server : replace behave with pytest (#10416)

* server : replace behave with pytest

* fix test on windows

* misc

* add more tests

* more tests

* styling

* log less, fix embd test

* added all sequential tests

* fix coding style

* fix save slot test

* add parallel completion test

* fix parallel test

* remove feature files

* update test docs

* no cache_prompt for some tests

* add test_cache_vs_nocache_prompt
This commit is contained in:
Xuan Son Nguyen 2024-11-26 16:20:18 +01:00 committed by GitHub
parent 0bbd2262a3
commit 45abe0f74e
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
34 changed files with 1317 additions and 2497 deletions

View File

@ -34,7 +34,7 @@ let
# server tests # server tests
openai openai
behave pytest
prometheus-client prometheus-client
]; ];
in in

View File

@ -122,14 +122,14 @@ jobs:
id: server_integration_tests id: server_integration_tests
run: | run: |
cd examples/server/tests cd examples/server/tests
PORT=8888 ./tests.sh ./tests.sh
- name: Slow tests - name: Slow tests
id: server_integration_tests_slow id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }} if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: | run: |
cd examples/server/tests cd examples/server/tests
PORT=8888 ./tests.sh --stop --no-skipped --no-capture --tags slow SLOW_TESTS=1 ./tests.sh
server-windows: server-windows:
@ -180,11 +180,12 @@ jobs:
run: | run: |
cd examples/server/tests cd examples/server/tests
$env:PYTHONIOENCODING = ":replace" $env:PYTHONIOENCODING = ":replace"
behave.exe --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp pytest -v -x
- name: Slow tests - name: Slow tests
id: server_integration_tests_slow id: server_integration_tests_slow
if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }} if: ${{ (github.event.schedule || github.event.inputs.slow_tests == 'true') && matrix.build_type == 'Release' }}
run: | run: |
cd examples/server/tests cd examples/server/tests
behave.exe --stop --no-skipped --no-capture --tags slow $env:SLOW_TESTS = "1"
pytest -v -x

View File

@ -1 +1,2 @@
.venv .venv
tmp

View File

@ -1,19 +1,9 @@
# Server tests # Server tests
Python based server tests scenario using [BDD](https://en.wikipedia.org/wiki/Behavior-driven_development) Python based server tests scenario using [pytest](https://docs.pytest.org/en/stable/).
and [behave](https://behave.readthedocs.io/en/latest/):
* [issues.feature](./features/issues.feature) Pending issues scenario
* [parallel.feature](./features/parallel.feature) Scenario involving multi slots and concurrent requests
* [security.feature](./features/security.feature) Security, CORS and API Key
* [server.feature](./features/server.feature) Server base scenario: completion, embedding, tokenization, etc...
Tests target GitHub workflows job runners with 4 vCPU. Tests target GitHub workflows job runners with 4 vCPU.
Requests are
using [aiohttp](https://docs.aiohttp.org/en/stable/client_reference.html), [asyncio](https://docs.python.org/fr/3/library/asyncio.html)
based http client.
Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail. Note: If the host architecture inference speed is faster than GitHub runners one, parallel scenario may randomly fail.
To mitigate it, you can increase values in `n_predict`, `kv_size`. To mitigate it, you can increase values in `n_predict`, `kv_size`.
@ -39,26 +29,19 @@ It's possible to override some scenario steps values with environment variables:
|--------------------------|------------------------------------------------------------------------------------------------| |--------------------------|------------------------------------------------------------------------------------------------|
| `PORT` | `context.server_port` to set the listening port of the server during scenario, default: `8080` | | `PORT` | `context.server_port` to set the listening port of the server during scenario, default: `8080` |
| `LLAMA_SERVER_BIN_PATH` | to change the server binary path, default: `../../../build/bin/llama-server` | | `LLAMA_SERVER_BIN_PATH` | to change the server binary path, default: `../../../build/bin/llama-server` |
| `DEBUG` | "ON" to enable steps and server verbose mode `--verbose` | | `DEBUG` | to enable steps and server verbose mode `--verbose` |
| `N_GPU_LAYERS` | number of model layers to offload to VRAM `-ngl --n-gpu-layers` | | `N_GPU_LAYERS` | number of model layers to offload to VRAM `-ngl --n-gpu-layers` |
### Run @bug, @wip or @wrong_usage annotated scenario To run slow tests:
Feature or Scenario must be annotated with `@llama.cpp` to be included in the default scope.
- `@bug` annotation aims to link a scenario with a GitHub issue.
- `@wrong_usage` are meant to show user issue that are actually an expected behavior
- `@wip` to focus on a scenario working in progress
- `@slow` heavy test, disabled by default
To run a scenario annotated with `@bug`, start:
```shell ```shell
DEBUG=ON ./tests.sh --no-skipped --tags bug --stop SLOW_TESTS=1 ./tests.sh
``` ```
After changing logic in `steps.py`, ensure that `@bug` and `@wrong_usage` scenario are updated. To run with stdout/stderr display in real time (verbose output, but useful for debugging):
```shell ```shell
./tests.sh --no-skipped --tags bug,wrong_usage || echo "should failed but compile" DEBUG=1 ./tests.sh -s -v -x
``` ```
To see all available arguments, please refer to [pytest documentation](https://docs.pytest.org/en/stable/how-to/usage.html)

