diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index c6db1666e..f4c374ce5 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -356,6 +356,8 @@ jobs: defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"' - build: 'kompute' defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON' + - build: 'vulkan' + defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON -DBUILD_SHARED_LIBS=ON' steps: - name: Clone @@ -406,7 +408,7 @@ jobs: - name: Install Vulkan SDK id: get_vulkan - if: ${{ matrix.build == 'kompute' }} + if: ${{ matrix.build == 'kompute' || matrix.build == 'vulkan' }} run: | curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe" & "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install @@ -451,7 +453,7 @@ jobs: - name: Test id: cmake_test # not all machines have native AVX-512 - if: ${{ matrix.build != 'clblast' && matrix.build != 'kompute' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} + if: ${{ matrix.build != 'clblast' && matrix.build != 'kompute' && matrix.build != 'vulkan' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }} run: | cd build ctest -L main -C Release --verbose --timeout 900 diff --git a/CMakeLists.txt b/CMakeLists.txt index 15a1101aa..1ee455b3a 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -423,10 +423,7 @@ if (LLAMA_VULKAN) if (Vulkan_FOUND) message(STATUS "Vulkan found") - set(GGML_HEADERS_VULKAN ggml-vulkan.h) - set(GGML_SOURCES_VULKAN ggml-vulkan.cpp) - - add_library(ggml-vulkan STATIC ggml-vulkan.cpp ggml-vulkan.h) + add_library(ggml-vulkan OBJECT ggml-vulkan.cpp ggml-vulkan.h) if (BUILD_SHARED_LIBS) set_target_properties(ggml-vulkan PROPERTIES POSITION_INDEPENDENT_CODE ON) endif() @@ -1012,7 +1009,6 @@ add_library(ggml OBJECT ggml-quants.h ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} - ${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN} ${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL} ${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI} ${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA} @@ -1094,7 +1090,7 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama) set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h" - "${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}" "${GGML_HEADERS_VULKAN}" + "${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}" "${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}") set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}") diff --git a/Makefile b/Makefile index 781f0bf8c..bf9e085de 100644 --- a/Makefile +++ b/Makefile @@ -586,8 +586,11 @@ train.o: common/train.cpp common/train.h libllama.so: llama.o ggml.o $(OBJS) $(CXX) $(CXXFLAGS) -shared -fPIC -o $@ $^ $(LDFLAGS) +libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS) + ar rcs libllama.a llama.o ggml.o $(OBJS) $(COMMON_DEPS) + clean: - rm -vrf *.o tests/*.o *.so *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS) + rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS) # # Examples diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 6ab7f486e..4ebab07b3 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -203,6 +203,8 @@ class Model: return CodeShellModel if model_architecture == "OrionForCausalLM": return OrionModel + if model_architecture == "InternLM2ForCausalLM": + return InternLM2Model return Model def _is_model_safetensors(self) -> bool: @@ -254,6 +256,8 @@ class Model: return gguf.MODEL_ARCH.CODESHELL if arch == "OrionForCausalLM": return gguf.MODEL_ARCH.ORION + if arch == "InternLM2ForCausalLM": + return gguf.MODEL_ARCH.INTERNLM2 raise NotImplementedError(f'Architecture "{arch}" not supported!') @@ -1344,6 +1348,154 @@ class CodeShellModel(Model): self.gguf_writer.add_tensor("output.weight", data) print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}") + +class InternLM2Model(Model): + def set_vocab(self): + # (TODO): Is there a better way? + # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character + # \x00 specially and convert