mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
make rms_norm_eps a parameter (#2374)
* make rms_norm_eps a parameter * add rms_norm_eps to command line * fix baby llama, test-grad0 * use scientific notation for eps param in the help ggml-ci
This commit is contained in:
parent
b3f138d058
commit
41c674161f
@ -8,6 +8,8 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static const float rms_norm_eps = 1e-6f;
|
||||
|
||||
float frand() {
|
||||
return (float)rand()/(float)RAND_MAX;
|
||||
}
|
||||
@ -562,7 +564,7 @@ struct ggml_tensor * forward(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
cur = ggml_mul(ctx0,
|
||||
@ -685,7 +687,7 @@ struct ggml_tensor * forward(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
// cur shape [n_embd,N,1,1]
|
||||
@ -729,7 +731,7 @@ struct ggml_tensor * forward(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
|
||||
// inpL = norm*inpL
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
@ -817,7 +819,7 @@ struct ggml_tensor * forward_batch(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N*n_batch,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
@ -981,7 +983,7 @@ struct ggml_tensor * forward_batch(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N*n_batch,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
@ -1034,7 +1036,7 @@ struct ggml_tensor * forward_batch(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N*n_batch,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
assert_shape_2d(inpL, n_embd, N*n_batch);
|
||||
|
||||
// inpL = norm*inpL
|
||||
@ -1104,7 +1106,7 @@ struct ggml_tensor * forward_lora(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
cur = ggml_mul(ctx0,
|
||||
@ -1251,7 +1253,7 @@ struct ggml_tensor * forward_lora(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
// cur shape [n_embd,N,1,1]
|
||||
@ -1295,7 +1297,7 @@ struct ggml_tensor * forward_lora(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
|
||||
// inpL = norm*inpL
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
|
@ -177,6 +177,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.n_gqa = std::stoi(argv[i]);
|
||||
} else if (arg == "-eps" || arg == "--rms-norm-eps") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.rms_norm_eps = std::stof(argv[i]);
|
||||
} else if (arg == "--rope-freq-base") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -519,6 +525,7 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
fprintf(stdout, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
|
||||
fprintf(stdout, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
fprintf(stdout, " -gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: %d)\n", params.n_gqa);
|
||||
fprintf(stdout, " -eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: %.1e)\n", params.rms_norm_eps);
|
||||
fprintf(stdout, " --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
|
||||
fprintf(stdout, " --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
|
||||
fprintf(stdout, " --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
|
||||
@ -615,6 +622,7 @@ struct llama_context_params llama_context_params_from_gpt_params(const gpt_param
|
||||
lparams.n_ctx = params.n_ctx;
|
||||
lparams.n_batch = params.n_batch;
|
||||
lparams.n_gqa = params.n_gqa;
|
||||
lparams.rms_norm_eps = params.rms_norm_eps;
|
||||
lparams.n_gpu_layers = params.n_gpu_layers;
|
||||
lparams.main_gpu = params.main_gpu;
|
||||
lparams.tensor_split = params.tensor_split;
|
||||
|
@ -22,18 +22,19 @@
|
||||
int32_t get_num_physical_cores();
|
||||
|
||||
struct gpt_params {
|
||||
uint32_t seed = -1; // RNG seed
|
||||
uint32_t seed = -1; // RNG seed
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_gqa = 1; // grouped-query attention factor (TODO: move to hparams)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_gpu_layers = 0; // number of layers to store in VRAM