View File

@ -0,0 +1,15 @@
import pytest
from utils import *
# ref: https://stackoverflow.com/questions/22627659/run-code-before-and-after-each-test-in-py-test
@pytest.fixture(autouse=True)
def stop_server_after_each_test():
# do nothing before each test
yield
# stop all servers after each test
instances = set(
server_instances
) # copy the set to prevent 'Set changed size during iteration'
for server in instances:
server.stop()

View File

@ -1,66 +0,0 @@
@llama.cpp
@ctx_shift
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model file test-model.gguf
And a model alias tinyllama-2
And BOS token is 1
And 42 as server seed
And 256 KV cache size
And 32 as batch size
And 2 slots
# the prompt is 301 tokens
# the slot context is 256/2 = 128 tokens
# the prompt is truncated to keep the last 109 tokens
# 64 tokens are generated thanks to shifting the context when it gets full
Scenario: Inference with context shift
And 64 server max tokens to predict
Then the server is starting
Then the server is healthy
Given a prompt:
"""
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
"""
And a completion request with no api error
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl
And the completion is truncated
And 109 prompt tokens are processed
Scenario Outline: Inference without context shift
And <n_predict> server max tokens to predict
And disable context shifting
Then the server is starting
Then the server is healthy
Given a prompt:
"""
Hi how are you
"""
And a completion request with no api error
Then <n_token_output> tokens are predicted matching twind|Anna
And the completion is <truncated> truncated
And 8 prompt tokens are processed
Examples:
| n_predict | n_token_output | truncated |
| 64 | 64 | not |
| -1 | 120 | |
Scenario: Inference without context shift (expected error: prompt too long)
And disable context shifting
Then the server is starting
Then the server is healthy
Given a prompt:
"""
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
"""
And a completion request with 400 api error

View File

@ -1,113 +0,0 @@
@llama.cpp
@embeddings
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model url https://huggingface.co/ggml-org/models/resolve/main/bert-bge-small/ggml-model-f16.gguf
And a model file bert-bge-small.gguf
And a model alias bert-bge-small
And 42 as server seed
And 2 slots
# the bert-bge-small model has context size of 512
# since the generated prompts are as big as the batch size, we need to set the batch size to <= 512
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5/blob/5c38ec7c405ec4b44b94cc5a9bb96e735b38267a/config.json#L20
And 128 as batch size
And 128 as ubatch size
And 512 KV cache size
And enable embeddings endpoint
Then the server is starting
Then the server is healthy
Scenario: Embedding
When embeddings are computed for:
"""
What is the capital of Bulgaria ?
"""
Then embeddings are generated
Scenario: Embedding (error: prompt too long)
When embeddings are computed for:
"""
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
"""
And embeddings request with 500 api error
Scenario: OAI Embeddings compatibility
Given a model bert-bge-small
When an OAI compatible embeddings computation request for:
"""
What is the capital of Spain ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility with multiple inputs
Given a model bert-bge-small
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
When an OAI compatible embeddings computation request for multiple inputs
Then embeddings are generated
Scenario: Multi users embeddings
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
Given concurrent embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: Multi users OAI compatibility embeddings
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
And a prompt:
"""
What is the biggest US city ?
"""
And a prompt:
"""
What is the capital of Bulgaria ?
"""
And a model bert-bge-small
Given concurrent OAI embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: All embeddings should be the same
Given 10 fixed prompts
And a model bert-bge-small
Given concurrent OAI embedding requests
Then all embeddings are the same

View File

@ -1,71 +0,0 @@
import os
import signal
import socket
import sys
import time
import traceback
from contextlib import closing
from subprocess import TimeoutExpired
def before_scenario(context, scenario):
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
if context.debug:
print("DEBUG=ON")
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m")
port = 8080
if 'PORT' in os.environ:
port = int(os.environ['PORT'])
if is_server_listening("localhost", port):
assert False, "Server already started"
def after_scenario(context, scenario):
try:
if 'server_process' not in context or context.server_process is None:
return
if scenario.status == "failed":
if 'GITHUB_ACTIONS' in os.environ:
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n")
if os.path.isfile('llama.log'):
with closing(open('llama.log', 'r')) as f:
for line in f:
print(line)
if not is_server_listening(context.server_fqdn, context.server_port):
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m")
if context.server_process.poll() is not None:
assert False, f"Server not running pid={context.server_process.pid} ..."
server_graceful_shutdown(context) # SIGINT
try:
context.server_process.wait(0.5)
except TimeoutExpired:
print(f"server still alive after 500ms, force-killing pid={context.server_process.pid} ...")
context.server_process.kill() # SIGKILL
context.server_process.wait()
while is_server_listening(context.server_fqdn, context.server_port):
time.sleep(0.1)
except Exception:
print("ignoring error in after_scenario:")
traceback.print_exc(file=sys.stdout)
def server_graceful_shutdown(context):
print(f"shutting down server pid={context.server_process.pid} ...")
if os.name == 'nt':
interrupt = signal.CTRL_C_EVENT
else:
interrupt = signal.SIGINT
context.server_process.send_signal(interrupt)
def is_server_listening(server_fqdn, server_port):
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
result = sock.connect_ex((server_fqdn, server_port))
_is_server_listening = result == 0
if _is_server_listening:
print(f"server is listening on {server_fqdn}:{server_port}...")
return _is_server_listening

