mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 13:58:46 +01:00
metal: minor q4 optimization and reduce code size (#2248)
* metal: use uint16_t instead of uint8_t. Apple GPU doesn't like uint8_t. For every operation on uint8_t the gpu need to copy the uint8_t to an empty 16 bit register, then it can issue other instructions. For the matrix-vector multiplication kernel only, we observed a 340~350 GB/s memory read speed on M1 Max after this commit, which is very close to the reported hardware limit. * metal: update rms_norm kernel This commit double the speed of rms_norm operations by using 512 threads per threadgroup, combining with SIMD primitives to minimize the need for thread group barriers. * metal: use template to reduce size Revert modifications on block_q4_0 and block_q4_1.
This commit is contained in:
parent
294f424554
commit
417a85a001
@ -792,7 +792,7 @@ void ggml_metal_graph_compute(
|
|||||||
|
|
||||||
const float eps = 1e-6f;
|
const float eps = 1e-6f;
|
||||||
|
|
||||||
const int nth = 256;
|
const int nth = 512;
|
||||||
|
|
||||||
[encoder setComputePipelineState:ctx->pipeline_rms_norm];
|
[encoder setComputePipelineState:ctx->pipeline_rms_norm];
|
||||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||||
@ -800,7 +800,7 @@ void ggml_metal_graph_compute(
|
|||||||
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
[encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2];
|
||||||
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
[encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3];
|
||||||
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
[encoder setBytes:&eps length:sizeof( float) atIndex:4];
|
||||||
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
|
[encoder setThreadgroupMemoryLength:nth/32*sizeof(float) atIndex:0];
|
||||||
|
|
||||||
const int64_t nrows = ggml_nrows(src0);
|
const int64_t nrows = ggml_nrows(src0);
|
||||||
|
|
||||||
|
270
ggml-metal.metal
270
ggml-metal.metal
@ -331,26 +331,33 @@ kernel void kernel_rms_norm(
|
|||||||
threadgroup float * sum [[threadgroup(0)]],
|
threadgroup float * sum [[threadgroup(0)]],
|
||||||
uint tgpig[[threadgroup_position_in_grid]],
|
uint tgpig[[threadgroup_position_in_grid]],
|
||||||
uint tpitg[[thread_position_in_threadgroup]],
|
uint tpitg[[thread_position_in_threadgroup]],
|
||||||
|
uint sgitg[[simdgroup_index_in_threadgroup]],
|
||||||
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
uint ntg[[threads_per_threadgroup]]) {
|
uint ntg[[threads_per_threadgroup]]) {
|
||||||
device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
|
device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
|
||||||
|
device const float * x_scalar = (device const float *) x;
|
||||||
|
float4 sumf=0;
|
||||||
|
float all_sum=0;
|
||||||
|
|
||||||
// parallel sum
|
// parallel sum
|
||||||
sum[tpitg] = 0.0f;
|
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
||||||
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
sumf += x[i00] * x[i00];
|
||||||
sum[tpitg] += x[i00] * x[i00];
|
}
|
||||||
|
all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
|
||||||
|
all_sum = simd_sum(all_sum);
|
||||||
|
if (tiisg == 0) {
|
||||||
|
sum[sgitg] = all_sum;
|
||||||
}
|
}
|
||||||
|
|
||||||
// reduce
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
for (uint i = ntg/2; i > 0; i /= 2) {
|
// broadcast, simd group number is ntg / 32
|
||||||
if (tpitg < i) {
|
for (int i = ntg / 32 / 2; i > 0; i /= 2) {
|
||||||
sum[tpitg] += sum[tpitg + i];
|
if (tpitg < i) {
|
||||||
}
|
sum[tpitg] += sum[tpitg + i];
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// broadcast
|
|
||||||
if (tpitg == 0) {
|
if (tpitg == 0) {
|
||||||
|
