mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-28 04:47:04 +01:00
backend : add eval callback (#4935)
* backend : add eval callback ggml-ci * backend : group nodes in a single compute when user don't need them * backend : clean-up the implementation ggml-ci * simple : do not perform tensor data copy if not needed * simple : fix * simple : no need for ggml_is_contiguous + fix bool parse * llama : fix callback placement in llama_context_params * backend : avoid double-ask callback calls * simple : restore examples, imatrix will serve as a demo
This commit is contained in:
parent
c918fe8dca
commit
44a1a4a41a
@ -802,6 +802,9 @@ struct ggml_backend_sched {
|
|||||||
__attribute__((aligned(GGML_MEM_ALIGN)))
|
__attribute__((aligned(GGML_MEM_ALIGN)))
|
||||||
#endif
|
#endif
|
||||||
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
|
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
|
||||||
|
|
||||||
|
ggml_backend_sched_eval_callback callback_eval;
|
||||||
|
void * callback_eval_user_data;
|
||||||
};
|
};
|
||||||
|
|
||||||
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
|
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
|
||||||
@ -1324,9 +1327,38 @@ static void sched_compute_splits(ggml_backend_sched_t sched) {
|
|||||||
ggml_graph_dump_dot(split->graph, NULL, split_filename);
|
ggml_graph_dump_dot(split->graph, NULL, split_filename);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
uint64_t compute_start_us = ggml_time_us();
|
uint64_t compute_start_us = ggml_time_us();
|
||||||
|
if (!sched->callback_eval) {
|
||||||
ggml_backend_graph_compute(split_backend, &split->graph);
|
ggml_backend_graph_compute(split_backend, &split->graph);
|
||||||
//ggml_backend_synchronize(split_backend); // necessary to measure compute time
|
//ggml_backend_synchronize(split_backend); // necessary to measure compute time
|
||||||
|
} else {
|
||||||
|
// similar to ggml_backend_compare_graph_backend
|
||||||
|
for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
|
||||||
|
struct ggml_tensor * t = split->graph.nodes[j0];
|
||||||
|
|
||||||
|
// check if the user needs data from this node
|
||||||
|
bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
|
||||||
|
|
||||||
|
int j1 = j0;
|
||||||
|
|
||||||
|
// determine the range [j0, j1] of nodes that can be computed together
|
||||||
|
while (!need && j1 < split->graph.n_nodes - 1) {
|
||||||
|
t = split->graph.nodes[++j1];
|
||||||
|
need = sched->callback_eval(t, true, sched->callback_eval_user_data);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
|
||||||
|
|
||||||
|
ggml_backend_graph_compute(split_backend, &gv);
|
||||||
|
|
||||||
|
if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
j0 = j1;
|
||||||
|
}
|
||||||
|
}
|
||||||
uint64_t compute_end_us = ggml_time_us();
|
uint64_t compute_end_us = ggml_time_us();
|
||||||
compute_us[split_backend_id] += compute_end_us - compute_start_us;
|
compute_us[split_backend_id] += compute_end_us - compute_start_us;
|
||||||
}
|
}
|
||||||
@ -1431,6 +1463,12 @@ void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
|
|||||||
sched_reset(sched);
|
sched_reset(sched);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
|
||||||
|
sched->callback_eval = callback;
|
||||||
|
sched->callback_eval_user_data = user_data;
|
||||||
|
}
|
||||||
|
|
||||||
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
|
int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
|
||||||
return sched->n_splits;
|
return sched->n_splits;
|
||||||
}
|
}
|
||||||
|
@ -148,6 +148,14 @@ extern "C" {
|
|||||||
struct ggml_backend_sched;
|
struct ggml_backend_sched;
|
||||||
typedef struct ggml_backend_sched * ggml_backend_sched_t;
|
typedef struct ggml_backend_sched * ggml_backend_sched_t;
|
||||||
|
|
||||||
|
// when ask == true, the scheduler wants to know if the user wants to observe this node
|
||||||
|
// this allows the scheduler to batch nodes together in order to evaluate them in a single call
|
||||||
|
//
|
||||||
|
// when ask == false, the scheduler is passing the node tensor to the user for observation
|
||||||
|
// if the user returns false, the scheduler will cancel the graph compute