View File

@ -1,36 +0,0 @@
@llama.cpp
@infill
Feature: llama.cpp server
# The current model is made by adding FIM tokens to the existing stories260K
# We may want to use a better model in the future, maybe something like SmolLM 360M
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K-infill.gguf from HF repo ggml-org/models
And a model file test-model-infill.gguf
And a model alias tinyllama-infill
And 42 as server seed
And 1024 as batch size
And 1024 as ubatch size
And 2048 KV cache size
And 64 max tokens to predict
And 0.0 temperature
Then the server is starting
Then the server is healthy
Scenario: Infill without input_extra
Given a prompt "Complete this"
And an infill input extra none none
And an infill input prefix "#include <cstdio>\n#include \"llama.h\"\n\nint main() {\n int n_threads = llama_"
And an infill input suffix "}\n"
And an infill request with no api error
Then 64 tokens are predicted matching One|day|she|saw|big|scary|bird
Scenario: Infill with input_extra
Given a prompt "Complete this"
And an infill input extra "llama.h" "LLAMA_API int32_t llama_n_threads();\n"
And an infill input prefix "#include <cstdio>\n#include \"llama.h\"\n\nint main() {\n int n_threads = llama_"
And an infill input suffix "}\n"
And an infill request with no api error
Then 64 tokens are predicted matching cuts|Jimmy|mom|came|into|the|room"

View File

@ -1,5 +0,0 @@
# List of ongoing issues
# run with: DEBUG=ON ./tests.sh --no-skipped --tags bug
@bug
Feature: Issues
# No confirmed issue at the moment

View File

@ -1,36 +0,0 @@
@llama.cpp
@lora
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model url https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/stories15M_MOE-F16.gguf
And a model file stories15M_MOE-F16.gguf
And a model alias stories15M_MOE
And a lora adapter file from https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/moe_shakespeare15M.gguf
And 42 as server seed
And 1024 as batch size
And 1024 as ubatch size
And 2048 KV cache size
And 64 max tokens to predict
And 0.0 temperature
Then the server is starting
Then the server is healthy
Scenario: Completion LoRA disabled
Given switch off lora adapter 0
Given a prompt:
"""
Look in thy glass
"""
And a completion request with no api error
Then 64 tokens are predicted matching little|girl|three|years|old
Scenario: Completion LoRA enabled
Given switch on lora adapter 0
Given a prompt:
"""
Look in thy glass
"""
And a completion request with no api error
Then 64 tokens are predicted matching eye|love|glass|sun

View File

@ -1,131 +0,0 @@
@llama.cpp
@parallel
Feature: Parallel
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
And a model file test-model-00001-of-00003.gguf
And 42 as server seed
And 128 as batch size
And 256 KV cache size
And 2 slots
And continuous batching
Then the server is starting
Then the server is healthy
Scenario Outline: Multi users completion
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And <n_predict> max tokens to predict
Given concurrent completion requests
Then the server is busy
Then the server is idle
And all slots are idle
Then all prompts are predicted with <n_predict> tokens
Examples:
| n_predict |
| 128 |
Scenario Outline: Multi users OAI completions compatibility
Given a system prompt You are a writer.
And a model tinyllama-2
Given a prompt:
"""
Write a very long book.
"""
And a prompt:
"""
Write another a poem.
"""
And <n_predict> max tokens to predict
And streaming is <streaming>
Given concurrent OAI completions requests
Then the server is busy
Then the server is idle
Then all prompts are predicted with <n_predict> tokens
Examples:
| streaming | n_predict |
| disabled | 128 |
| enabled | 64 |
Scenario Outline: Multi users OAI completions compatibility no v1
Given a system prompt You are a writer.
And a model tinyllama-2
Given a prompt:
"""
Write a very long book.
"""
And a prompt:
"""
Write another a poem.
"""
And <n_predict> max tokens to predict
And streaming is <streaming>
Given concurrent OAI completions requests no v1
Then the server is busy
Then the server is idle
Then all prompts are predicted with <n_predict> tokens
Examples:
| streaming | n_predict |
| disabled | 128 |
| enabled | 64 |
Scenario Outline: Multi users with number of prompts exceeding number of slots
Given a system prompt You are a writer.
And a model tinyllama-2
Given a prompt:
"""
Write a very long book.
"""
And a prompt:
"""
Write another a poem.
"""
And a prompt:
"""
What is LLM?
"""
And a prompt:
"""
The sky is blue and I love it.
"""
And <n_predict> max tokens to predict
And streaming is <streaming>
Given concurrent OAI completions requests
Then the server is busy
Then the server is idle
Then all prompts are predicted with <n_predict> tokens
Examples:
| streaming | n_predict |
| disabled | 128 |
| enabled | 64 |
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
And 128 max tokens to predict
Given concurrent completion requests
Then the server is busy
Then the server is idle
Then all prompts are predicted

