llama3 custom regex split (#6965)

* merged the changes from deepseeker models to main branch

* Moved regex patterns to unicode.cpp and updated unicode.h

* Moved header files

* Resolved issues

* added and refactored unicode_regex_split and related functions

* Updated/merged the deepseek coder pr

* Refactored code

* Adding unicode regex mappings

* Adding unicode regex function

* Added needed functionality, testing remains

* Fixed issues

* Fixed issue with gpt2 regex custom preprocessor

* unicode : fix? unicode_wstring_to_utf8

* lint : fix whitespaces

* tests : add tokenizer tests for numbers

* unicode : remove redundant headers

* tests : remove and rename tokenizer test scripts

* tests : add sample usage

* gguf-py : reader prints warnings on duplicate keys

* llama : towards llama3 tokenization support (wip)

* unicode : shot in the dark to fix tests on Windows

* unicode : first try custom implementations

* convert : add "tokenizer.ggml.pre" GGUF KV (wip)

* llama : use new pre-tokenizer type

* convert : fix pre-tokenizer type writing

* lint : fix

* make : add test-tokenizer-0-llama-v3

* wip

* models : add llama v3 vocab file

* llama : adapt punctuation regex + add llama 3 regex

* minor

* unicode : set bomb

* unicode : set bomb

* unicode : always use std::wregex

* unicode : support \p{N}, \p{L} and \p{P} natively

* unicode : try fix windows

* unicode : category support via std::regex

* unicode : clean-up

* unicode : simplify

* llama3 custom regex split

* convert : add convert-hf-to-gguf-update.py

ggml-ci

* lint : update

* convert : add falcon

ggml-ci

* unicode : normalize signatures

* lint : fix

* lint : fix

* convert : remove unused functions

* convert : add comments

* convert : exercise contractions

ggml-ci

* Using char32_t for codepoints

* lint : fix

* already exists unicode_tolower()

* Typing

* Restore BOM

* cmake : refactor test targets

* tests : refactor vocab tests

ggml-ci

* tests : add more vocabs and tests

ggml-ci

* unicode : cleanup

* scripts : ignore new update script in check-requirements.sh

* Fix merge

* models : add phi-3, mpt, gpt-2, starcoder

* tests : disable obsolete

ggml-ci

* tests : use faster bpe test

ggml-ci

* llama : more prominent warning for old BPE models

* tests : disable test-tokenizer-1-bpe due to slowness

ggml-ci

* Move unused variable value

* GPT2 custom regex split

* Add alternative regex for custom aplit llama3

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* Style

* Add bruteforce random tests for token encoding

* wip: fixing unicode codepoint ranges

* Fix merge

* Unicode tables: separator, lowercase, uppercase and whitespace

* llama3 custom regex split: fix \s

* Restore BOM

* Style

* wip: generate NDF table

* Ignore special tokens for testing

* Clean gen-unicode-data.py

* Refactor random tokenizer test

* lint : fix

* tests : add fail test for llama-bpe

---------

Co-authored-by: Jaggzh <jaggz.h@gmail.com>
Co-authored-by: Kazim Abrar Mahi <kazimabrarmahi135@gmail.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: jaime-m-p <>
This commit is contained in:
jaime-m-p 2024-05-09 15:30:44 +02:00 committed by GitHub
parent a743d76a01
commit 43248e5594
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
8 changed files with 1468 additions and 549 deletions

View File

@ -261,6 +261,7 @@ tests = [
"3333333", "3333333",
"33333333", "33333333",
"333333333", "333333333",
# "Cửa Việt", # llama-bpe fails on this
chktxt, chktxt,
] ]

View File

@ -12488,7 +12488,7 @@ struct llm_tokenizer_wpm {
continue; continue;
} }
code = unicode_tolower(code); code = unicode_tolower(code);
if (type == CODEPOINT_TYPE_WHITESPACE) { if (type == CODEPOINT_TYPE_SEPARATOR) {
code = ' '; code = ' ';
} }
std::string s = unicode_cpt_to_utf8(code); std::string s = unicode_cpt_to_utf8(code);