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
float rms_norm_eps = 1e-6; // rms norm epsilon
|
||||
float rope_freq_base = 10000.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 1.0f; // RoPE frequency scaling factor
|
||||
|
||||
|
@ -16,6 +16,8 @@
|
||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||
#endif
|
||||
|
||||
static const float rms_norm_eps = 1e-6f;
|
||||
|
||||
struct random_normal_distribution {
|
||||
std::mt19937 gen;
|
||||
std::normal_distribution<float> rd;
|
||||
@ -439,7 +441,7 @@ struct ggml_tensor * forward(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
cur = ggml_mul(ctx0,
|
||||
@ -562,7 +564,7 @@ struct ggml_tensor * forward(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
// cur shape [n_embd,N,1,1]
|
||||
@ -606,7 +608,7 @@ struct ggml_tensor * forward(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
|
||||
// inpL = norm*inpL
|
||||
// inpL shape [n_embd,N,1,1]
|
||||
@ -694,7 +696,7 @@ struct ggml_tensor * forward_batch(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N*n_batch,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
@ -857,7 +859,7 @@ struct ggml_tensor * forward_batch(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N*n_batch,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
@ -910,7 +912,7 @@ struct ggml_tensor * forward_batch(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N*n_batch,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
assert_shape_2d(inpL, n_embd, N*n_batch);
|
||||
|
||||
// inpL = norm*inpL
|
||||
@ -979,7 +981,7 @@ struct ggml_tensor * forward_batch_wo_cache(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N*n_batch,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
@ -1085,7 +1087,7 @@ struct ggml_tensor * forward_batch_wo_cache(
|
||||
// norm
|
||||
{
|
||||
// cur shape [n_embd,N*n_batch,1,1]
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
@ -1138,7 +1140,7 @@ struct ggml_tensor * forward_batch_wo_cache(
|
||||
{
|
||||
|
||||
// inpL shape [n_embd,N*n_batch,1,1]
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
assert_shape_2d(inpL, n_embd, N*n_batch);
|
||||
|
||||
// inpL = norm*inpL
|
||||
@ -1203,7 +1205,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
|
||||
|
||||
// norm
|
||||
{
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = attention_norm*cur
|
||||
@ -1267,7 +1269,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
assert_shape_2d(cur, n_embd, N*n_batch);
|
||||
|
||||
// cur = ffn_norm*cur
|
||||
@ -1311,7 +1313,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn(
|
||||
// norm
|
||||
{
|
||||
|
||||
inpL = ggml_rms_norm(ctx0, inpL);
|
||||
inpL = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
assert_shape_2d(inpL, n_embd, N*n_batch);
|
||||
|
||||
// inpL = norm*inpL
|
||||
@ -1603,7 +1605,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
|
||||
struct my_llama_layer & layer = model->layers[il];
|
||||
// tensors with values necessary for backward pass are in persistent buf(-1)
|
||||
// other tensors with buf(0) and buf(1) are only temporary needed, and their memory reused after layer is completed.
|
||||
use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t02, n_embd, N*n_batch);
|
||||
use_buf(-1); struct ggml_tensor * t02 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t02, n_embd, N*n_batch);
|
||||
use_buf( 0); struct ggml_tensor * t03 = expand(gf, ggml_repeat (ctx0, layer.attention_norm, t02)); assert_shape_2d(t03, n_embd, N*n_batch);
|
||||
use_buf(-1); struct ggml_tensor * t04 = expand(gf, ggml_mul (ctx0, t02, t03)); assert_shape_2d(t04, n_embd, N*n_batch);
|
||||
use_buf(-1); struct ggml_tensor * t05 = expand(gf, ggml_mul_mat (ctx0, layer.wq, t04)); assert_shape_2d(t05, n_embd, N*n_batch);
|
||||
@ -1623,7 +1625,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
|
||||
use_buf(-1); struct ggml_tensor * t19 = expand(gf, ggml_reshape_2d (ctx0, t18, n_embd, N*n_batch)); assert_shape_2d(t19, n_embd, N*n_batch);
