
if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
|
||||
@ -9260,7 +9292,6 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
if (qs.i_ffn_down < qs.n_ffn_down/8) new_type = GGML_TYPE_Q2_K;
|
||||
++qs.i_ffn_down;
|
||||
}
|
||||
else if (name == "token_embd.weight") new_type = GGML_TYPE_Q2_K;
|
||||
} else if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
|
||||
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
||||
@ -9268,6 +9299,9 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && qs.model.hparams.n_gqa() >= 4) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
}
|
||||
@ -9305,6 +9339,9 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) {
|
||||
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
//else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
// if (i_layer < n_layer/8) new_type = GGML_TYPE_Q5_K;
|
||||
//}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
|
||||
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
|
||||
@ -9336,13 +9373,14 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||||
if (arch != LLM_ARCH_FALCON) {
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS ||
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
@ -9385,7 +9423,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
bool convert_incompatible_tensor = false;
|
||||
if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
|
||||
new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K ||
|
||||
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS) {
|
||||
new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS ||
|
||||
new_type == GGML_TYPE_IQ3_XXS) {
|
||||
int nx = tensor->ne[0];
|
||||
int ny = tensor->ne[1];
|
||||
if (nx % QK_K != 0) {
|
||||
@ -9399,6 +9438,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
switch (new_type) {
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
case GGML_TYPE_Q2_K: new_type = GGML_TYPE_Q4_0; break;
|
||||
case GGML_TYPE_Q3_K: new_type = GGML_TYPE_Q4_1; break;
|
||||
case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
|
||||
@ -9440,6 +9480,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XXS:quantized_type = GGML_TYPE_IQ2_XXS; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ2_XS :quantized_type = GGML_TYPE_IQ2_XS; break;
|
||||
case LLAMA_FTYPE_MOSTLY_IQ3_XXS:quantized_type = GGML_TYPE_IQ3_XXS; break;
|
||||
|
||||
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
|
||||
}
|
||||
@ -10295,6 +10336,16 @@ struct llama_context * llama_new_context_with_model(
|
||||
}
|
||||
ctx->backends.push_back(backend);
|
||||
}
|
||||
#elif defined(GGML_USE_KOMPUTE)
|
||||
if (model->n_gpu_layers > 0) {
|
||||
auto * backend = ggml_backend_kompute_init(model->main_gpu);
|
||||
if (backend == nullptr) {
|
||||
LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
|
||||
llama_free(ctx);
|
||||
return nullptr;
|
||||
}
|
||||
ctx->backends.push_back(backend);
|
||||
}
|
||||
#endif
|
||||
ctx->backend_cpu = ggml_backend_cpu_init();
|
||||
if (ctx->backend_cpu == nullptr) {
|
||||
|
4
llama.h
4
llama.h
@ -49,7 +49,8 @@
|
||||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
#define LLAMA_SESSION_VERSION 4
|
||||
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
|
||||
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
|
||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
#endif
|
||||
@ -111,6 +112,7 @@ extern "C" {
|
||||
LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors
|
||||
LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
|
||||
|
||||
LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
|
||||
};
|
||||
|
@ -1 +1 @@
|
||||
f2a9472b23cf27e672ed70a2a6eb078f7b060f18
|
||||
475cbad5c1c834e31e26a2283bc1413181644360
|
||||
|
@ -370,12 +370,15 @@ struct test_case {
|
||||
printf(" %s(%s): ", op_desc(out).c_str(), vars().c_str());
|
||||
fflush(stdout);
|
||||
|
||||
// check if backends support op
|
||||
// check if the backends support the ops
|
||||
bool supported = true;
|
||||
for (ggml_backend_t backend : {backend1, backend2}) {
|
||||
if (!ggml_backend_supports_op(backend, out)) {
|
||||
printf("not supported [%s] ", ggml_backend_name(backend));
|
||||
supported = false;