View File

@ -1,31 +1,14 @@
import regex import regex
def cpt_to_utf8_str(cpt):
if cpt <= 0xFF:
return bytes([cpt, 0, 0, 0])
elif cpt <= 0xFFFF:
return bytes([cpt & 0xFF, cpt >> 8, 0, 0])
elif cpt <= 0xFFFFFF:
return bytes([cpt & 0xFF, (cpt >> 8) & 0xFF, (cpt >> 16) & 0xFF, 0])
else:
return bytes([cpt & 0xFF, (cpt >> 8) & 0xFF, (cpt >> 16) & 0xFF, cpt >> 24])
def is_match(codepoint, regex_expr):
try:
res = regex.match(regex_expr, cpt_to_utf8_str(codepoint).decode('utf-32'))
return res is not None
except Exception:
return False
def get_matches(regex_expr): def get_matches(regex_expr):
regex_expr_compiled = regex.compile(regex_expr)
unicode_ranges = [] unicode_ranges = []
current_range = None current_range = None
for codepoint in range(0x110000): for codepoint in range(0x110000):
if is_match(codepoint, regex_expr): char = chr(codepoint)
if regex_expr_compiled.match(char):
if current_range is None: if current_range is None:
current_range = [codepoint, codepoint] current_range = [codepoint, codepoint]
else: else:
@ -40,27 +23,42 @@ def get_matches(regex_expr):
return unicode_ranges return unicode_ranges
def print_cat(cat, ranges): def print_cat(mode, cat, ranges):
if mode == "range":
print("const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_{} = {{".format(cat)) # noqa: NP100 print("const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_{} = {{".format(cat)) # noqa: NP100
cnt = 0 if mode == "map":
for start, end in ranges: print("const std::map<uint32_t, uint32_t> unicode_map_{} = {{".format(cat)) # noqa: NP100
if cnt % 4 != 0: for i, values in enumerate(ranges):
print(" ", end="") # noqa: NP100 end = ",\n" if (i % 4 == 3 or i + 1 == len(ranges)) else ", "
print("{{0x{:08X}, 0x{:08X}}},".format(start, end), end="") # noqa: NP100 values = ["0x%08X" % value for value in values]
if cnt % 4 == 3: print("{" + ", ".join(values) + "}", end=end) # noqa: NP100
print("") # noqa: NP100
cnt += 1
if cnt % 4 != 0:
print("") # noqa: NP100
print("};") # noqa: NP100 print("};") # noqa: NP100
print("") # noqa: NP100 print("") # noqa: NP100
print_cat("number", get_matches(r'\p{N}')) print_cat("range", "number", get_matches(r'\p{N}'))
print_cat("letter", get_matches(r'\p{L}')) print_cat("range", "letter", get_matches(r'\p{L}'))
print_cat("whitespace", get_matches(r'\p{Z}')) print_cat("range", "separator", get_matches(r'\p{Z}'))
print_cat("accent_mark", get_matches(r'\p{M}')) print_cat("range", "accent_mark", get_matches(r'\p{M}'))
print_cat("punctuation", get_matches(r'\p{P}')) print_cat("range", "punctuation", get_matches(r'\p{P}'))
print_cat("symbol", get_matches(r'\p{S}')) print_cat("range", "symbol", get_matches(r'\p{S}'))
print_cat("control", get_matches(r'\p{C}')) print_cat("range", "control", get_matches(r'\p{C}'))
print_cat("range", "whitespace", get_matches(r'\s'))
map_lowercase = []
map_uppercase = []
for codepoint in range(0x110000):
char = chr(codepoint)
lower = ord(char.lower()[0])
upper = ord(char.upper()[0])
if codepoint != lower:
map_lowercase.append((codepoint, lower))
if codepoint != upper:
map_uppercase.append((codepoint, upper))
print_cat("map", "lowercase", map_lowercase)
print_cat("map", "uppercase", map_uppercase)
# TODO: generate unicode_map_nfd