|
||||
use_buf( 0); struct ggml_tensor * t20 = expand(gf, ggml_mul_mat (ctx0, layer.wo, t19)); assert_shape_2d(t20, n_embd, N*n_batch);
|
||||
use_buf(-1); struct ggml_tensor * t21 = expand(gf, ggml_add (ctx0, t20, cur)); assert_shape_2d(t21, n_embd, N*n_batch);
|
||||
use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21)); assert_shape_2d(t22, n_embd, N*n_batch);
|
||||
use_buf(-1); struct ggml_tensor * t22 = expand(gf, ggml_rms_norm (ctx0, t21, rms_norm_eps)); assert_shape_2d(t22, n_embd, N*n_batch);
|
||||
use_buf( 0); struct ggml_tensor * t23 = expand(gf, ggml_repeat (ctx0, layer.ffn_norm, t22)); assert_shape_2d(t23, n_embd, N*n_batch);
|
||||
use_buf(-1); struct ggml_tensor * t24 = expand(gf, ggml_mul (ctx0, t23, t22)); assert_shape_2d(t24, n_embd, N*n_batch);
|
||||
use_buf(-1); struct ggml_tensor * t25 = expand(gf, ggml_mul_mat (ctx0, layer.w3, t24)); assert_shape_2d(t25, n_ff, N*n_batch);
|
||||
@ -1666,7 +1668,7 @@ struct ggml_tensor * forward_batch_wo_cache_flash_attn_train(
|
||||
}
|
||||
clr_buf(0);
|
||||
use_buf(0);
|
||||
struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur)); assert_shape_2d(t31, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t31 = expand(gf, ggml_rms_norm (ctx0, cur, rms_norm_eps)); assert_shape_2d(t31, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t32 = expand(gf, ggml_repeat (ctx0, model->norm, t31)); assert_shape_2d(t32, n_embd, N*n_batch);
|
||||
struct ggml_tensor * t33 = expand(gf, ggml_mul (ctx0, t32, t31)); assert_shape_2d(t33, n_embd, N*n_batch);
|
||||
use_buf(-1);
|
||||
|
13
ggml-cuda.cu
13
ggml-cuda.cu
@ -332,12 +332,10 @@ static __global__ void norm_f32(const float * x, float * dst, const int ncols) {
|
||||
}
|
||||
}
|
||||
|
||||
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols) {
|
||||
static __global__ void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
|
||||
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
||||
const int tid = threadIdx.x;
|
||||
|
||||
const float eps = 1e-6f;
|
||||
|
||||
float tmp = 0.0f; // partial sum for thread in warp
|
||||
|
||||
for (int col = tid; col < ncols; col += WARP_SIZE) {
|
||||
@ -2122,10 +2120,10 @@ static void norm_f32_cuda(const float * x, float * dst, const int ncols, const i
|
||||
norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
}
|
||||
|
||||
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
|
||||
GGML_ASSERT(ncols % WARP_SIZE == 0);
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
rms_norm_f32<<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
|
||||
}
|
||||
|
||||
static void quantize_row_q8_1_cuda(const float * x, void * vy, const int ndata, const int k, cudaStream_t stream) {
|
||||
@ -2876,8 +2874,11 @@ inline void ggml_cuda_op_rms_norm(
|
||||
const int64_t ne00 = src0->ne[0];
|
||||
const int64_t i01_diff = i01_high - i01_low;
|
||||
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
||||
// compute
|
||||
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, cudaStream_main);
|
||||
rms_norm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, eps, cudaStream_main);
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
|
@ -812,7 +812,8 @@ void ggml_metal_graph_compute(
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
}
|
||||
|
||||
const float eps = 1e-6f;
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
||||
const int nth = 512;
|
||||
|
||||
|
16
ggml.c
16
ggml.c
@ -5781,6 +5781,7 @@ struct ggml_tensor * ggml_norm_inplace(
|
||||
static struct ggml_tensor * ggml_rms_norm_impl(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
float eps,
|
||||
bool inplace) {
|
||||
bool is_node = false;
|
||||
|
||||
@ -5790,7 +5791,7 @@ static struct ggml_tensor * ggml_rms_norm_impl(
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
// TODO: maybe store epsilon here?