for (int i = 4 * (ne00 / 4); i < ne00; i++) {sum[0] += x_scalar[i];}
|
||||||
sum[0] /= ne00;
|
sum[0] /= ne00;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -359,16 +366,101 @@ kernel void kernel_rms_norm(
|
|||||||
const float mean = sum[0];
|
const float mean = sum[0];
|
||||||
const float scale = 1.0f/sqrt(mean + eps);
|
const float scale = 1.0f/sqrt(mean + eps);
|
||||||
|
|
||||||
device float * y = dst + tgpig*ne00;
|
device float4 * y = (device float4 *) (dst + tgpig*ne00);
|
||||||
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
|
device float * y_scalar = (device float *) y;
|
||||||
|
for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
|
||||||
y[i00] = x[i00] * scale;
|
y[i00] = x[i00] * scale;
|
||||||
}
|
}
|
||||||
|
if (tpitg == 0) {
|
||||||
|
for (int i00 = 4 * (ne00 / 4); i00 < ne00; i00++) {y_scalar[i00] = x_scalar[i00] * scale;}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// function for calculate inner product between a q4_0 block and 32 floats (yl), sumy is SUM(yl[i])
|
||||||
|
float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl) {
|
||||||
|
float d = qb_curr->d;
|
||||||
|
float4 acc = 0.f;
|
||||||
|
device uint16_t * qs = ((device uint16_t *)qb_curr + 1);
|
||||||
|
for (int i = 0; i < 16; i+=2) {
|
||||||
|
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
|
||||||
|
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
|
||||||
|
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
|
||||||
|
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
|
||||||
|
}
|
||||||
|
return d * (sumy * -8.f + acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f);
|
||||||
|
}
|
||||||
|
|
||||||
|
// function for calculate inner product between a q4_1 block and 32 floats (yl), sumy is SUM(yl[i])
|
||||||
|
float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl) {
|
||||||
|
float d = qb_curr->d;
|
||||||
|
float m = qb_curr->m;
|
||||||
|
float4 acc = 0.f;
|
||||||
|
device uint16_t * qs = ((device uint16_t *)qb_curr + 2);
|
||||||
|
for (int i = 0; i < 16; i+=2) {
|
||||||
|
acc[0] += yl[i] * (qs[i / 2] & 0x000F);
|
||||||
|
acc[1] += yl[i + 16] * (qs[i / 2] & 0x00F0);
|
||||||
|
acc[2] += yl[i + 1] * (qs[i / 2] & 0x0F00);
|
||||||
|
acc[3] += yl[i + 17] * (qs[i / 2] & 0xF000);
|
||||||
|
}
|
||||||
|
return d * (acc[0] + acc[1]/16.f + acc[2]/256.f + acc[3]/4096.f) + sumy * m;
|
||||||
}
|
}
|
||||||
|
|
||||||
// putting them in the kernel cause a significant performance penalty
|
// putting them in the kernel cause a significant performance penalty
|
||||||
#define N_DST 4 // each SIMD group works on 4 rows
|
#define N_DST 4 // each SIMD group works on 4 rows
|
||||||
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
#define N_SIMDGROUP 2 // number of SIMD groups in a thread group
|
||||||
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
|
#define N_SIMDWIDTH 32 // assuming SIMD group size is 32
|
||||||
|
template<typename block_q_type>
|
||||||
|
void mul_vec_q_n_f32(device const void * src0, device const float * src1, device float * dst,
|
||||||
|
int64_t ne00, int64_t ne10, int64_t ne0, int64_t ne01,
|
||||||
|
uint2 tgpig, uint tiisg, uint sgitg) {
|
||||||
|
const int nb = ne00/QK4_0;
|
||||||
|
const int r0 = tgpig.x;
|
||||||
|
const int r1 = tgpig.y;
|
||||||
|
device const block_q_type * x = (device const block_q_type *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb;
|
||||||
|
device const float * y = (device const float *) src1 + r1*ne10;
|
||||||
|
float4 y_curr[8]; // src1 vector cache
|
||||||
|
float sumf[N_DST]={0.f}, all_sum;
|
||||||
|
thread float * yl=(thread float *)y_curr;
|
||||||
|
|
||||||
|
// each thread in a SIMD group deals with 1 block.