View File

@ -0,0 +1,295 @@
# Test libllama tokenizer == AutoTokenizer.
# Brute force random tokens/text generation.
#
# Sample usage:
#
# python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
#
import time
import logging
import argparse
import subprocess
import random
from typing import Iterator
import cffi
from transformers import AutoTokenizer, PreTrainedTokenizerBase
logger = logging.getLogger("test-tokenizer-random-bpe")
class LibLlama:
DEFAULT_PATH_LLAMA_H = "./llama.h"
DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
def __init__(self, path_llama_h: str = None, path_libllama: str = None):
path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
(self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
self.lib.llama_backend_init()
def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
res = subprocess.run(cmd, stdout=subprocess.PIPE)
assert (res.returncode == 0)
source = res.stdout.decode()
ffi = cffi.FFI()
if True: # workarounds for pycparser
source = "typedef struct { } __builtin_va_list;" + "\n" + source
source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
ffi.cdef(source, override=True)
lib = ffi.dlopen(path_libllama)
return (ffi, lib)
def model_default_params(self, **kwargs):
mparams = self.lib.llama_model_default_params()
for k, v in kwargs.items():
setattr(mparams, k, v)
return mparams
def context_default_params(self, **kwargs):
cparams = self.lib.llama_context_default_params()
for k, v in kwargs.items():
setattr(cparams, k, v)
return cparams
class LibLlamaModel:
def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
self.lib = libllama.lib
self.ffi = libllama.ffi
if isinstance(mparams, dict):
mparams = libllama.model_default_params(**mparams)
self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
if not self.model:
raise RuntimeError("error: failed to load model '%s'" % path_model)
if isinstance(cparams, dict):
cparams = libllama.context_default_params(**cparams)
self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
if not self.ctx:
raise RuntimeError("error: failed to create context for model '%s'" % path_model)
n_tokens_max = self.lib.llama_n_ctx(self.ctx)
self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
def free(self):
if self.ctx:
self.lib.llama_free(self.ctx)
if self.model:
self.lib.llama_free_model(self.model)
self.ctx = None
self.model = None
self.lib = None
def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
text = text.encode("utf-8")
num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
if num < 0:
return []
return list(self.token_ids[0:num])
def generator_custom_text() -> Iterator[str]:
"""General tests"""
yield from [
"",
" ",
" ",
" ",
"\t",
"\n",
"\n\n",
"\n\n\n",
"\t\n",
"Hello world",
" Hello world",
"Hello World",
" Hello World",
" Hello World!",
"Hello, world!",
" Hello, world!",
" this is 🦙.cpp",
"w048 7tuijk dsdfhu",
"нещо на Български",
"កាន់តែពិសេសអាចខលចេញ",
"🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
"Hello",
" Hello",
" Hello",
" Hello",
" Hello",
" Hello\n Hello",
" (",
"\n =",
"' era",
"Hello, y'all! How are you 😁 ?我想在apple工作1314151天",
"3",
"33",
"333",
"3333",
"33333",
"333333",
"3333333",
"33333333",
"333333333",
]
def generator_custom_text_edge_cases() -> Iterator[str]:
"""Edge cases found while debugging"""
yield from [
'\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
'¼-a', # unicode_ranges_digit, 0x00BC
'½-a', # unicode_ranges_digit, 0x00BD
'¾-a', # unicode_ranges_digit, 0x00BE
'a b', # unicode_ranges_digit, 0x3007
'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
'\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
'<s>a' # TODO: Phi-3 fail
]
def generator_random_chars(iterations = 100) -> Iterator[str]:
"""Brute force random text with simple characters"""
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
CHARS = list(set("""
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
áéíóúàèìòùâêîôûäëïöü
.-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
"""))
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
num_words = rand.randint(300, 400)
for i in range(num_words):
k = rand.randint(1, 7)
word = rand.choices(CHARS, k=k)
space = rand.choice(WHITESPACES)
text.append("".join(word) + space)
yield "".join(text)
def generator_random_vocab_chars(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
"""Brute force random text with vocab characters"""
vocab_ids = list(tokenizer.vocab.values())
vocab_text = tokenizer.decode(vocab_ids, skip_special_tokens=True)
vocab_chars = list(set(vocab_text))
del vocab_ids, vocab_text
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = rand.choices(vocab_chars, k=1024)
yield "".join(text)
def generator_random_vocab_tokens(tokenizer: PreTrainedTokenizerBase, iterations = 100) -> Iterator[str]:
"""Brute force random text from vocab tokens"""
space_id = tokenizer.encode(" ", add_special_tokens=False)[0]
vocab_ids = list(tokenizer.vocab.values())
vocab_ids = list(sorted(vocab_ids + vocab_ids))
for i in range(1, len(vocab_ids), 2):
vocab_ids[i] = space_id
vocab_tokens = tokenizer.decode(vocab_ids, skip_special_tokens=True)
vocab_tokens = vocab_tokens.split(" ")
del vocab_ids
yield from vocab_tokens
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
num_words = rand.randint(300, 400)
for i in range(num_words):
k = rand.randint(1, 3)
tokens = rand.choices(vocab_tokens, k=k)
tokens = [t.strip(" \n\r\t") for t in tokens]
sep = rand.choice(" \n\r\t")
text.append("".join(tokens) + sep)
yield "".join(text)
def generator_random_bytes(iterations = 100) -> Iterator[str]:
"""Brute force random bytes"""
WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
rand = random.Random()
for m in range(iterations):
rand.seed(m)
text = []
num_words = rand.randint(300, 400)
for i in range(num_words):
k = rand.randint(1, 8)
word = [chr(r) for r in rand.randbytes(k) if r]
word.append(rand.choice(WHITESPACES))
text.append("".join(word))
yield "".join(text)
def test_compare_tokenizer(model: LibLlamaModel, tokenizer: PreTrainedTokenizerBase, generator: Iterator[str]):
def find_first_mismatch(ids1: list[int], ids2: list[int]):
for i, (a,b) in enumerate(zip(ids1, ids2)):
if a != b:
return i
if len(ids1) == len(ids2):
return -1
return min(len(ids1), len(ids2))
t0 = time.perf_counter()
logger.info("%s: %s" % (generator.__name__, "ini"))
for text in generator:
ids1 = model.tokenize(text, add_special=False, parse_special=False)
ids2 = tokenizer.encode(text, add_special_tokens=False)
if ids1 != ids2:
i = find_first_mismatch(ids1, ids2)
ids1 = list(ids1)[max(0, i - 2) : i + 2 + 1]
ids2 = list(ids2)[max(0, i - 2) : i + 2 + 1]
text2 = tokenizer.decode(ids2, skip_special_tokens=True)
assert (text2 in text)
logger.info(" Text: " + repr(text2))
logger.info(" TokenIDs: " + str(ids1))
logger.info(" Expected: " + str(ids2))
raise Exception()
t1 = time.perf_counter()
logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=2048))
tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
test_compare_tokenizer(model, tokenizer, generator_custom_text())
test_compare_tokenizer(model, tokenizer, generator_custom_text_edge_cases())
test_compare_tokenizer(model, tokenizer, generator_random_chars(10_000))
test_compare_tokenizer(model, tokenizer, generator_random_vocab_chars(tokenizer, 10_000))
test_compare_tokenizer(model, tokenizer, generator_random_vocab_tokens(tokenizer, 10_000))
# test_compare_tokenizer(model, tokenizer, generator_random_bytes(10_000)) # FAIL
model.free()