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (!ggml_backend_supports_op(backend, t)) {
|
||||
printf("not supported [%s] ", ggml_backend_name(backend));
|
||||
supported = false;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!supported) {
|
||||
@ -626,6 +629,13 @@ struct test_unary : public test_case {
|
||||
ggml_tensor * out = ggml_unary(ctx, in, op);
|
||||
return out;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
// test extended range of values to check for NaNs in GELU
|
||||
init_tensor_uniform(t, -150.f, 150.f);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_GET_ROWS
|
||||
@ -1066,18 +1076,24 @@ struct test_diag_mask_inf : public test_case {
|
||||
struct test_soft_max : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne;
|
||||
const float scale;
|
||||
const bool mask;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR2(type, ne);
|
||||
return VARS_TO_STR4(type, ne, scale, mask);
|
||||
}
|
||||
|
||||
test_soft_max(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 10})
|
||||
: type(type), ne(ne) {}
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 10},
|
||||
float scale = 1.0f,
|
||||
bool mask = false)
|
||||
: type(type), ne(ne), scale(scale), mask(mask) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
ggml_tensor * out = ggml_soft_max(ctx, a);
|
||||
ggml_tensor * b = nullptr;
|
||||
if (mask) { b = ggml_new_tensor_2d(ctx, type, ne[0], ne[1]); }
|
||||
ggml_tensor * out = ggml_soft_max_ext(ctx, a, b, scale);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
@ -1544,6 +1560,393 @@ struct test_moe : public test_case {
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
enum llm_norm_type {
|
||||
LLM_NORM,
|
||||
LLM_NORM_RMS,
|
||||
};
|
||||
|
||||
struct llama_hparams {
|
||||
uint32_t n_vocab;
|
||||
uint32_t n_embd;
|
||||
uint32_t n_head;
|
||||
uint32_t n_head_kv;
|
||||
static constexpr uint32_t n_layer = 1;
|
||||
uint32_t n_rot;
|
||||
uint32_t n_embd_head; // dimension of values (d_v)
|
||||
uint32_t n_ff;
|
||||
|
||||
float f_norm_eps;
|
||||
float f_norm_rms_eps;
|
||||
|
||||
// cparams
|
||||
static constexpr uint32_t n_ctx = 512; // user-specified context size
|
||||
static constexpr uint32_t n_orig_ctx = n_ctx;
|
||||
|
||||
// batch
|
||||
int32_t n_tokens;
|
||||
|
||||
// llm_build_context
|
||||
static constexpr int32_t n_kv = 32; // size of KV cache to consider (n_kv <= n_ctx
|
||||
static constexpr int32_t kv_head = 1; // index of where we store new KV data in the cache
|
||||
|
||||
uint32_t n_embd_gqa() const { // dimension of key embeddings across all k-v heads
|
||||
return n_embd_head * n_head_kv;
|
||||
}
|
||||
};
|
||||
|
||||
// LLM base class
|
||||
struct test_llm : public test_case {
|
||||
llama_hparams hp;
|
||||
|
||||
protected:
|
||||
test_llm(llama_hparams hp)
|
||||
: hp(std::move(hp)) {
|
||||
}
|
||||
|
||||
public:
|
||||
struct ggml_tensor * llm_build_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * cur,
|
||||
struct ggml_tensor * mw,
|
||||
struct ggml_tensor * mb,
|
||||
llm_norm_type type) {
|
||||
switch (type) {
|
||||
case LLM_NORM: cur = ggml_norm (ctx, cur, hp.f_norm_eps); break;
|
||||
case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hp.f_norm_rms_eps); break;
|
||||
}
|
||||
cur = ggml_mul(ctx, cur, mw);
|
||||
if (mb) {
|
||||
cur = ggml_add(ctx, cur, mb);
|
||||
}
|
||||
return cur;
|
||||
}
|
||||
|
||||
void llm_build_kv_store(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * k_l,
|
||||
struct ggml_tensor * v_l,
|
||||
struct ggml_tensor * k_cur,
|
||||
struct ggml_tensor * v_cur) {
|
||||
// compute the transposed [n_tokens, n_embd] V matrix
|
||||
struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, hp.n_embd_gqa(), hp.n_tokens));
|
||||
|
||||
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, k_l, hp.n_tokens*hp.n_embd_gqa(),
|
||||
(ggml_row_size(k_l->type, hp.n_embd_gqa()))*hp.kv_head);
|
||||
|
||||
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, v_l, hp.n_tokens, hp.n_embd_gqa(),
|
||||
( hp.n_ctx)*ggml_element_size(v_l),
|
||||
(hp.kv_head)*ggml_element_size(v_l));
|
||||
|
||||
// important: storing RoPE-ed version of K in the KV cache!