|
||||||
|
for (int column = 0; column < nb / N_SIMDWIDTH; column++) {
|
||||||
|
float sumy = 0;
|
||||||
|
for (int i = 0; i < QK4_0 / 4; i++) {
|
||||||
|
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0)) + i);
|
||||||
|
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int row = 0; row < N_DST; row++) {
|
||||||
|
sumf[row] += block_q_n_dot_y(x+(tiisg + row * nb + column * N_SIMDWIDTH), sumy, yl);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// from now loads two rows every time and 16 blocks per row
|
||||||
|
int ir = tiisg / (N_SIMDWIDTH / 2);
|
||||||
|
int ib = tiisg % (N_SIMDWIDTH / 2);
|
||||||
|
for (int ind = 0; ind < (nb % N_SIMDWIDTH + N_SIMDWIDTH / 2 - 1)/(N_SIMDWIDTH / 2); ind++) {
|
||||||
|
int nb_start = (nb / N_SIMDWIDTH) * N_SIMDWIDTH + ind * (N_SIMDWIDTH / 2); //where the left blocks start
|
||||||
|
float sumy = 0;
|
||||||
|
for (int i = 0; i < QK4_0 / 4; i++) {
|
||||||
|
y_curr[i] = *((device float4 *)(y + (nb_start + ib) * QK4_0) + i);
|
||||||
|
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int row = 0; row < N_DST; row+=2) {
|
||||||
|
if (nb_start + ib < nb) {
|
||||||
|
sumf[row + ir] += block_q_n_dot_y(x + (nb_start + ib + (row + ir) * nb), sumy, yl);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int row = 0; row < N_DST; ++row) {
|
||||||
|
all_sum = simd_sum(sumf[row]);
|
||||||
|
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
|
||||||
|
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q4_0_f32(
|
kernel void kernel_mul_mat_q4_0_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
@ -380,80 +472,7 @@ kernel void kernel_mul_mat_q4_0_f32(
|
|||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint tiisg[[thread_index_in_simdgroup]],
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
const int nb = ne00/QK4_0;
|
mul_vec_q_n_f32<block_q4_0>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
|
||||||
const int r0 = tgpig.x;
|
|
||||||
const int r1 = tgpig.y;
|
|
||||||
device const block_q4_0 * x = (device const block_q4_0 *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb;
|
|
||||||
device const float * y = (device const float *) src1 + r1*ne10;
|
|
||||||
block_q4_0 qb_curr, qb_next;
|
|
||||||
float4 y_curr[8]; // src1 vector cache
|
|
||||||
float sumf[N_DST]={0.f}, all_sum;
|
|
||||||
thread float * yl=(thread float *)y_curr;
|
|
||||||
|
|
||||||
// bootstrap
|
|
||||||
qb_curr = x[tiisg];
|
|
||||||
// each thread in a SIMD group deals with 1 block.
|
|
||||||
for (int column = 0; column < nb / N_SIMDWIDTH; column++) {
|
|
||||||
|
|
||||||
float sumy = 0;
|
|
||||||
for (int i = 0; i < QK4_0 / 4; i++) {
|
|
||||||
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0) + 4 * i));
|
|
||||||
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
|
|
||||||
}
|
|
||||||
sumy *= (-8.f);
|
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; row++) {
|
|
||||||
// prefetch next x block
|
|
||||||
qb_next = x[tiisg + ((row + 1) % N_DST) * nb + (column + ((row + 1) / N_DST)) * N_SIMDWIDTH];
|
|
||||||
|
|
||||||
// calculate
|
|
||||||
float d = qb_curr.d;
|
|
||||||
float acc = sumy;
|
|
||||||
for (int i = 0; i < 16; i++) {
|
|
||||||
acc += yl[i] * (qb_curr.qs[i] & 0xF) + yl[i+16] * (qb_curr.qs[i] >> 4);
|
|
||||||
}
|
|
||||||
sumf[row] += d * acc;
|
|
||||||
qb_curr = qb_next;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (nb % N_SIMDWIDTH == 0) {
|
|
||||||
for (int row = 0; row < N_DST; ++row) {
|
|
||||||
all_sum = simd_sum(sumf[row]);
|
|
||||||
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
|
|
||||||
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
|
|
||||||
float sumy = 0;
|
|
||||||
for (int i = 0; i < QK4_0 / 4; i++) {
|
|
||||||
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + (nb / N_SIMDWIDTH) * QK4_0) + 4 * i));
|
|
||||||
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
|
|
||||||
}
|
|
||||||
sumy *= (-8.f);
|
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; row++) {
|
|
||||||
// prefetch next x block
|
|
||||||
qb_next = x[tiisg + ((row + 1) % N_DST) * nb + (nb / N_SIMDWIDTH + ((row + 1) / N_DST)) * N_SIMDWIDTH];
|
|
||||||
|
|
||||||
// calculate
|
|
||||||
float d = qb_curr.d;
|
|
||||||
float acc = sumy;
|
|
||||||
for (int i = 0; i < 16; i++) {
|
|
||||||
acc += yl[i] * (qb_curr.qs[i] & 0xF) + yl[i+16] * (qb_curr.qs[i] >> 4);
|
|
||||||
}
|
|
||||||
if (tiisg < nb % N_SIMDWIDTH) {
|
|
||||||
sumf[row] += d * acc;
|
|
||||||
}
|
|
||||||
qb_curr = qb_next;
|
|
||||||
|
|
||||||
all_sum = simd_sum(sumf[row]);
|
|
||||||
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
|
|
||||||
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_q4_1_f32(
|
kernel void kernel_mul_mat_q4_1_f32(
|
||||||
@ -467,80 +486,7 @@ kernel void kernel_mul_mat_q4_1_f32(
|
|||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint tiisg[[thread_index_in_simdgroup]],
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
const int nb = ne00/QK4_0;
|
mul_vec_q_n_f32<block_q4_1>(src0,src1,dst,ne00,ne10,ne0,ne01,tgpig,tiisg,sgitg);
|
||||||
const int r0 = tgpig.x;
|
|
||||||
const int r1 = tgpig.y;
|
|
||||||
device const block_q4_1 * x = (device const block_q4_1 *) src0 + (r0 * N_SIMDGROUP + sgitg) * N_DST * nb;
|
|
||||||
device const float * y = (device const float *) src1 + r1*ne10;
|
|
||||||
block_q4_1 qb_curr, qb_next;
|
|
||||||
float4 y_curr[8]; // src1 vector cache
|
|
||||||
float sumf[N_DST]={0.f}, all_sum;
|
|
||||||
thread float * yl=(thread float *)y_curr;
|
|
||||||
|
|
||||||
// bootstrap
|
|
||||||
qb_curr = x[tiisg];
|
|
||||||
// each thread in a SIMD group deals with 1 block.