it into an emoji character to prevent it from being mistakenly + # recognized as an empty string in C++. + from sentencepiece import SentencePieceProcessor + from sentencepiece import sentencepiece_model_pb2 as model + + tokenizer_path = self.dir_model / 'tokenizer.model' + + tokens: list[bytes] = [] + scores: list[float] = [] + toktypes: list[int] = [] + + if not tokenizer_path.is_file(): + print(f'Error: Missing {tokenizer_path}', file=sys.stderr) + sys.exit(1) + + sentencepiece_model = model.ModelProto() + sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read()) + add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix + + tokenizer = SentencePieceProcessor(str(tokenizer_path)) + vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) + + for token_id in range(vocab_size): + piece = tokenizer.id_to_piece(token_id) + text = piece.encode("utf-8") + score = tokenizer.get_score(token_id) + if text == b"\x00": + # (TODO): fixme + # Hack here and replace the \x00 characters. + print(f"InternLM2 convert token '{text}' to '🐉'!") + text = "🐉" + + toktype = SentencePieceTokenTypes.NORMAL + if tokenizer.is_unknown(token_id): + toktype = SentencePieceTokenTypes.UNKNOWN + elif tokenizer.is_control(token_id): + toktype = SentencePieceTokenTypes.CONTROL + elif tokenizer.is_unused(token_id): + toktype = SentencePieceTokenTypes.UNUSED + elif tokenizer.is_byte(token_id): + toktype = SentencePieceTokenTypes.BYTE + + tokens.append(text) + scores.append(score) + toktypes.append(toktype) + + added_tokens_file = self.dir_model / 'added_tokens.json' + if added_tokens_file.is_file(): + with open(added_tokens_file, "r", encoding="utf-8") as f: + added_tokens_json = json.load(f) + + for key in added_tokens_json: + tokens.append(key.encode("utf-8")) + scores.append(-1000.0) + toktypes.append(SentencePieceTokenTypes.USER_DEFINED) + + self.gguf_writer.add_tokenizer_model("llama") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_scores(scores) + self.gguf_writer.add_token_types(toktypes) + self.gguf_writer.add_add_space_prefix(add_prefix) + + special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) + special_vocab.add_to_gguf(self.gguf_writer) + + def set_gguf_parameters(self): + self.gguf_writer.add_name("InternLM2") + self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"]) + self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"]) + self.gguf_writer.add_embedding_length(self.hparams["hidden_size"]) + self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"]) + self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"]) + self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) + self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"]) + self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"]) + + def post_write_tensors(self, tensor_map, name, data_torch): + old_dtype = data_torch.dtype + + # convert any unsupported data types to float32 + if data_torch.dtype not in (torch.float16, torch.float32): + data_torch = data_torch.to(torch.float32) + + data = data_torch.squeeze().numpy() + + # map tensor names + new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) + if new_name is None: + print(f"Can not map tensor {name!r}") + sys.exit() + + n_dims = len(data.shape) + data_dtype = data.dtype + + # if f32 desired, convert any float16 to float32 + if self.ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: + data = data.astype(np.float32) + + # if f16 desired, convert any float32 2-dim weight tensors to float16 + if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2: + data = data.astype(np.float16) + + print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}") + self.gguf_writer.add_tensor(new_name, data) + + def write_tensors(self): + from einops import rearrange + + num_heads = self.hparams.get("num_attention_heads") + num_kv_heads = self.hparams.get("num_key_value_heads") + hidden_size = self.hparams.get("hidden_size") + q_per_kv = num_heads // num_kv_heads + head_dim = hidden_size // num_heads + num_groups = num_heads // q_per_kv + + block_count = self.hparams["num_hidden_layers"] + model_kv = dict(self.get_tensors()) + tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) + qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv" + for name, data_torch in model_kv.items(): + # we don't need these + if name.endswith(".rotary_emb.inv_freq"): + continue + + if re.match(qkv_pattern, name): + bid = re.findall(qkv_pattern, name)[0] + qkv = data_torch + qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim) + q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :] + q = rearrange(q, " o g n i -> o (g n i)").T + k = rearrange(k, " o g n i -> o (g n i)").T + v = rearrange(v, " o g n i -> o (g n i)").T + self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q) + self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k) + self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v) + else: + self.post_write_tensors(tensor_map, name, data_torch) + + ###### CONVERSION LOGIC ###### diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 60d228a61..098b55e07 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -9213,9 +9213,9 @@ static void ggml_cuda_op_dequantize_mul_mat_vec( if (src1_convert_f16) { src1_dfloat = src1_dfloat_a.alloc(ne00); - ggml_cpy_f32_f16_cuda((const char *) src1_ddf_i, (char *) src1_dfloat, ne00, - ne00, 1, sizeof(float), 0, 0, - ne00, 1, sizeof(half), 0, 0, 0, 0, 0, 0, stream); + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); + GGML_ASSERT(to_fp16_cuda != nullptr); + to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream); } #else const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py index f5c933a41..ed8e26f83 100644 --- a/gguf-py/gguf/constants.py +++ b/gguf-py/gguf/constants.py @@ -72,6 +72,7 @@ class Keys: PAD_ID = "tokenizer.ggml.padding_token_id" ADD_BOS = "tokenizer.ggml.add_bos_token" ADD_EOS = "tokenizer.ggml.add_eos_token" + ADD_PREFIX = "tokenizer.ggml.add_space_prefix" HF_JSON = "tokenizer.huggingface.json" RWKV = "tokenizer.rwkv.world" CHAT_TEMPLATE = "tokenizer.chat_template" @@ -102,6 +103,7 @@ class MODEL_ARCH(IntEnum): PLAMO = auto() CODESHELL = auto() ORION = auto() + INTERNLM2 = auto() class MODEL_TENSOR(IntEnum): @@ -153,6 +155,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = { MODEL_ARCH.PLAMO: "plamo", MODEL_ARCH.CODESHELL: "codeshell", MODEL_ARCH.ORION: "orion", + MODEL_ARCH.INTERNLM2: "internlm2", } TENSOR_NAMES: dict[MODEL_TENSOR, str] = { @@ -446,6 +449,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = { MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_UP, ], + MODEL_ARCH.INTERNLM2: [ + MODEL_TENSOR.TOKEN_EMBD, + MODEL_TENSOR.OUTPUT_NORM, + MODEL_TENSOR.OUTPUT, + MODEL_TENSOR.ATTN_NORM, + MODEL_TENSOR.ATTN_Q, + MODEL_TENSOR.ATTN_K, + MODEL_TENSOR.ATTN_V, + MODEL_TENSOR.ATTN_OUT, + MODEL_TENSOR.ATTN_ROT_EMBD, + MODEL_TENSOR.FFN_NORM, + MODEL_TENSOR.FFN_GATE, + MODEL_TENSOR.FFN_DOWN, + MODEL_TENSOR.FFN_UP, + ], # TODO } diff --git a/gguf-py/gguf/gguf_writer.py b/gguf-py/gguf/gguf_writer.py index d93aaa877..16808196e 100644 --- a/gguf-py/gguf/gguf_writer.py +++ b/gguf-py/gguf/gguf_writer.py @@ -411,6 +411,9 @@ class GGUFWriter: def add_add_eos_token(self, value: bool) -> None: self.add_bool(Keys.Tokenizer.ADD_EOS, value) + def add_add_space_prefix(self, value: bool) -> None: + self.add_bool(Keys.Tokenizer.ADD_PREFIX, value) + def add_chat_template(self, value: str) -> None: self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value) diff --git a/gguf-py/gguf/tensor_mapping.py b/gguf-py/gguf/tensor_mapping.py index de177af13..4f16d8504 100644 --- a/gguf-py/gguf/tensor_mapping.py +++ b/gguf-py/gguf/tensor_mapping.py @@ -19,6 +19,7 @@ class TensorNameMap: "language_model.embedding.word_embeddings", # persimmon "wte", # gpt2 "transformer.embd.wte", # phi2 + "model.tok_embeddings", # internlm2 ), # Token type embeddings @@ -42,7 +43,7 @@ class TensorNameMap: MODEL_TENSOR.OUTPUT: ( "embed_out", # gptneox "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen - "output", # llama-pth bloom + "output", # llama-pth bloom internlm2 "word_embeddings_for_head", # persimmon "lm_head.linear", # phi2 ), @@ -51,7 +52,7 @@ class TensorNameMap: MODEL_TENSOR.OUTPUT_NORM: ( "gpt_neox.final_layer_norm", # gptneox "transformer.ln_f", # gpt2 gpt-j falcon - "model.norm", # llama-hf baichuan + "model.norm", # llama-hf baichuan internlm2 "norm", # llama-pth "embeddings.LayerNorm", # bert "transformer.norm_f", # mpt @@ -84,6 +85,7 @@ class TensorNameMap: "h.