mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 05:17:21 +01:00
llama : apply classifier-free guidance to logits directly (#4951)
This commit is contained in:
parent
d9aa4ffa6e
commit
4483396751
@ -190,6 +190,11 @@ static llama_token llama_sampling_sample_impl(
|
|||||||
logits[it->first] += it->second;
|
logits[it->first] += it->second;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (ctx_cfg) {
|
||||||
|
float * logits_guidance = llama_get_logits_ith(ctx_cfg, idx);
|
||||||
|
llama_sample_apply_guidance(ctx_main, logits, logits_guidance, params.cfg_scale);
|
||||||
|
}
|
||||||
|
|
||||||
cur.clear();
|
cur.clear();
|
||||||
|
|
||||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||||
@ -198,10 +203,6 @@ static llama_token llama_sampling_sample_impl(
|
|||||||
|
|
||||||
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
llama_token_data_array cur_p = { cur.data(), cur.size(), false };
|
||||||
|
|
||||||
if (ctx_cfg) {
|
|
||||||
llama_sample_classifier_free_guidance(ctx_main, &cur_p, ctx_cfg, params.cfg_scale);
|
|
||||||
}
|
|
||||||
|
|
||||||
// apply penalties
|
// apply penalties
|
||||||
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
|
const auto& penalty_tokens = params.use_penalty_prompt_tokens ? params.penalty_prompt_tokens : prev;
|
||||||
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
|
const int penalty_tokens_used_size = std::min((int)penalty_tokens.size(), penalty_last_n);
|
||||||
|
58
llama.cpp
58
llama.cpp
@ -7898,39 +7898,59 @@ static void llama_log_softmax(float * array, size_t size) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void llama_sample_apply_guidance(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
float * logits,
|
||||||
|
float * logits_guidance,
|
||||||
|
float scale) {
|
||||||
|
GGML_ASSERT(ctx);
|
||||||
|
|
||||||
|
const auto t_start_sample_us = ggml_time_us();
|
||||||
|
const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||||
|
|
||||||
|
llama_log_softmax(logits, n_vocab);
|
||||||
|
llama_log_softmax(logits_guidance, n_vocab);
|
||||||
|
|
||||||
|
for (int i = 0; i < n_vocab; ++i) {
|
||||||
|
auto & l = logits[i];
|
||||||
|
const auto & g = logits_guidance[i];
|
||||||
|
|
||||||
|
l = scale * (l - g) + g;
|
||||||
|
}
|
||||||
|
|
||||||
|
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||||
|
}
|
||||||
|
|
||||||
void llama_sample_classifier_free_guidance(
|
void llama_sample_classifier_free_guidance(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_token_data_array * candidates,
|
llama_token_data_array * candidates,
|
||||||
struct llama_context * guidance_ctx,
|
struct llama_context * guidance_ctx,
|
||||||
float scale) {
|
float scale) {
|
||||||
int64_t t_start_sample_us = ggml_time_us();
|
|
||||||
|
|
||||||
GGML_ASSERT(ctx);
|
GGML_ASSERT(ctx);
|
||||||
|
int64_t t_start_sample_us;
|
||||||
|
|
||||||
auto n_vocab = llama_n_vocab(llama_get_model(ctx));
|
t_start_sample_us = ggml_time_us();
|
||||||
|
const size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
|
||||||
|
|
||||||
GGML_ASSERT(n_vocab == (int)candidates->size);
|
GGML_ASSERT(n_vocab == candidates->size);
|
||||||
GGML_ASSERT(!candidates->sorted);
|
GGML_ASSERT(!candidates->sorted);
|
||||||
|
|
||||||
std::vector<float> logits_base;
|
std::vector<float> logits_base(n_vocab);
|
||||||
logits_base.reserve(candidates->size);
|
for (size_t i = 0; i < n_vocab; ++i) {
|
||||||
for (size_t i = 0; i < candidates->size; ++i) {
|
logits_base[i] = candidates->data[i].logit;
|
||||||
logits_base.push_back(candidates->data[i].logit);
|
|
||||||
}
|
|
||||||
llama_log_softmax(logits_base.data(), candidates->size);
|
|
||||||
|
|
||||||
float* logits_guidance = llama_get_logits(guidance_ctx);
|
|
||||||
llama_log_softmax(logits_guidance, n_vocab);
|
|
||||||
|
|
||||||
for (int i = 0; i < n_vocab; ++i) {
|
|
||||||
float logit_guidance = logits_guidance[i];
|
|
||||||
float logit_base = logits_base[i];
|
|
||||||
candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (ctx) {
|
float * logits_guidance = llama_get_logits(guidance_ctx);
|
||||||
|
|
||||||
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||||
|
llama_sample_apply_guidance(ctx, logits_base.data(), logits_guidance, scale);
|
||||||
|
t_start_sample_us = ggml_time_us();
|
||||||
|
|
||||||
|
for (size_t i = 0; i < n_vocab; ++i) {
|
||||||
|
candidates->data[i].logit = logits_base[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||||
}
|
}
|
||||||
|
|
||||||
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
|
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
|
||||||
|
17
llama.h
17
llama.h
@ -714,14 +714,21 @@ extern "C" {
|
|||||||
float penalty_present);
|
float penalty_present);
|
||||||
|
|
||||||
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
/// @param logits Logits extracted from the original generation context.
|
||||||
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
/// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
|
||||||
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
/// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
|
||||||
LLAMA_API void llama_sample_classifier_free_guidance(
|
LLAMA_API void llama_sample_apply_guidance(
|
||||||
|
struct llama_context * ctx,
|
||||||
|
float * logits,
|
||||||
|
float * logits_guidance,
|
||||||
|
float scale);
|
||||||
|
|
||||||
|
LLAMA_API DEPRECATED(void llama_sample_classifier_free_guidance(
|
||||||
struct llama_context * ctx,
|
struct llama_context * ctx,
|
||||||
llama_token_data_array * candidates,
|
llama_token_data_array * candidates,
|
||||||
struct llama_context * guidance_ctx,
|
struct llama_context * guidance_ctx,
|
||||||
float scale);
|
float scale),
|
||||||
|
"use llama_sample_apply_guidance() instead");
|
||||||
|
|
||||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||||
LLAMA_API void llama_sample_softmax(
|
LLAMA_API void llama_sample_softmax(
|
||||||
|
Loading…
x
Reference in New Issue
Block a user