View File

@ -1,56 +0,0 @@
# run with: ./tests.sh --no-skipped --tags passkey
@passkey
@slow
Feature: Passkey / Self-extend with context shift
Background: Server startup
Given a server listening on localhost:8080
# Generates a long text of junk and inserts a secret passkey number inside it.
# Then we query the LLM for the secret passkey.
# see #3856 and #4810
Scenario Outline: Passkey
Given a model file <hf_file> from HF repo <hf_repo>
And <n_batch> as batch size
And <n_junk> as number of junk
And <n_predicted> server max tokens to predict
And 42 as seed
And 0.0 temperature
And <n_ctx> KV cache size
And 1 slots
And <n_ga> group attention factor to extend context size through self-extend
And <n_ga_w> group attention width to extend context size through self-extend
# Can be override with N_GPU_LAYERS
And <ngl> GPU offloaded layers
Then the server is starting
# Higher timeout because the model may need to be downloaded from the internet
Then the server is healthy with timeout 120 seconds
Given available models
Then model 0 is trained on <n_ctx_train> tokens context
Given a prefix prompt:
"""
here is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.
"""
And a passkey prompt template:
"""
The pass key is <passkey> Remember it. <passkey> is the pass key.
"""
And a junk suffix prompt:
"""
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
"""
And a suffix prompt:
"""
What is the pass key? The pass key is
"""
Given a "<passkey>" passkey challenge prompt with the passkey inserted every <i_pos> junk
And a completion request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
Examples:
| hf_repo | hf_file | n_ctx_train | ngl | n_ctx | n_batch | n_ga | n_ga_w | n_junk | i_pos | passkey | n_predicted | re_content |
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 4 | 512 | 250 | 50 | 42 | 1 | 42 |
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 2 | 512 | 250 | 50 | 42 | 1 | \b((?!42)\w)+\b |
#| TheBloke/Llama-2-7B-GGUF | llama-2-7b.Q2_K.gguf | 4096 | 3 | 16384 | 512 | 4 | 512 | 500 | 300 | 1234 | 5 | 1234 |
#| TheBloke/Mixtral-8x7B-v0.1-GGUF | mixtral-8x7b-v0.1.Q2_K.gguf | 32768 | 2 | 16384 | 512 | 4 | 512 | 500 | 100 | 0987 | 5 | 0
# 987 |

View File

@ -1,42 +0,0 @@
@llama.cpp
@rerank
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model url https://huggingface.co/ggml-org/models/resolve/main/jina-reranker-v1-tiny-en/ggml-model-f16.gguf
And a model file jina-reranker-v1-tiny-en.gguf
And a model alias jina-reranker-v1-tiny-en
And 42 as server seed
And 2 slots
And 512 as batch size
And 512 as ubatch size
And 512 KV cache size
And enable reranking endpoint
Then the server is starting
Then the server is healthy
Scenario: Rerank
Given a rerank query:
"""
Machine learning is
"""
And a rerank document:
"""
A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines.
"""
And a rerank document:
"""
Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and some machines; there is also evidence for some kind of learning in certain plants.
"""
And a rerank document:
"""
Machine learning is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions.
"""
And a rerank document:
"""
Paris, capitale de la France, est une grande ville européenne et un centre mondial de l'art, de la mode, de la gastronomie et de la culture. Son paysage urbain du XIXe siècle est traversé par de larges boulevards et la Seine.
"""
When reranking request
Then reranking results are returned
Then reranking highest score is index 2 and lowest score is index 3

View File

@ -1,118 +0,0 @@
@llama.cpp
@results
Feature: Results
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
And a model file test-model-00001-of-00003.gguf
And 128 as batch size
And 1024 KV cache size
And 128 max tokens to predict
And continuous batching
Scenario Outline: consistent results with same seed
Given <n_slots> slots
And 1.0 temperature
Then the server is starting
Then the server is healthy
Given 4 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42
Given concurrent completion requests
Then the server is busy
Then the server is idle
And all slots are idle
Then all predictions are equal
Examples:
| n_slots |
| 1 |
# FIXME: unified KV cache nondeterminism
# | 2 |
Scenario Outline: different results with different seed
Given <n_slots> slots
And 1.0 temperature
Then the server is starting
Then the server is healthy
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 43
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 44
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 45
Given concurrent completion requests
Then the server is busy
Then the server is idle
And all slots are idle
Then all predictions are different
Examples:
| n_slots |
| 1 |
| 2 |
Scenario Outline: consistent results with same seed and varying batch size
Given 4 slots
And <temp> temperature
# And 0 as draft
Then the server is starting
Then the server is healthy
Given 1 prompts "Write a very long story about AI." with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Given <n_parallel> prompts "Write a very long story about AI." with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Then all predictions are equal
Examples:
| n_parallel | temp |
| 1 | 0.0 |
| 1 | 1.0 |
# FIXME: unified KV cache nondeterminism
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574
# and https://github.com/ggerganov/llama.cpp/pull/7347 .
# | 2 | 0.0 |
# | 4 | 0.0 |
# | 2 | 1.0 |
# | 4 | 1.0 |
Scenario Outline: consistent token probs with same seed and prompt
Given <n_slots> slots
And <n_kv> KV cache size
And 1.0 temperature
And <n_predict> max tokens to predict
Then the server is starting
Then the server is healthy
Given 1 prompts "The meaning of life is" with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Given <n_parallel> prompts "The meaning of life is" with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Then all token probabilities are equal
Examples:
| n_slots | n_kv | n_predict | n_parallel |
| 4 | 1024 | 1 | 1 |
# FIXME: unified KV cache nondeterminism
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574
# and https://github.com/ggerganov/llama.cpp/pull/7347 .
# | 4 | 1024 | 1 | 4 |
# | 4 | 1024 | 100 | 1 |
# This test still fails even the above patches; the first token probabilities are already different.
# | 4 | 1024 | 100 | 4 |