{bid}.ln_1", # gpt2 "transformer.h.{bid}.ln", # phi2 "model.layers.layers.{bid}.norm", # plamo + "model.layers.{bid}.attention_norm", # internlm2 ), # Attention norm 2 @@ -111,6 +113,7 @@ class TensorNameMap: "encoder.layer.{bid}.attention.self.query", # bert "transformer.h.{bid}.attn.q_proj", # gpt-j "model.layers.layers.{bid}.self_attn.q_proj", # plamo + "model.layers.{bid}.attention.wq" # internlm2 ), # Attention key @@ -120,6 +123,7 @@ class TensorNameMap: "encoder.layer.{bid}.attention.self.key", # bert "transformer.h.{bid}.attn.k_proj", # gpt-j "model.layers.layers.{bid}.self_attn.k_proj", # plamo + "model.layers.{bid}.attention.wk" # internlm2 ), # Attention value @@ -129,6 +133,7 @@ class TensorNameMap: "encoder.layer.{bid}.attention.self.value", # bert "transformer.h.{bid}.attn.v_proj", # gpt-j "model.layers.layers.{bid}.self_attn.v_proj", # plamo + "model.layers.{bid}.attention.wv" # internlm2 ), # Attention output @@ -147,6 +152,7 @@ class TensorNameMap: "h.{bid}.attn.c_proj", # gpt2 "transformer.h.{bid}.mixer.out_proj", # phi2 "model.layers.layers.{bid}.self_attn.o_proj", # plamo + "model.layers.{bid}.attention.wo", # internlm2 ), # Rotary embeddings @@ -169,6 +175,7 @@ class TensorNameMap: "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon "model.layers.{bid}.ln2", # yi "h.{bid}.ln_2", # gpt2 + "model.layers.{bid}.ffn_norm", # internlm2 ), MODEL_TENSOR.FFN_GATE_INP: ( @@ -194,6 +201,7 @@ class TensorNameMap: "transformer.h.{bid}.mlp.fc1", # phi2 "model.layers.{bid}.mlp.fc1", # phi2 "model.layers.layers.{bid}.mlp.up_proj", # plamo + "model.layers.{bid}.feed_forward.w3", # internlm2 ), MODEL_TENSOR.FFN_UP_EXP: ( @@ -212,6 +220,7 @@ class TensorNameMap: "layers.{bid}.feed_forward.w1", # llama-pth "transformer.h.{bid}.mlp.w2", # qwen "model.layers.layers.{bid}.mlp.gate_proj", # plamo + "model.layers.{bid}.feed_forward.w1", # internlm2 ), MODEL_TENSOR.FFN_GATE_EXP: ( @@ -236,6 +245,7 @@ class TensorNameMap: "transformer.h.{bid}.mlp.fc2", # phi2 "model.layers.{bid}.mlp.fc2", # phi2 "model.layers.layers.{bid}.mlp.down_proj", # plamo + "model.layers.{bid}.feed_forward.w2", # internlm2 ), MODEL_TENSOR.FFN_DOWN_EXP: ( diff --git a/llama.cpp b/llama.cpp index 2330efff5..a6723b5c1 100644 --- a/llama.cpp +++ b/llama.cpp @@ -206,6 +206,7 @@ enum llm_arch { LLM_ARCH_PLAMO, LLM_ARCH_CODESHELL, LLM_ARCH_ORION, + LLM_ARCH_INTERNLM2, LLM_ARCH_UNKNOWN, }; @@ -228,6 +229,7 @@ static std::map LLM_ARCH_NAMES = { { LLM_ARCH_PLAMO, "plamo" }, { LLM_ARCH_CODESHELL, "codeshell" }, { LLM_ARCH_ORION, "orion" }, + { LLM_ARCH_INTERNLM2, "internlm2" }, }; enum llm_kv { @@ -280,6 +282,7 @@ enum llm_kv { LLM_KV_TOKENIZER_PAD_ID, LLM_KV_TOKENIZER_ADD_BOS, LLM_KV_TOKENIZER_ADD_EOS, + LLM_KV_TOKENIZER_ADD_PREFIX, LLM_KV_TOKENIZER_HF_JSON, LLM_KV_TOKENIZER_RWKV, }; @@ -334,6 +337,7 @@ static std::map LLM_KV_NAMES = { { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" }, { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" }, { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" }, + { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" }, { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" }, { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" }, }; @@ -671,7 +675,23 @@ static std::map> LLM_TENSOR_NAMES = { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, }, }, - + { + LLM_ARCH_INTERNLM2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, { LLM_ARCH_UNKNOWN, { @@ -1379,6 +1399,7 @@ enum e_model { MODEL_13B, MODEL_14B, MODEL_15B, + MODEL_20B, MODEL_30B, MODEL_34B, MODEL_40B, @@ -1620,6 +1641,8 @@ struct llama_vocab { id special_suffix_id = 32008; id special_eot_id = 32010; + bool add_space_prefix = true; + int find_bpe_rank(const std::string & token_left, const std::string & token_right) const { GGML_ASSERT(token_left.find(' ') == std::string::npos); GGML_ASSERT(token_left.find('\n') == std::string::npos); @@ -2733,6 +2756,7 @@ static const char * llama_model_type_name(e_model type) { case MODEL_13B: return "13B"; case MODEL_14B: return "14B"; case MODEL_15B: return "15B"; + case MODEL_20B: return "20B"; case MODEL_30B: return "30B"; case MODEL_34B: return "34B"; case MODEL_40B: return "40B"; @@ -2745,6 +2769,14 @@ static const char * llama_model_type_name(e_model type) { default: return "?B"; } } +static const char * llama_model_vocab_type_name(enum llama_vocab_type type){ + switch (type) { + case LLAMA_VOCAB_TYPE_SPM: return "SPM"; + case LLAMA_VOCAB_TYPE_BPE: return "BPE"; + default: return "unknown"; + } +} + static void llm_load_arch(llama_model_loader & ml, llama_model & model) { model.arch = ml.get_arch(); @@ -3008,6 +3040,15 @@ static void llm_load_hparams( default: model.type = e_model::MODEL_UNKNOWN; } } break; + case LLM_ARCH_INTERNLM2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 48: model.type = e_model::MODEL_20B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; default: (void)0; } @@ -3059,6 +3100,11 @@ static void llm_load_vocab( vocab.special_unk_id = 0; vocab.special_sep_id = -1; vocab.special_pad_id = -1; + + const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str()); + if (add_space_prefix_keyidx != -1) { + vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); + } // The default value of add_space_prefix is true. } else if (tokenizer_name == "gpt2") { vocab.type = LLAMA_VOCAB_TYPE_BPE; @@ -3271,7 +3317,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { // hparams LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver)); LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str()); - LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix + LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type)); LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size()); LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); @@ -4020,8 +4066,35 @@ static bool llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; + case LLM_ARCH_INTERNLM2: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; default: throw std::runtime_error("unknown architecture"); } @@ -6624,6 +6697,126 @@ struct llm_build_context { return gf; } + + struct ggml_cgraph * build_internlm2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb); + cb(inpL, "inp_embd", -1); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0); + cb(inp_pos, "inp_pos", -1); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0); + cb(KQ_mask, "KQ_mask", -1); + + // shift the entire K-cache if needed + if (do_rope_shift) { + llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb); + } + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + cb(cur, "kqv_out", il); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + }; static struct ggml_cgraph * llama_build_graph( @@ -6782,6 +6975,10 @@ static struct ggml_cgraph * llama_build_graph( { result = llm.build_orion(); } break; + case LLM_ARCH_INTERNLM2: + { + result = llm.build_internlm2(); + } break; default: GGML_ASSERT(false); } @@ -7725,7 +7922,9 @@ static std::vector llama_tokenize_internal(const llama_vocab & // auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); if (&fragment == &fragment_buffer.front()) { - raw_text = " " + raw_text; // prefix with space if the first token is not special + if (vocab.add_space_prefix) { + raw_text = " " + raw_text; // prefix with space if the first token is not special + } } #ifdef PRETOKENIZERDEBUG