|
||||
ggml_set_op_params(result, &eps, sizeof(eps));
|
||||
|
||||
result->op = GGML_OP_RMS_NORM;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
@ -5801,14 +5802,16 @@ static struct ggml_tensor * ggml_rms_norm_impl(
|
||||
|
||||
struct ggml_tensor * ggml_rms_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a) {
|
||||
return ggml_rms_norm_impl(ctx, a, false);
|
||||
struct ggml_tensor * a,
|
||||
float eps) {
|
||||
return ggml_rms_norm_impl(ctx, a, eps, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_rms_norm_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a) {
|
||||
return ggml_rms_norm_impl(ctx, a, true);
|
||||
struct ggml_tensor * a,
|
||||
float eps) {
|
||||
return ggml_rms_norm_impl(ctx, a, eps, true);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_rms_norm_back(
|
||||
@ -10131,7 +10134,8 @@ static void ggml_compute_forward_rms_norm_f32(
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
||||
|
||||
const float eps = 1e-6f; // TODO: make this a parameter
|
||||
float eps;
|
||||
memcpy(&eps, dst->op_params, sizeof(float));
|
||||
|
||||
// TODO: optimize
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
|
7
ggml.h
7
ggml.h
@ -866,14 +866,17 @@ extern "C" {
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_rms_norm(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
struct ggml_tensor * a,
|
||||
float eps);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
struct ggml_tensor * a,
|
||||
float eps);
|
||||
|
||||
// a - x
|
||||
// b - dy
|
||||
// TODO: update with configurable eps
|
||||
GGML_API struct ggml_tensor * ggml_rms_norm_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
|
20
llama.cpp
20
llama.cpp
@ -186,6 +186,7 @@ struct llama_hparams {
|
||||
// LLaMAv2
|
||||
// TODO: load from model data hparams
|
||||
float f_ffn_mult = 1.0f;
|
||||
float f_rms_norm_eps = 1e-6f;
|
||||
|
||||
float rope_freq_base = 10000.0f;
|
||||
float rope_freq_scale = 1.0f;
|
||||
@ -869,6 +870,7 @@ struct llama_context_params llama_context_default_params() {
|
||||
/*.n_ctx =*/ 512,
|
||||
/*.n_batch =*/ 512,
|
||||
/*.n_gqa =*/ 1,
|
||||
/*.rms_norm_eps =*/ 1e-6f,
|
||||
/*.gpu_layers =*/ 0,
|
||||
/*.main_gpu =*/ 0,
|
||||
/*.tensor_split =*/ nullptr,
|
||||
@ -1000,6 +1002,7 @@ static void llama_model_load_internal(
|
||||
int n_ctx,
|
||||
int n_batch,
|
||||
int n_gqa,
|
||||
float rms_norm_eps,
|
||||
int n_gpu_layers,
|
||||
int main_gpu,
|
||||
const float * tensor_split,
|
||||
@ -1024,6 +1027,9 @@ static void llama_model_load_internal(
|
||||
|
||||
auto & hparams = model.hparams;
|
||||
|
||||
// TODO: read from file
|
||||
hparams.f_rms_norm_eps = rms_norm_eps;
|
||||
|
||||
{
|
||||
switch (hparams.n_layer) {
|
||||
case 26: model.type = e_model::MODEL_3B; break;
|
||||
@ -1072,6 +1078,7 @@ static void llama_model_load_internal(
|
||||
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
|
||||
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
|
||||
fprintf(stderr, "%s: n_gqa = %u\n", __func__, hparams.n_gqa());
|
||||
fprintf(stderr, "%s: rnorm_eps = %.1e\n", __func__, hparams.f_rms_norm_eps);
|
||||
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
|
||||
fprintf(stderr, "%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
|
||||
fprintf(stderr, "%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
|
||||
@ -1330,6 +1337,7 @@ static bool llama_model_load(
|
||||
int n_ctx,
|
||||
int n_batch,