View File

@ -1,68 +0,0 @@
@llama.cpp
@security
Feature: Security
Background: Server startup with an api key defined
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a server api key THIS_IS_THE_KEY
Then the server is starting
Then the server is healthy
Scenario Outline: Completion with some user api key
Given a prompt test
And a user api key <api_key>
And 4 max tokens to predict
And a completion request with <api_error> api error
Examples: Prompts
| api_key | api_error |
| THIS_IS_THE_KEY | no |
| THIS_IS_THE_KEY | no |
| hackeme | raised |
| | raised |
Scenario Outline: OAI Compatibility
Given a system prompt test
And a user prompt test
And a model test
And 2 max tokens to predict
And streaming is disabled
And a user api key <api_key>
Given an OAI compatible chat completions request with <api_error> api error
Examples: Prompts
| api_key | api_error |
| THIS_IS_THE_KEY | no |
| THIS_IS_THE_KEY | no |
| hackme | raised |
Scenario Outline: OAI Compatibility (invalid response formats)
Given a system prompt test
And a user prompt test
And a response format <response_format>
And a model test
And 2 max tokens to predict
And streaming is disabled
Given an OAI compatible chat completions request with raised api error
Examples: Prompts
| response_format |
| {"type": "sound"} |
| {"type": "json_object", "schema": 123} |
| {"type": "json_object", "schema": {"type": 123}} |
| {"type": "json_object", "schema": {"type": "hiccup"}} |
Scenario Outline: CORS Options
Given a user api key THIS_IS_THE_KEY
When an OPTIONS request is sent from <origin>
Then CORS header <cors_header> is set to <cors_header_value>
Examples: Headers
| origin | cors_header | cors_header_value |
| localhost | Access-Control-Allow-Origin | localhost |
| web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
| origin | Access-Control-Allow-Credentials | true |
| web.mydomain.fr | Access-Control-Allow-Methods | GET, POST |
| web.mydomain.fr | Access-Control-Allow-Headers | * |

View File

@ -1,120 +0,0 @@
@llama.cpp
@server
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model file test-model.gguf
And a model alias tinyllama-2
And BOS token is 1
And 42 as server seed
# KV Cache corresponds to the total amount of tokens
# that can be stored across all independent sequences: #4130
# see --ctx-size and #5568
And 256 KV cache size
And 32 as batch size
And 2 slots
And 64 server max tokens to predict
And prometheus compatible metrics exposed
Then the server is starting
Then the server is healthy
Scenario: Health
Then the server is ready
And all slots are idle
Scenario Outline: Completion
Given a prompt <prompt>
And <n_predict> max tokens to predict
And a completion request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
And the completion is <truncated> truncated
And <n_prompt> prompt tokens are processed
And prometheus metrics are exposed
And metric llamacpp:tokens_predicted is <n_predicted>
Examples: Prompts
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not |
Scenario: Completion prompt truncated
Given a prompt:
"""
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
"""
And a completion request with no api error
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl
And the completion is truncated
And 109 prompt tokens are processed
Scenario Outline: OAI Compatibility
Given a model <model>
And a system prompt <system_prompt>
And a user prompt <user_prompt>
And <max_tokens> max tokens to predict
And streaming is <enable_streaming>
Given an OAI compatible chat completions request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
And <n_prompt> prompt tokens are processed
And the completion is <truncated> truncated
Examples: Prompts
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | |
Scenario Outline: OAI Compatibility w/ response format
Given a model test
And a system prompt test
And a user prompt test
And a response format <response_format>
And 10 max tokens to predict
Given an OAI compatible chat completions request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
Examples: Prompts
| response_format | n_predicted | re_content |
| {"type": "json_object", "schema": {"const": "42"}} | 6 | "42" |
| {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] |
| {"type": "json_object"} | 10 | \{ " Jacky. |
Scenario: Tokenize / Detokenize
When tokenizing:
"""
What is the capital of France ?
"""
Then tokens can be detokenized
And tokens do not begin with BOS
Scenario: Tokenize w/ BOS
Given adding special tokens
When tokenizing:
"""
What is the capital of Germany?
"""
Then tokens begin with BOS
Given first token is removed
Then tokens can be detokenized
Scenario: Tokenize with pieces
When tokenizing with pieces:
"""
What is the capital of Germany?
"""
Then tokens are given with pieces
Scenario: Models available
Given available models
Then 1 models are supported
Then model 0 is identified by tinyllama-2
Then model 0 is trained on 128 tokens context