|
||||
ggml_cpy(ctx, k_cur, k_cache_view);
|
||||
ggml_cpy(ctx, v_cur_t, v_cache_view);
|
||||
}
|
||||
|
||||
// if max_alibi_bias > 0 then apply ALiBi
|
||||
struct ggml_tensor * llm_build_kqv(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * k_l,
|
||||
struct ggml_tensor * v_l,
|
||||
struct ggml_tensor * q_cur,
|
||||
struct ggml_tensor * kq_mask,
|
||||
float kq_scale) {
|
||||
struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
|
||||
|
||||
struct ggml_tensor * k =
|
||||
ggml_view_3d(ctx, k_l,
|
||||
hp.n_embd_head, hp.n_kv, hp.n_head_kv,
|
||||
ggml_row_size(k_l->type, hp.n_embd_gqa()),
|
||||
ggml_row_size(k_l->type, hp.n_embd_head),
|
||||
0);
|
||||
|
||||
struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
|
||||
|
||||
kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale);
|
||||
|
||||
// split cached v into n_head heads
|
||||
struct ggml_tensor * v =
|
||||
ggml_view_3d(ctx, v_l,
|
||||
hp.n_kv, hp.n_embd_head, hp.n_head_kv,
|
||||
ggml_element_size(v_l)*hp.n_ctx,
|
||||
ggml_element_size(v_l)*hp.n_ctx*hp.n_embd_head,
|
||||
0);
|
||||
|
||||
struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
|
||||
|
||||
struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
|
||||
|
||||
struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, hp.n_embd_head*hp.n_head, hp.n_tokens);
|
||||
|
||||
struct ggml_tensor * wo = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
|
||||
cur = ggml_mul_mat(ctx, wo, cur);
|
||||
|
||||
return cur;
|
||||
}
|
||||
|
||||
void initialize_tensors(ggml_context * ctx) override {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->type == GGML_TYPE_I32) {
|
||||
// pos
|
||||
std::vector<int> data(hp.n_tokens);
|
||||
for (int i = 0; i < hp.n_tokens; i++) {
|
||||
data[i] = rand() % hp.n_ctx;
|
||||
}
|
||||
ggml_backend_tensor_set(t, data.data(), 0, hp.n_tokens * sizeof(int));
|
||||
} else {
|
||||
init_tensor_uniform(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
// Llama
|
||||
struct test_llama : public test_llm {
|
||||
static constexpr float freq_base = 10000.0f;
|
||||
static constexpr float freq_scale = 1.0f;
|
||||
static constexpr float ext_factor = 0.0f;
|
||||
static constexpr float attn_factor = 1.0f;
|
||||
static constexpr float beta_fast = 32.0f;
|
||||
static constexpr float beta_slow = 1.0f;
|
||||
|
||||
std::string op_desc(ggml_tensor * t) override {
|
||||
GGML_UNUSED(t);
|
||||
return "LLAMA";
|
||||
}
|
||||
|
||||
std::string vars() override {
|
||||
auto n_tokens = hp.n_tokens;
|
||||
return VARS_TO_STR1(n_tokens);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
return 2e-3;
|
||||
}
|
||||
|
||||
test_llama(int n_tokens = 1)
|
||||
: test_llm({
|
||||
/*n_vocab =*/ 32000,
|
||||
/*n_embd =*/ 3200,
|
||||
/*n_head =*/ 32,
|
||||
/*n_head_kv =*/ 32,
|
||||
/*n_rot =*/ 100,
|
||||
/*n_embd_head =*/ 100,
|
||||
/*n_ff =*/ 8640,
|
||||
/*f_norm_eps =*/ 0.f,
|
||||
/*f_norm_rms_eps =*/ 1e-5f,
|
||||
/*n_tokens =*/ n_tokens,
|
||||
}) {
|
||||
}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1);
|
||||
|
||||
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
|
||||
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
|
||||
|
||||
for (uint32_t il = 0; il < hp.n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
ggml_tensor * attn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
||||
cur = llm_build_norm(ctx, inpL, attn_norm, nullptr, LLM_NORM_RMS);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
ggml_tensor * wq = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd);
|
||||
ggml_tensor * wk = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
