llama : apply classifier-free guidance to logits directly (#4951)

This commit is contained in:
David Friehs 2024-01-15 14:06:52 +01:00 committed by GitHub
parent d9aa4ffa6e
commit 4483396751
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 57 additions and 29 deletions

View File

@ -190,6 +190,11 @@ static llama_token llama_sampling_sample_impl(
logits[it->first] += it->second; logits[it->first] += it->second;
} }
if (ctx_cfg) {
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
}
cur.clear(); cur.clear();
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
@ -198,10 +203,6 @@ static llama_token llama_sampling_sample_impl(
llama_token_data_array cur_p = { cur.data(), cur.size(), false }; llama_token_data_array cur_p = { cur.data(), cur.size(), false };
if (ctx_cfg) {
llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
}
// apply penalties // apply penalties
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev; const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n); const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);

View File

@ -7898,39 +7898,59 @@ static void llama_log_softmax(float * array, size_t size) {
} }
} }
void llama_sample_apply_guidance(
struct llama_context * ctx,
float * logits,
float * logits_guidance,
float scale) {
GGML_ASSERT(ctx);
const auto t_start_sample_us = ggml_time_us();
const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
llama_log_softmax(logits, n_vocab);
llama_log_softmax(logits_guidance, n_vocab);
for (int i = 0; i < n_vocab; ++i) {
auto & l = logits[i];
const auto & g = logits_guidance[i];
l = scale * (l - g) + g;
}
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
void llama_sample_classifier_free_guidance( void llama_sample_classifier_free_guidance(
struct llama_context * ctx, struct llama_context * ctx,
llama_token_data_array * candidates, llama_token_data_array * candidates,
struct llama_context * guidance_ctx, struct llama_context * guidance_ctx,
float scale) { float scale) {
int64_t t_start_sample_us = ggml_time_us();
GGML_ASSERT(ctx); GGML_ASSERT(ctx);
int64_t t_start_sample_us;
auto n_vocab = llama_n_vocab(llama_get_model(ctx)); t_start_sample_us = ggml_time_us();
const size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
GGML_ASSERT(n_vocab == (int)candidates->size); GGML_ASSERT(n_vocab == candidates->size);
GGML_ASSERT(!candidates->sorted); GGML_ASSERT(!candidates->sorted);
std::vector<float> logits_base; std::vector<float> logits_base(n_vocab);
logits_base.reserve(candidates->size); for (size_t i = 0; i < n_vocab; ++i) {
for (size_t i = 0; i < candidates->size; ++i) { logits_base[i] = candidates->data[i].logit;
logits_base.push_back(candidates->data[i].logit);
} }
llama_log_softmax(logits_base.data(), candidates->size);
float * logits_guidance = llama_get_logits(guidance_ctx); float * logits_guidance = llama_get_logits(guidance_ctx);
llama_log_softmax(logits_guidance, n_vocab);
for (int i = 0; i < n_vocab; ++i) {
float logit_guidance = logits_guidance[i];
float logit_base = logits_base[i];
candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us; ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
llama_sample_apply_guidance(ctx, logits_base.data(), logits_guidance, scale);
t_start_sample_us = ggml_time_us();
for (size_t i = 0; i < n_vocab; ++i) {
candidates->data[i].logit = logits_base[i];
} }
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
} }
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {

17
llama.h
View File

@ -714,14 +714,21 @@ extern "C" {
float penalty_present); float penalty_present);
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806 /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted. /// @param logits Logits extracted from the original generation context.
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
LLAMA_API void llama_sample_classifier_free_guidance( LLAMA_API void llama_sample_apply_guidance(
struct llama_context * ctx,
float * logits,
float * logits_guidance,
float scale);
LLAMA_API DEPRECATED(void llama_sample_classifier_free_guidance(
struct llama_context * ctx, struct llama_context * ctx,
llama_token_data_array * candidates, llama_token_data_array * candidates,
struct llama_context * guidance_ctx, struct llama_context * guidance_ctx,
float scale); float scale),
"use llama_sample_apply_guidance() instead");
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax( LLAMA_API void llama_sample_softmax(