View File

@ -1,58 +0,0 @@
@llama.cpp
@slotsave
Feature: llama.cpp server slot management
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And prompt caching is enabled
And 2 slots
And . as slot save path
And 2048 KV cache size
And 42 as server seed
And 24 max tokens to predict
Then the server is starting
Then the server is healthy
Scenario: Save and Restore Slot
# First prompt in slot 1 should be fully processed
Given a user prompt "What is the capital of France?"
And using slot id 1
And a completion request with no api error
Then 24 tokens are predicted matching (Lily|cake)
And 22 prompt tokens are processed
When the slot 1 is saved with filename "slot1.bin"
Then the server responds with status code 200
# Since we have cache, this should only process the last tokens
Given a user prompt "What is the capital of Germany?"
And a completion request with no api error
Then 24 tokens are predicted matching (Thank|special)
And 7 prompt tokens are processed
# Loading the original cache into slot 0,
# we should only be processing 1 prompt token and get the same output
When the slot 0 is restored with filename "slot1.bin"
Then the server responds with status code 200
Given a user prompt "What is the capital of France?"
And using slot id 0
And a completion request with no api error
Then 24 tokens are predicted matching (Lily|cake)
And 1 prompt tokens are processed
# For verification that slot 1 was not corrupted during slot 0 load, same thing
Given a user prompt "What is the capital of Germany?"
And using slot id 1
And a completion request with no api error
Then 24 tokens are predicted matching (Thank|special)
And 1 prompt tokens are processed
Scenario: Erase Slot
Given a user prompt "What is the capital of France?"
And using slot id 1
And a completion request with no api error
Then 24 tokens are predicted matching (Lily|cake)
And 22 prompt tokens are processed
When the slot 1 is erased
Then the server responds with status code 200
Given a user prompt "What is the capital of France?"
And a completion request with no api error
Then 24 tokens are predicted matching (Lily|cake)
And 22 prompt tokens are processed

File diff suppressed because it is too large Load Diff

View File

@ -1,25 +0,0 @@
# run with: ./tests.sh --no-skipped --tags wrong_usage
@wrong_usage
Feature: Wrong usage of llama.cpp server
#3969 The user must always set --n-predict option
# to cap the number of tokens any completion request can generate
# or pass n_predict/max_tokens in the request.
Scenario: Infinite loop
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And 42 as server seed
And 2048 KV cache size
# Uncomment below to fix the issue
#And 64 server max tokens to predict
Then the server is starting
Then the server is healthy
Given a prompt:
"""
Go to: infinite loop
"""
# Uncomment below to fix the issue
#And 128 max tokens to predict
Given concurrent completion requests
Then the server is idle
Then all prompts are predicted

View File

@ -1,5 +1,5 @@
aiohttp~=3.9.3 aiohttp~=3.9.3
behave~=1.2.6 pytest~=8.3.3
huggingface_hub~=0.23.2 huggingface_hub~=0.23.2
numpy~=1.26.4 numpy~=1.26.4
openai~=1.30.3 openai~=1.30.3

View File

@ -4,8 +4,7 @@ set -eu
if [ $# -lt 1 ] if [ $# -lt 1 ]
then then
# Start @llama.cpp scenario pytest -v -x
behave --summary --stop --no-capture --exclude 'issues|wrong_usages|passkey' --tags llama.cpp
else else
behave "$@" pytest "$@"
fi fi

View File

@ -0,0 +1,34 @@
import pytest
from utils import *
server = ServerPreset.tinyllama2()
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama2()
def test_server_start_simple():
global server
server.start()
res = server.make_request("GET", "/health")
assert res.status_code == 200
def test_server_props():
global server
server.start()
res = server.make_request("GET", "/props")
assert res.status_code == 200
assert res.body["total_slots"] == server.n_slots
def test_server_models():
global server
server.start()
res = server.make_request("GET", "/models")
assert res.status_code == 200
assert len(res.body["data"]) == 1
assert res.body["data"][0]["id"] == server.model_alias