File diff suppressed because it is too large Load Diff

View File

@ -7,6 +7,7 @@
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_number; extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_number;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter; extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_letter;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_separator;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_whitespace; extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_whitespace;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark; extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_accent_mark;
extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_punctuation; extern const std::vector<std::pair<uint32_t, uint32_t>> unicode_ranges_punctuation;

View File

@ -9,6 +9,7 @@
#include <stdexcept> #include <stdexcept>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
#include <unordered_set>
#include <utility> #include <utility>
#include <vector> #include <vector>
#include <locale> #include <locale>
@ -111,27 +112,27 @@ static uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset)
static std::unordered_map<uint32_t, int> unicode_cpt_type_map() { static std::unordered_map<uint32_t, int> unicode_cpt_type_map() {
std::unordered_map<uint32_t, int> cpt_types; std::unordered_map<uint32_t, int> cpt_types;
for (auto p : unicode_ranges_number) { for (auto p : unicode_ranges_number) {
for (auto i = p.first; i <= p.second; ++ i) { for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_NUMBER; cpt_types[i] = CODEPOINT_TYPE_NUMBER;
} }
} }
for (auto p : unicode_ranges_letter) { for (auto p : unicode_ranges_letter) {
for (auto i = p.first; i <= p.second; ++ i) { for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_LETTER; cpt_types[i] = CODEPOINT_TYPE_LETTER;
} }
} }
for (auto p : unicode_ranges_whitespace) { for (auto p : unicode_ranges_separator) {
for (auto i = p.first; i <= p.second; ++ i) { for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_WHITESPACE; cpt_types[i] = CODEPOINT_TYPE_SEPARATOR;
} }
} }
for (auto p : unicode_ranges_accent_mark) { for (auto p : unicode_ranges_accent_mark) {
for (auto i = p.first; i <= p.second; ++ i) { for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_ACCENT_MARK; cpt_types[i] = CODEPOINT_TYPE_ACCENT_MARK;
} }
} }
for (auto p : unicode_ranges_punctuation) { for (auto p : unicode_ranges_punctuation) {
for (auto i = p.first; i <= p.second; ++ i) { for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_PUNCTUATION; cpt_types[i] = CODEPOINT_TYPE_PUNCTUATION;
} }
} }
@ -141,7 +142,7 @@ static std::unordered_map<uint32_t, int> unicode_cpt_type_map() {
} }
} }
for (auto p : unicode_ranges_control) { for (auto p : unicode_ranges_control) {
for (auto i = p.first; i <= p.second; ++ i) { for (auto i = p.first; i <= p.second; ++i) {
cpt_types[i] = CODEPOINT_TYPE_CONTROL; cpt_types[i] = CODEPOINT_TYPE_CONTROL;
} }
} }
@ -224,138 +225,256 @@ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & t
std::vector<size_t> bpe_offsets; // store the offset of each word std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
const auto cpts = unicode_cpts_from_utf8(text);
size_t start = 0; size_t start = 0;
for (auto offset : offsets) {
const size_t offset_ini = start;
const size_t offset_end = start + offset;
assert(offset_end <= cpts.size());
start = offset_end;
auto _get_cpt = [&] (const size_t pos) -> char32_t {
return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
};
auto _get_cpt_type = [&] (const size_t pos) -> int {
return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_type(cpts[pos]) : CODEPOINT_TYPE_UNIDENTIFIED;
};
size_t _prev_end = offset_ini;
auto _add_token = [&] (const size_t end) -> size_t {
assert(_prev_end <= end && end <= offset_end);
size_t len = end - _prev_end;
if (len > 0) {
bpe_offsets.push_back(len);
}
_prev_end = end;
//if (len > 0) {
// std::string s = "";
// for(size_t p = end-len; p < end; p++)
// s += unicode_cpt_to_utf8(cpts[p]);
// printf(">>> '%s'\n", s.c_str());
//}
return len;
};
for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const char32_t cpt = _get_cpt(pos);
const int cpt_type = _get_cpt_type(pos);
// regex: 's|'t|'re|'ve|'m|'ll|'d
if (cpt == '\'' && pos+1 < offset_end) {
char32_t cpt_next = _get_cpt(pos+1);
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
pos += _add_token(pos+2);
continue;
}
if (pos+2 < offset_end) {
char32_t cpt_next_next = _get_cpt(pos+2);
if ((cpt_next == 'r' && cpt_next_next == 'e') ||
(cpt_next == 'v' && cpt_next_next == 'e') ||
(cpt_next == 'l' && cpt_next_next == 'l')) {
pos += _add_token(pos+3);
continue;
}
}
}
char32_t cpt2 = (cpt == ' ' ? _get_cpt(pos+1) : cpt);
int cpt2_type = (cpt == ' ' ? _get_cpt_type(pos+1) : cpt_type);
// regex: <space>?\p{L}+
if (cpt2_type == CODEPOINT_TYPE_LETTER) {
pos += (cpt == ' ');
while (cpt2_type == CODEPOINT_TYPE_LETTER) {