|
|
||||||
for (int column = 0; column < nb / N_SIMDWIDTH; column++) {
|
|
||||||
|
|
||||||
float sumy = 0;
|
|
||||||
for (int i = 0; i < QK4_0 / 4; i++) {
|
|
||||||
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + column * QK4_0) + 4 * i));
|
|
||||||
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; row++) {
|
|
||||||
// prefetch next x block
|
|
||||||
qb_next = x[tiisg + ((row + 1) % N_DST) * nb + (column + ((row + 1) / N_DST)) * N_SIMDWIDTH];
|
|
||||||
|
|
||||||
// calculate
|
|
||||||
const float d = qb_curr.d;
|
|
||||||
const float m = qb_curr.m;
|
|
||||||
float acc = 0.f;
|
|
||||||
for (int i = 0; i < 16; i++) {
|
|
||||||
acc += yl[i] * (qb_curr.qs[i] & 0xF) + yl[i+16] * (qb_curr.qs[i] >> 4);
|
|
||||||
}
|
|
||||||
sumf[row] += d * acc + m * sumy;
|
|
||||||
qb_curr = qb_next;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (nb % N_SIMDWIDTH == 0) {
|
|
||||||
for (int row = 0; row < N_DST; ++row) {
|
|
||||||
all_sum = simd_sum(sumf[row]);
|
|
||||||
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
|
|
||||||
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
} else {
|
|
||||||
|
|
||||||
float sumy = 0;
|
|
||||||
for (int i = 0; i < QK4_0 / 4; i++) {
|
|
||||||
y_curr[i] = *((device float4 *)(y + N_SIMDWIDTH * (tiisg + (nb / N_SIMDWIDTH) * QK4_0) + 4 * i));
|
|
||||||
sumy += y_curr[i][0] + y_curr[i][1] + y_curr[i][2] + y_curr[i][3];
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int row = 0; row < N_DST; row++) {
|
|
||||||
// prefetch next x block
|
|
||||||
qb_next = x[tiisg + ((row + 1) % N_DST) * nb + (nb / N_SIMDWIDTH + ((row + 1) / N_DST)) * N_SIMDWIDTH];
|
|
||||||
|
|
||||||
// calculate
|
|
||||||
const float d = qb_curr.d;
|
|
||||||
const float m = qb_curr.m;
|
|
||||||
float acc = 0.f;
|
|
||||||
for (int i = 0; i < 16; i++) {
|
|
||||||
acc += yl[i] * (qb_curr.qs[i] & 0xF) + yl[i+16] * (qb_curr.qs[i] >> 4);
|
|
||||||
}
|
|
||||||
if (tiisg < nb % N_SIMDWIDTH) {
|
|
||||||
sumf[row] += d * acc + m * sumy;
|
|
||||||
}
|
|
||||||
qb_curr = qb_next;
|
|
||||||
|
|
||||||
all_sum = simd_sum(sumf[row]);
|
|
||||||
if (tiisg == 0 && ((r0 * N_SIMDGROUP + sgitg) * N_DST + row) < ne01) {
|
|
||||||
dst[r1*ne0 + (r0 * N_SIMDGROUP + sgitg) * N_DST + row] = all_sum;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
kernel void kernel_mul_mat_f16_f32(
|
kernel void kernel_mul_mat_f16_f32(
|
||||||
|
Loading…
Reference in New Issue
Block a user