View File

@ -0,0 +1,129 @@
import pytest
from openai import OpenAI
from utils import *
server = ServerPreset.tinyllama2()
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama2()
@pytest.mark.parametrize(
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,truncated",
[
("llama-2", "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, False),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, False),
]
)
def test_chat_completion(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, truncated):
global server
server.start()
res = server.make_request("POST", "/chat/completions", data={
"model": model,
"max_tokens": max_tokens,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
})
assert res.status_code == 200
assert res.body["usage"]["prompt_tokens"] == n_prompt
assert res.body["usage"]["completion_tokens"] == n_predicted
choice = res.body["choices"][0]
assert "assistant" == choice["message"]["role"]
assert match_regex(re_content, choice["message"]["content"])
if truncated:
assert choice["finish_reason"] == "length"
else:
assert choice["finish_reason"] == "stop"
@pytest.mark.parametrize(
"model,system_prompt,user_prompt,max_tokens,re_content,n_prompt,n_predicted,truncated",
[
("llama-2", "Book", "What is the best book", 8, "(Suddenly)+", 77, 8, False),
("codellama70b", "You are a coding assistant.", "Write the fibonacci function in c++.", 128, "(Aside|she|felter|alonger)+", 104, 64, False),
]
)
def test_chat_completion_stream(model, system_prompt, user_prompt, max_tokens, re_content, n_prompt, n_predicted, truncated):
global server
server.start()
res = server.make_stream_request("POST", "/chat/completions", data={
"model": model,
"max_tokens": max_tokens,
"messages": [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
"stream": True,
})
content = ""
for data in res:
choice = data["choices"][0]
if choice["finish_reason"] in ["stop", "length"]:
assert data["usage"]["prompt_tokens"] == n_prompt
assert data["usage"]["completion_tokens"] == n_predicted
assert "content" not in choice["delta"]
assert match_regex(re_content, content)
# FIXME: not sure why this is incorrect in stream mode
# if truncated:
# assert choice["finish_reason"] == "length"
# else:
# assert choice["finish_reason"] == "stop"
else:
assert choice["finish_reason"] is None
content += choice["delta"]["content"]
def test_chat_completion_with_openai_library():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
res = client.chat.completions.create(
model="gpt-3.5-turbo-instruct",
messages=[
{"role": "system", "content": "Book"},
{"role": "user", "content": "What is the best book"},
],
max_tokens=8,
seed=42,
temperature=0.8,
)
print(res)
assert res.choices[0].finish_reason == "stop"
assert res.choices[0].message.content is not None
assert match_regex("(Suddenly)+", res.choices[0].message.content)
@pytest.mark.parametrize("response_format,n_predicted,re_content", [
({"type": "json_object", "schema": {"const": "42"}}, 6, "\"42\""),
({"type": "json_object", "schema": {"items": [{"type": "integer"}]}}, 10, "[ -3000 ]"),
({"type": "json_object"}, 10, "(\\{|John)+"),
({"type": "sound"}, 0, None),
# invalid response format (expected to fail)
({"type": "json_object", "schema": 123}, 0, None),
({"type": "json_object", "schema": {"type": 123}}, 0, None),
({"type": "json_object", "schema": {"type": "hiccup"}}, 0, None),
])
def test_completion_with_response_format(response_format: dict, n_predicted: int, re_content: str | None):
global server
server.start()
res = server.make_request("POST", "/chat/completions", data={
"max_tokens": n_predicted,
"messages": [
{"role": "system", "content": "You are a coding assistant."},
{"role": "user", "content": "Write an example"},
],
"response_format": response_format,
})
if re_content is not None:
assert res.status_code == 200
choice = res.body["choices"][0]
assert match_regex(re_content, choice["message"]["content"])
else:
assert res.status_code != 200
assert "error" in res.body