|
||||
ggml_tensor * wv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd_gqa());
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx, wq, cur);
|
||||
struct ggml_tensor * Kcur = ggml_mul_mat(ctx, wk, cur);
|
||||
struct ggml_tensor * Vcur = ggml_mul_mat(ctx, wv, cur);
|
||||
|
||||
Qcur = ggml_rope_custom(
|
||||
ctx, ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens), inp_pos,
|
||||
hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
ctx, ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens), inp_pos,
|
||||
hp.n_rot, 0, 0, hp.n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
|
||||
|
||||
cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx, cur, inpSA);
|
||||
|
||||
// feed-forward network
|
||||
ggml_tensor * ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
||||
cur = llm_build_norm(ctx, ffn_inp, ffn_norm, nullptr, LLM_NORM_RMS);
|
||||
|
||||
ggml_tensor * ffn_gate = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
|
||||
ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
|
||||
ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
|
||||
struct ggml_tensor * tmp = ggml_mul_mat(ctx, ffn_up, cur);
|
||||
cur = ggml_mul_mat(ctx, ffn_gate, cur);
|
||||
cur = ggml_silu(ctx, cur);
|
||||
cur = ggml_mul(ctx, cur, tmp);
|
||||
cur = ggml_mul_mat(ctx, ffn_down, cur);
|
||||
|
||||
cur = ggml_add(ctx, cur, ffn_inp);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
||||
cur = llm_build_norm(ctx, cur, output_norm, nullptr, LLM_NORM_RMS);
|
||||
|
||||
// lm_head
|
||||
ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_vocab);
|
||||
cur = ggml_mul_mat(ctx, output, cur);
|
||||
|
||||
return cur;
|
||||
}
|
||||
};
|
||||
|
||||
// Falcon
|
||||
struct test_falcon : public test_llm {
|
||||
static constexpr float freq_base = 10000.0f;
|
||||
static constexpr float freq_scale = 1.0f;
|
||||
static constexpr float ext_factor = 0.0f;
|
||||
static constexpr float attn_factor = 1.0f;
|
||||
static constexpr float beta_fast = 32.0f;
|
||||
static constexpr float beta_slow = 1.0f;
|
||||
|
||||
std::string op_desc(ggml_tensor * t) override {
|
||||
GGML_UNUSED(t);
|
||||
return "FALCON";
|
||||
}
|
||||
|
||||
std::string vars() override {
|
||||
auto n_tokens = hp.n_tokens;
|
||||
return VARS_TO_STR1(n_tokens);
|
||||
}
|
||||
|
||||
double max_nmse_err() override {
|
||||
return 2e-3;
|
||||
}
|
||||
|
||||
test_falcon(int n_tokens = 1)
|
||||
: test_llm({
|
||||
/*n_vocab =*/ 32000,
|
||||
/*n_embd =*/ 3200,
|
||||
/*n_head =*/ 50,
|
||||
/*n_head_kv =*/ 1,
|
||||
/*n_rot =*/ 64,
|
||||
/*n_embd_head =*/ 64,
|
||||
/*n_ff =*/ 8640,
|
||||
/*f_norm_eps =*/ 1e-5f,
|
||||
/*f_norm_rms_eps =*/ 0.f,
|
||||
/*n_tokens =*/ n_tokens,
|
||||
}) {
|
||||
}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, hp.n_embd, hp.n_tokens);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, hp.n_tokens);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hp.n_kv, hp.n_tokens, 1);
|
||||
|
||||
ggml_tensor * k_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
|
||||
ggml_tensor * v_l = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, 1638400);
|
||||
|
||||
for (uint32_t il = 0; il < hp.n_layer; ++il) {
|
||||
// norm
|
||||
ggml_tensor * attn_norm_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
||||
ggml_tensor * attn_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
||||
ggml_tensor * attn_norm = llm_build_norm(ctx, inpL, attn_norm_w, attn_norm_b, LLM_NORM);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
cur = attn_norm;
|
||||
|
||||