|
||||||
|
//
|
||||||
|
typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data);
|
||||||
|
|
||||||
// Initialize a backend scheduler
|
// Initialize a backend scheduler
|
||||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
|
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size);
|
||||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||||
@ -168,6 +176,9 @@ extern "C" {
|
|||||||
// Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs
|
// Reset all assignments and allocators - must be called before using the sched allocators to allocate inputs
|
||||||
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
|
GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched);
|
||||||
|
|
||||||
|
// Set a callback to be called for each resulting node during graph compute
|
||||||
|
GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data);
|
||||||
|
|
||||||
//
|
//
|
||||||
// Utils
|
// Utils
|
||||||
//
|
//
|
||||||
|
@ -1393,6 +1393,9 @@ struct llama_cparams {
|
|||||||
|
|
||||||
bool mul_mat_q;
|
bool mul_mat_q;
|
||||||
bool offload_kqv;
|
bool offload_kqv;
|
||||||
|
|
||||||
|
ggml_backend_sched_eval_callback cb_eval;
|
||||||
|
void * cb_eval_user_data;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct llama_layer {
|
struct llama_layer {
|
||||||
@ -6254,6 +6257,7 @@ static int llama_decode_internal(
|
|||||||
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
|
//printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
|
||||||
|
|
||||||
ggml_backend_sched_reset(lctx.sched);
|
ggml_backend_sched_reset(lctx.sched);
|
||||||
|
ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
|
||||||
|
|
||||||
ggml_cgraph * gf = llama_build_graph(lctx, batch);
|
ggml_cgraph * gf = llama_build_graph(lctx, batch);
|
||||||
|
|
||||||
@ -9276,6 +9280,8 @@ struct llama_context_params llama_context_default_params() {
|
|||||||
/*.yarn_beta_fast =*/ 32.0f,
|
/*.yarn_beta_fast =*/ 32.0f,
|
||||||
/*.yarn_beta_slow =*/ 1.0f,
|
/*.yarn_beta_slow =*/ 1.0f,
|
||||||
/*.yarn_orig_ctx =*/ 0,
|
/*.yarn_orig_ctx =*/ 0,
|
||||||
|
/*.cb_eval =*/ nullptr,
|
||||||
|
/*.cb_eval_user_data =*/ nullptr,
|
||||||
/*.type_k =*/ GGML_TYPE_F16,
|
/*.type_k =*/ GGML_TYPE_F16,
|
||||||
/*.type_v =*/ GGML_TYPE_F16,
|
/*.type_v =*/ GGML_TYPE_F16,
|
||||||
/*.mul_mat_q =*/ true,
|
/*.mul_mat_q =*/ true,
|
||||||
@ -9416,6 +9422,9 @@ struct llama_context * llama_new_context_with_model(
|
|||||||
hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
|
hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
|
||||||
hparams.n_ctx_train;
|
hparams.n_ctx_train;
|
||||||
|
|
||||||
|
cparams.cb_eval = params.cb_eval;
|
||||||
|
cparams.cb_eval_user_data = params.cb_eval_user_data;
|
||||||
|
|
||||||
auto rope_scaling_type = params.rope_scaling_type;
|
auto rope_scaling_type = params.rope_scaling_type;
|
||||||
if (rope_scaling_type == LLAMA_ROPE_SCALING_UNSPECIFIED) {
|
if (rope_scaling_type == LLAMA_ROPE_SCALING_UNSPECIFIED) {
|
||||||
rope_scaling_type = hparams.rope_scaling_type_train;
|
rope_scaling_type = hparams.rope_scaling_type_train;
|
||||||
|
4
llama.h
4
llama.h
@ -2,6 +2,7 @@
|
|||||||
#define LLAMA_H
|
#define LLAMA_H
|
||||||
|
|
||||||
#include "ggml.h"
|
#include "ggml.h"
|
||||||
|
#include "ggml-backend.h"
|
||||||
#ifdef GGML_USE_CUBLAS
|
#ifdef GGML_USE_CUBLAS
|
||||||
#include "ggml-cuda.h"
|
#include "ggml-cuda.h"
|
||||||
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
|
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
|
||||||
@ -231,6 +232,9 @@ extern "C" {
|
|||||||
float yarn_beta_slow; // YaRN high correction dim
|
float yarn_beta_slow; // YaRN high correction dim
|
||||||
uint32_t yarn_orig_ctx; // YaRN original context size
|
uint32_t yarn_orig_ctx; // YaRN original context size
|
||||||
|
|
||||||
|
ggml_backend_sched_eval_callback cb_eval;
|
||||||
|
void * cb_eval_user_data;
|
||||||
|
|
||||||
enum ggml_type type_k; // data type for K cache
|
enum ggml_type type_k; // data type for K cache
|
||||||
enum ggml_type type_v; // data type for V cache
|
enum ggml_type type_v; // data type for V cache
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user