cpt2_type = _get_cpt_type(++pos);
}
_add_token(pos);
continue;
}
// regex: <space>?\p{N}+
if (cpt2_type == CODEPOINT_TYPE_NUMBER) {
pos += (cpt == ' ');
while (cpt2_type == CODEPOINT_TYPE_NUMBER) {
cpt2_type = _get_cpt_type(++pos);
}
_add_token(pos);
continue;
}
// regex: <space>?[^\s\p{L}\p{N}]+
if (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
pos += (cpt == ' ');
while (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
cpt2_type = _get_cpt_type(++pos);
cpt2 = _get_cpt(pos);
}
_add_token(pos);
continue;
}
size_t num_whitespaces = 0;
while (unicode_cpt_is_whitespace(_get_cpt(pos+num_whitespaces))) {
num_whitespaces++;
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
}
// regex: \s+
if (num_whitespaces > 0) {
pos += num_whitespaces;
_add_token(pos);
continue;
}
// no matches
_add_token(++pos);
}
}
return bpe_offsets;
}
// LLAMA3 system regex: "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"
static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & text, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets; // store the offset of each word
bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size
const auto cpts = unicode_cpts_from_utf8(text); const auto cpts = unicode_cpts_from_utf8(text);
size_t start = 0;
for (auto offset : offsets) { for (auto offset : offsets) {
std::string token; const size_t offset_ini = start;
const size_t offset_end = start + offset;
assert(offset_end <= cpts.size());
start = offset_end;
bool collecting_numeric = false; auto _get_cpt = [&] (const size_t pos) -> char32_t {
bool collecting_letter = false; return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : 0;
bool collecting_special = false; };
bool collecting_whitespace_lookahead = false;
bool collecting = false;
std::vector<std::string> text_utf; auto _get_cpt_type = [&] (const size_t pos) -> int {
text_utf.reserve(offset); return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_type(cpts[pos]) : CODEPOINT_TYPE_UNIDENTIFIED;
};
for (size_t i = start; i < start + offset; ++i) { size_t _prev_end = offset_ini;
text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i])); auto _add_token = [&] (const size_t end) -> size_t {
assert(_prev_end <= end && end <= offset_end);
size_t len = end - _prev_end;
if (len > 0) {
bpe_offsets.push_back(len);
} }
_prev_end = end;
//if (len > 0) {
// std::string s = "";
// for(size_t p = end-len; p < end; p++)
// s += unicode_cpt_to_utf8(cpts[p]);
// printf(">>> '%s'\n", s.c_str());
//}
return len;
};
for (int i = 0; i < (int)text_utf.size(); i++) { for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) {
const std::string & utf_char = text_utf[i]; const char32_t cpt = _get_cpt(pos);
bool split_condition = false; const int cpt_type = _get_cpt_type(pos);
int bytes_remain = text_utf.size() - i;
// forward backward lookups // regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive
const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : ""; if (cpt == '\'' && pos+1 < offset_end) {
const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : ""; char32_t cpt_next = unicode_tolower(_get_cpt(pos+1));
if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') {
// handling contractions pos += _add_token(pos+2);
if (!split_condition && bytes_remain >= 2) { continue;
// 's|'t|'m|'d
if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
split_condition = true;
} }
if (split_condition) { if (pos+2 < offset_end) {
if (token.size()) { char32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2));
bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); if ((cpt_next == 'r' && cpt_next_next == 'e') ||
} (cpt_next == 'v' && cpt_next_next == 'e') ||
token = utf_char + utf_char_next; (cpt_next == 'l' && cpt_next_next == 'l')) {
bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); pos += _add_token(pos+3);
token = "";
i++;
continue; continue;
} }
} }
if (!split_condition && bytes_remain >= 3) {
// 're|'ve|'ll
if (utf_char == "\'" && (
(utf_char_next == "r" && utf_char_next_next == "e") ||
(utf_char_next == "v" && utf_char_next_next == "e") ||
(utf_char_next == "l" && utf_char_next_next == "l"))
) {
split_condition = true;
} }
if (split_condition) {
// current token + next token can be defined
if (token.size()) {
bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size());
}
token = utf_char;
token += utf_char_next;
token += utf_char_next_next;
bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); // regex: [^\r\n\p{L}\p{N}]?\p{L}+ //####FIXME: the first \p{L} is correct?
token = ""; if (cpt != '\r' && cpt != '\n' && /*cpt_type != CODEPOINT_TYPE_LETTER &&*/ cpt_type != CODEPOINT_TYPE_NUMBER) {
i += 2; if (cpt_type == CODEPOINT_TYPE_LETTER || _get_cpt_type(pos+1) == CODEPOINT_TYPE_LETTER) { // one or more letters
pos++;
while (_get_cpt_type(pos) == CODEPOINT_TYPE_LETTER) {
pos++;
}
_add_token(pos);
continue; continue;
} }
} }
if (!split_condition && !collecting) { // regex: \p{N}{1,3}