ggml_tensor * wqkv = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_embd + 2*hp.n_embd_gqa());
|
||||
|
||||
cur = ggml_mul_mat(ctx, wqkv, cur);
|
||||
|
||||
struct ggml_tensor * Qcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd, hp.n_tokens, cur->nb[1], 0*sizeof(float)*(hp.n_embd)));
|
||||
struct ggml_tensor * Kcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd)));
|
||||
struct ggml_tensor * Vcur = ggml_cont(ctx, ggml_view_2d(ctx, cur, hp.n_embd_gqa(), hp.n_tokens, cur->nb[1], 1*sizeof(float)*(hp.n_embd + hp.n_embd_gqa())));
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx, Qcur, hp.n_embd_head, hp.n_head, hp.n_tokens);
|
||||
Kcur = ggml_reshape_3d(ctx, Kcur, hp.n_embd_head, hp.n_head_kv, hp.n_tokens);
|
||||
|
||||
// using mode = 2 for neox mode
|
||||
Qcur = ggml_rope_custom(
|
||||
ctx, Qcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
|
||||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
ctx, Kcur, inp_pos, hp.n_rot, 2, 0, hp.n_orig_ctx,
|
||||
freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
|
||||
llm_build_kv_store(ctx, k_l, v_l, Kcur, Vcur);
|
||||
|
||||
cur = llm_build_kqv(ctx, k_l, v_l, Qcur, KQ_mask, 1.0f/sqrtf(float(hp.n_embd_head)));
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = cur;
|
||||
|
||||
// feed forward
|
||||
{
|
||||
ggml_tensor * ffn_up = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_embd, hp.n_ff);
|
||||
ggml_tensor * ffn_down = ggml_new_tensor_2d(ctx, GGML_TYPE_Q4_0, hp.n_ff, hp.n_embd);
|
||||
cur = attn_norm;
|
||||
cur = ggml_mul_mat(ctx, ffn_up, cur);
|
||||
cur = ggml_gelu(ctx, cur);
|
||||
cur = ggml_mul_mat(ctx, ffn_down, cur);
|
||||
}
|
||||
|
||||
cur = ggml_add(ctx, cur, ffn_inp);
|
||||
|
||||
cur = ggml_add(ctx, cur, inpL);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
ggml_tensor * output_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
||||
ggml_tensor * output_norm_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hp.n_embd);
|
||||
cur = llm_build_norm(ctx, cur, output_norm, output_norm_b, LLM_NORM);
|
||||
|
||||
// lm_head
|
||||
ggml_tensor * output = ggml_new_tensor_2d(ctx, GGML_TYPE_Q8_0, hp.n_embd, hp.n_vocab);
|
||||
cur = ggml_mul_mat(ctx, output, cur);
|
||||
|
||||
return cur;
|
||||
}
|
||||
};
|
||||
|
||||
static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op_name) {
|
||||
std::vector<std::unique_ptr<test_case>> test_cases;
|
||||
std::default_random_engine rng(0);
|
||||
@ -1557,6 +1960,7 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
GGML_TYPE_Q4_K, GGML_TYPE_Q5_K,
|
||||
GGML_TYPE_Q6_K,
|
||||
GGML_TYPE_IQ2_XXS, GGML_TYPE_IQ2_XS,
|
||||
GGML_TYPE_IQ3_XXS,
|
||||
};
|
||||
|
||||
// unary ops
|
||||
@ -1593,8 +1997,10 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
|
||||
|
||||
for (ggml_type type : all_types) {
|
||||
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, type, {256, 10, 10, 1}));
|
||||
for (ggml_type type_src : {GGML_TYPE_F16, GGML_TYPE_F32}) {
|
||||
for (ggml_type type_dst : all_types) {
|
||||
test_cases.emplace_back(new test_cpy(type_src, type_dst, {256, 4, 4, 4}));
|
||||
}
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_cont());
|
||||
@ -1696,6 +2102,9 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
exponent <<= 1;
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {16, 2, 32, 1}, 0.1f));
|
||||
test_cases.emplace_back(new test_soft_max(GGML_TYPE_F32, {32, 2, 32, 1}, 0.1f, true));
|
||||
|
||||
for (ggml_type type : {GGML_TYPE_F32, GGML_TYPE_F16}) {
|
||||
test_cases.emplace_back(new test_rope(type, {128, 32, 10, 1}, 128, 0, 512)); // llama 7B
|
||||
