mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
main : print total token count and tokens consumed so far (#4874)
* Token count changes * Add show token count * Updating before PR * Two requested changes * Move param def posn
This commit is contained in:
parent
2f043328e3
commit
43f76bf1c3
@ -630,6 +630,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
||||
break;
|
||||
}
|
||||
params.ppl_stride = std::stoi(argv[i]);
|
||||
} else if (arg == "-stc" || arg == "--show_token_count") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.token_interval = std::stoi(argv[i]);
|
||||
} else if (arg == "--ppl-output-type") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
@ -944,6 +950,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
|
||||
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
|
||||
printf(" -stc N --show_token_count N\n");
|
||||
printf(" show consumed tokens every N tokens\n");
|
||||
printf("\n");
|
||||
#ifndef LOG_DISABLE_LOGS
|
||||
log_print_usage();
|
||||
|
@ -64,6 +64,7 @@ struct gpt_params {
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t token_interval = 512; // show token count every 512 tokens
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
@ -242,4 +243,3 @@ void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
|
||||
|
||||
// Dump the KV cache view showing individual sequences in each cell (long output).
|
||||
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
|
||||
|
||||
|
@ -500,7 +500,7 @@ int main(int argc, char ** argv) {
|
||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
||||
// predict
|
||||
if (!embd.empty()) {
|
||||
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
||||
// Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via
|
||||
// --prompt or --file which uses the same value.
|
||||
int max_embd_size = n_ctx - 4;
|
||||
|
||||
@ -650,6 +650,10 @@ int main(int argc, char ** argv) {
|
||||
n_past += n_eval;
|
||||
|
||||
LOG("n_past = %d\n", n_past);
|
||||
// Display total tokens alongside total time
|
||||
if (n_past % params.token_interval == 0) {
|
||||
printf("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx);
|
||||
}
|
||||
}
|
||||
|
||||
if (!embd.empty() && !path_session.empty()) {
|
||||
|
@ -10921,7 +10921,7 @@ void llama_print_timings(struct llama_context * ctx) {
|
||||
__func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
|
||||
LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
|
||||
__func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
|
||||
LLAMA_LOG_INFO("%s: total time = %10.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
|
||||
LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
|
||||
}
|
||||
|
||||
void llama_reset_timings(struct llama_context * ctx) {
|
||||
|
Loading…
Reference in New Issue
Block a user