if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) { if (cpt_type == CODEPOINT_TYPE_NUMBER) {
collecting_letter = true; size_t ini = pos;
collecting = true; while (_get_cpt_type(pos) == CODEPOINT_TYPE_NUMBER) {
} if (++pos - ini >= 3 ) {
else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_NUMBER || (token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_NUMBER)) { _add_token(pos);
collecting_numeric = true; ini = pos;
collecting = true;
}
else if (
((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_NUMBER) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
(token.empty() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_NUMBER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
) {
collecting_special = true;
collecting = true;
}
else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
collecting_whitespace_lookahead = true;
collecting = true;
}
else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
split_condition = true;
} }
} }
else if (!split_condition && collecting) { _add_token(pos);
if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) { continue;
split_condition = true;
}
else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_NUMBER) {
split_condition = true;
}
else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_NUMBER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
split_condition = true;
}
else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_NUMBER)) {
split_condition = true;
}
} }
if (utf_char_next == "") { // regex: <space>?[^\s\p{L}\p{N}]+[\r\n]*
split_condition = true; // final char32_t cpt2 = (cpt == ' ' ? _get_cpt(pos+1) : cpt);
token += utf_char; int cpt2_type = (cpt == ' ' ? _get_cpt_type(pos+1) : cpt_type);
if (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
pos += (cpt == ' ');
while (!unicode_cpt_is_whitespace(cpt2) && cpt2_type != CODEPOINT_TYPE_LETTER && cpt2_type != CODEPOINT_TYPE_NUMBER && cpt2_type != CODEPOINT_TYPE_UNIDENTIFIED) {
cpt2_type = _get_cpt_type(++pos);
cpt2 = _get_cpt(pos);
}
while (cpt2 == '\r' || cpt2 == '\n') {
cpt2 = _get_cpt(++pos);
}
_add_token(pos);
continue;
} }
if (split_condition) { size_t num_whitespaces = 0;
if (token.size()) { size_t last_end_r_or_n = 0;
bpe_offsets.emplace_back(unicode_cpts_from_utf8(token).size()); while (unicode_cpt_is_whitespace(_get_cpt(pos+num_whitespaces))) {
} char32_t cpt2 = _get_cpt(pos+num_whitespaces);
token = utf_char; if (cpt2 == '\r' || cpt2 == '\n') {
collecting = false; last_end_r_or_n = pos + num_whitespaces + 1;
collecting_letter = false;
collecting_numeric = false;
collecting_special = false;
collecting_whitespace_lookahead = false;
}
else {
token += utf_char;
} }
num_whitespaces++;
} }
start += offset; // regex: \s*[\r\n]+
if (last_end_r_or_n > 0) {
pos = last_end_r_or_n;
_add_token(pos);
continue;
}
// regex: \s+(?!\S)
if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != 0) {
pos += num_whitespaces - 1;
_add_token(pos);
continue;
}
// regex: \s+
if (num_whitespaces > 0) {
pos += num_whitespaces;
_add_token(pos);
continue;
}
// no matches
_add_token(++pos);
}
} }
return bpe_offsets; return bpe_offsets;
@ -424,14 +543,14 @@ static std::vector<size_t> unicode_regex_split_stl(const std::string & text, con
static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) { static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) {
std::vector<size_t> bpe_offsets; std::vector<size_t> bpe_offsets;
(void)(text); if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") {
(void)(regex_expr); bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets);
(void)(offsets); } else if (
// TODO: this implementation is actually wrong, uncomment and run: regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" ||
// make -j && ./bin/test-tokenizer-0 ../models/ggml-vocab-gpt-2.gguf regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") {
//if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") {
// bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets); bpe_offsets = unicode_regex_split_custom_llama3(text, offsets);
//} }
return bpe_offsets; return bpe_offsets;
} }
@ -506,6 +625,19 @@ int unicode_cpt_type(const std::string & utf8) {
return unicode_cpt_type(unicode_cpt_from_utf8(utf8, offset)); return unicode_cpt_type(unicode_cpt_from_utf8(utf8, offset));
} }
bool unicode_cpt_is_whitespace(uint32_t cp) {
static const std::unordered_set<uint32_t> is_whitespace = [] {
std::unordered_set<uint32_t> is_whitespace;
for (auto p : unicode_ranges_whitespace) {
for (auto i = p.first; i <= p.second; ++i) {
is_whitespace.insert(i);
}
}
return is_whitespace;
}();
return (bool)is_whitespace.count(cp);
}
std::string unicode_byte_to_utf8(uint8_t byte) { std::string unicode_byte_to_utf8(uint8_t byte) {
static std::unordered_map<uint8_t, std::string> map = unicode_byte_to_utf8_map(); static std::unordered_map<uint8_t, std::string> map = unicode_byte_to_utf8_map();
return map.at(byte); return map.at(byte);