test_cases.emplace_back(new test_rope(type, {128, 40, 10, 1}, 128, 0, 512)); // llama 13B
|
||||
@ -1756,6 +2165,14 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
//test_cases.emplace_back(new test_moe(8, 2, 8, 4096, 14336));
|
||||
#endif
|
||||
|
||||
// these tests are disabled to save execution time, but they can be handy for debugging
|
||||
#if 0
|
||||
test_cases.emplace_back(new test_llama(1));
|
||||
test_cases.emplace_back(new test_llama(2));
|
||||
test_cases.emplace_back(new test_falcon(1));
|
||||
test_cases.emplace_back(new test_falcon(2));
|
||||
#endif
|
||||
|
||||
// run tests
|
||||
if (mode == MODE_TEST) {
|
||||
ggml_backend_t backend_cpu = ggml_backend_cpu_init();
|
||||
|
@ -1,3 +1,7 @@
|
||||
#include "llama.h"
|
||||
|
||||
#ifdef GGML_USE_KOMPUTE
|
||||
#include "ggml-kompute.h"
|
||||
#endif
|
||||
|
||||
int main(void) {}
|
||||
|
@ -17,7 +17,9 @@ constexpr float MAX_QUANTIZATION_REFERENCE_ERROR = 0.0001f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR = 0.002f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_2BITS = 0.0075f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS = 0.0040f;
|
||||
constexpr float MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS = 0.0050f;
|
||||
constexpr float MAX_DOT_PRODUCT_ERROR = 0.02f;
|
||||
constexpr float MAX_DOT_PRODUCT_ERROR_LOWBIT = 0.04f;
|
||||
|
||||
static const char* RESULT_STR[] = {"ok", "FAILED"};
|
||||
|
||||
@ -135,18 +137,21 @@ int main(int argc, char * argv[]) {
|
||||
}
|
||||
|
||||
const ggml_type ei = (ggml_type)i;
|
||||
|
||||
if (ei == GGML_TYPE_IQ2_XXS || ei == GGML_TYPE_IQ2_XS) {
|
||||
printf("Skip %s due to missing quantization functionality\n", ggml_type_name(ei));
|
||||
continue;
|
||||
}
|
||||
|
||||
printf("Testing %s\n", ggml_type_name((ggml_type) i));
|
||||
ggml_quantize_init(ei);
|
||||
|
||||
if (qfns.from_float && qfns.to_float) {
|
||||
const float total_error = total_quantization_error(qfns, test_size, test_data.data());
|
||||
const float max_quantization_error =
|
||||
type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
|
||||
type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS : MAX_QUANTIZATION_TOTAL_ERROR;
|
||||
type == GGML_TYPE_Q2_K ? MAX_QUANTIZATION_TOTAL_ERROR_2BITS :
|
||||
type == GGML_TYPE_Q3_K ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS :
|
||||
type == GGML_TYPE_IQ3_XXS ? MAX_QUANTIZATION_TOTAL_ERROR_3BITS_XXS : MAX_QUANTIZATION_TOTAL_ERROR;
|
||||
failed = !(total_error < max_quantization_error);
|
||||
num_failed += failed;
|
||||
if (failed || verbose) {
|
||||
@ -161,7 +166,9 @@ int main(int argc, char * argv[]) {
|
||||
}
|
||||
|
||||
const float vec_dot_error = dot_product_error(qfns, test_size, test_data.data(), test_data2.data());
|
||||
failed = !(vec_dot_error < MAX_DOT_PRODUCT_ERROR);
|
||||
const float max_allowed_error = type == GGML_TYPE_Q2_K || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ2_XXS ||
|
||||
type == GGML_TYPE_IQ3_XXS ? MAX_DOT_PRODUCT_ERROR_LOWBIT : MAX_DOT_PRODUCT_ERROR;
|
||||
failed = !(vec_dot_error < max_allowed_error);
|
||||
num_failed += failed;
|
||||
if (failed || verbose) {
|
||||
printf("%5s dot product error: %s (%f)\n", ggml_type_name(type), RESULT_STR[failed], vec_dot_error);
|
||||
|
@ -278,6 +278,8 @@ int main(int argc, char * argv[]) {
|
||||
if (qfns.from_float && qfns.to_float) {
|
||||
printf("%s\n", ggml_type_name(type));
|
||||
|
||||
ggml_quantize_init(type);
|
||||
|
||||
if (params.op_quantize_row_q_reference) {
|
||||
printf(" quantize_row_q_reference\n");
|
||||
for (size_t size : params.test_sizes) {
|
||||
|
Loading…
Reference in New Issue
Block a user