|
||||
int n_gqa,
|
||||
float rms_norm_eps,
|
||||
int n_gpu_layers,
|
||||
int main_gpu,
|
||||
const float * tensor_split,
|
||||
@ -1343,7 +1351,7 @@ static bool llama_model_load(
|
||||
llama_progress_callback progress_callback,
|
||||
void *progress_callback_user_data) {
|
||||
try {
|
||||
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gqa, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
|
||||
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gqa, rms_norm_eps, n_gpu_layers, main_gpu, tensor_split, rope_freq_base, rope_freq_scale, low_vram, memory_type,
|
||||
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
|
||||
return true;
|
||||
} catch (const std::exception & err) {
|
||||
@ -1396,10 +1404,12 @@ static bool llama_eval_internal(
|
||||
const int64_t n_vocab = hparams.n_vocab;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_gqa();
|
||||
|
||||
|
||||
LLAMA_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
const float freq_base = hparams.rope_freq_base;
|
||||
const float freq_scale = hparams.rope_freq_scale;
|
||||
const float rms_norm_eps = hparams.f_rms_norm_eps;
|
||||
|
||||
const int n_gpu_layers = model.n_gpu_layers;
|
||||
|
||||
@ -1479,7 +1489,7 @@ static bool llama_eval_internal(
|
||||
|
||||
// norm
|
||||
{
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
offload_func(cur);
|
||||
ggml_set_name(cur, "rms_norm_0");
|
||||
|
||||
@ -1627,7 +1637,7 @@ static bool llama_eval_internal(
|
||||
{
|
||||
// norm
|
||||
{
|
||||
cur = ggml_rms_norm(ctx0, inpFF);
|
||||
cur = ggml_rms_norm(ctx0, inpFF, rms_norm_eps);
|
||||
offload_func(cur);
|
||||
ggml_set_name(cur, "rms_norm_1");
|
||||
|
||||
@ -1680,7 +1690,7 @@ static bool llama_eval_internal(
|
||||
|
||||
// norm
|
||||
{
|
||||
cur = ggml_rms_norm(ctx0, inpL);
|
||||
cur = ggml_rms_norm(ctx0, inpL, rms_norm_eps);
|
||||
offload_func_nr(cur);
|
||||
ggml_set_name(cur, "rms_norm_2");
|
||||
|
||||
@ -3084,7 +3094,7 @@ struct llama_model * llama_load_model_from_file(
|
||||
|
||||
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
||||
|
||||
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gqa, params.n_gpu_layers,
|
||||
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gqa, params.rms_norm_eps, params.n_gpu_layers,
|
||||
params.main_gpu, params.tensor_split, params.rope_freq_base, params.rope_freq_scale,params.low_vram,
|
||||
memory_type, params.use_mmap, params.use_mlock, params.vocab_only, params.progress_callback,
|
||||
params.progress_callback_user_data)) {
|
||||
|
1
llama.h
1
llama.h
@ -87,6 +87,7 @@ extern "C" {
|
||||
int32_t n_ctx; // text context
|
||||
int32_t n_batch; // prompt processing batch size
|
||||
int32_t n_gqa; // grouped-query attention (TEMP - will be moved to model hparams)
|
||||
float rms_norm_eps; // rms norm epsilon (TEMP - will be moved to model hparams)
|
||||
int32_t n_gpu_layers; // number of layers to store in VRAM
|
||||
int32_t main_gpu; // the GPU that is used for scratch and small tensors
|
||||
|
||||
|
@ -850,7 +850,7 @@ int main(int argc, const char ** argv) {
|
||||
ggml_set_param(ctx0, x[i]);
|
||||
}
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rms_norm(ctx0, x[0]));
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rms_norm(ctx0, x[0], 1e-6f));
|
||||
|
||||
check_gradient("rms_norm", ctx0, x, f, ndims, nargs, 1e-4f, 1.0f, INFINITY);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user