View File

@ -7,7 +7,7 @@
#define CODEPOINT_TYPE_UNIDENTIFIED 0 #define CODEPOINT_TYPE_UNIDENTIFIED 0
#define CODEPOINT_TYPE_NUMBER 1 #define CODEPOINT_TYPE_NUMBER 1
#define CODEPOINT_TYPE_LETTER 2 #define CODEPOINT_TYPE_LETTER 2
#define CODEPOINT_TYPE_WHITESPACE 3 #define CODEPOINT_TYPE_SEPARATOR 3
#define CODEPOINT_TYPE_ACCENT_MARK 4 #define CODEPOINT_TYPE_ACCENT_MARK 4
#define CODEPOINT_TYPE_PUNCTUATION 5 #define CODEPOINT_TYPE_PUNCTUATION 5
#define CODEPOINT_TYPE_SYMBOL 6 #define CODEPOINT_TYPE_SYMBOL 6
@ -21,6 +21,8 @@ std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & c
int unicode_cpt_type(uint32_t cp); int unicode_cpt_type(uint32_t cp);
int unicode_cpt_type(const std::string & utf8); int unicode_cpt_type(const std::string & utf8);
bool unicode_cpt_is_whitespace(uint32_t cp);
std::string unicode_byte_to_utf8(uint8_t byte); std::string unicode_byte_to_utf8(uint8_t byte);
uint8_t unicode_utf8_to_byte(const std::string & utf8); uint8_t unicode_utf8_to_byte(const std::string & utf8);