View File

@ -0,0 +1,223 @@
import pytest
import time
from utils import *
server = ServerPreset.tinyllama2()
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama2()
@pytest.mark.parametrize("prompt,n_predict,re_content,n_prompt,n_predicted,truncated", [
("I believe the meaning of life is", 8, "(going|bed)+", 18, 8, False),
("Write a joke about AI from a very long prompt which will not be truncated", 256, "(princesses|everyone|kids|Anna|forest)+", 46, 64, False),
])
def test_completion(prompt: str, n_predict: int, re_content: str, n_prompt: int, n_predicted: int, truncated: bool):
global server
server.start()
res = server.make_request("POST", "/completion", data={
"n_predict": n_predict,
"prompt": prompt,
})
assert res.status_code == 200
assert res.body["timings"]["prompt_n"] == n_prompt
assert res.body["timings"]["predicted_n"] == n_predicted
assert res.body["truncated"] == truncated
assert match_regex(re_content, res.body["content"])
@pytest.mark.parametrize("prompt,n_predict,re_content,n_prompt,n_predicted,truncated", [
("I believe the meaning of life is", 8, "(going|bed)+", 18, 8, False),
("Write a joke about AI from a very long prompt which will not be truncated", 256, "(princesses|everyone|kids|Anna|forest)+", 46, 64, False),
])
def test_completion_stream(prompt: str, n_predict: int, re_content: str, n_prompt: int, n_predicted: int, truncated: bool):
global server
server.start()
res = server.make_stream_request("POST", "/completion", data={
"n_predict": n_predict,
"prompt": prompt,
"stream": True,
})
content = ""
for data in res:
if data["stop"]:
assert data["timings"]["prompt_n"] == n_prompt
assert data["timings"]["predicted_n"] == n_predicted
assert data["truncated"] == truncated
assert match_regex(re_content, content)
else:
content += data["content"]
@pytest.mark.parametrize("n_slots", [1, 2])
def test_consistent_result_same_seed(n_slots: int):
global server
server.n_slots = n_slots
server.start()
last_res = None
for _ in range(4):
res = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"seed": 42,
"temperature": 1.0,
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
})
if last_res is not None:
assert res.body["content"] == last_res.body["content"]
last_res = res
@pytest.mark.parametrize("n_slots", [1, 2])
def test_different_result_different_seed(n_slots: int):
global server
server.n_slots = n_slots
server.start()
last_res = None
for seed in range(4):
res = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"seed": seed,
"temperature": 1.0,
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
})
if last_res is not None:
assert res.body["content"] != last_res.body["content"]
last_res = res
@pytest.mark.parametrize("n_batch", [16, 32])
@pytest.mark.parametrize("temperature", [0.0, 1.0])
def test_consistent_result_different_batch_size(n_batch: int, temperature: float):
global server
server.n_batch = n_batch
server.start()
last_res = None
for _ in range(4):
res = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"seed": 42,
"temperature": temperature,
"cache_prompt": False, # TODO: remove this once test_cache_vs_nocache_prompt is fixed
})
if last_res is not None:
assert res.body["content"] == last_res.body["content"]
last_res = res
@pytest.mark.skip(reason="This test fails on linux, need to be fixed")
def test_cache_vs_nocache_prompt():
global server
server.start()
res_cache = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"seed": 42,
"temperature": 1.0,
"cache_prompt": True,
})
res_no_cache = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"seed": 42,
"temperature": 1.0,
"cache_prompt": False,
})
assert res_cache.body["content"] == res_no_cache.body["content"]
def test_completion_with_tokens_input():
global server
server.temperature = 0.0
server.start()
prompt_str = "I believe the meaning of life is"
res = server.make_request("POST", "/tokenize", data={
"content": prompt_str,
"add_special": True,
})
assert res.status_code == 200
tokens = res.body["tokens"]
# single completion
res = server.make_request("POST", "/completion", data={
"prompt": tokens,
})
assert res.status_code == 200
assert type(res.body["content"]) == str
# batch completion
res = server.make_request("POST", "/completion", data={
"prompt": [tokens, tokens],
})
assert res.status_code == 200
assert type(res.body) == list
assert len(res.body) == 2
assert res.body[0]["content"] == res.body[1]["content"]
# mixed string and tokens
res = server.make_request("POST", "/completion", data={
"prompt": [tokens, prompt_str],
})
assert res.status_code == 200
assert type(res.body) == list
assert len(res.body) == 2
assert res.body[0]["content"] == res.body[1]["content"]
# mixed string and tokens in one sequence
res = server.make_request("POST", "/completion", data={
"prompt": [1, 2, 3, 4, 5, 6, prompt_str, 7, 8, 9, 10, prompt_str],
})
assert res.status_code == 200
assert type(res.body["content"]) == str
@pytest.mark.parametrize("n_slots,n_requests", [
(1, 3),
(2, 2),
(2, 4),
(4, 2), # some slots must be idle
(4, 6),
])
def test_completion_parallel_slots(n_slots: int, n_requests: int):
global server
server.n_slots = n_slots
server.temperature = 0.0
server.start()
PROMPTS = [
("Write a very long book.", "(very|special|big)+"),
("Write another a poem.", "(small|house)+"),
("What is LLM?", "(Dad|said)+"),
("The sky is blue and I love it.", "(climb|leaf)+"),
("Write another very long music lyrics.", "(friends|step|sky)+"),
("Write a very long joke.", "(cat|Whiskers)+"),
]
def check_slots_status():
should_all_slots_busy = n_requests >= n_slots
time.sleep(0.1)
res = server.make_request("GET", "/slots")
n_busy = sum([1 for slot in res.body if slot["is_processing"]])
if should_all_slots_busy:
assert n_busy == n_slots
else:
assert n_busy <= n_slots
tasks = []
for i in range(n_requests):
prompt, re_content = PROMPTS[i % len(PROMPTS)]
tasks.append((server.make_request, ("POST", "/completion", {
"prompt": prompt,
"seed": 42,
"temperature": 1.0,
})))
tasks.append((check_slots_status, ()))
results = parallel_function_calls(tasks)
# check results
for i in range(n_requests):
prompt, re_content = PROMPTS[i % len(PROMPTS)]
res = results[i]
assert res.status_code == 200
assert type(res.body["content"]) == str
assert len(res.body["content"]) > 10
# FIXME: the result is not deterministic when using other slot than slot 0
# assert match_regex(re_content, res.body["content"])

View File

@ -0,0 +1,67 @@
import pytest
from utils import *
server = ServerPreset.tinyllama2()
LONG_TEXT = """
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
""".strip()
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama2()
server.n_ctx = 256
server.n_slots = 2
def test_ctx_shift_enabled():
# the prompt is 301 tokens
# the slot context is 256/2 = 128 tokens
# the prompt is truncated to keep the last 109 tokens
# 64 tokens are generated thanks to shifting the context when it gets full
global server
server.start()
res = server.make_request("POST", "/completion", data={
"n_predict": 64,
"prompt": LONG_TEXT,
})
assert res.status_code == 200
assert res.body["timings"]["prompt_n"] == 109
assert res.body["timings"]["predicted_n"] == 64
assert res.body["truncated"] is True
@pytest.mark.parametrize("n_predict,n_token_output,truncated", [
(64, 64, False),
(-1, 120, True),
])
def test_ctx_shift_disabled_short_prompt(n_predict: int, n_token_output: int, truncated: bool):
global server
server.disable_ctx_shift = True
server.n_predict = -1
server.start()
res = server.make_request("POST", "/completion", data={
"n_predict": n_predict,
"prompt": "Hi how are you",
})
assert res.status_code == 200
assert res.body["timings"]["predicted_n"] == n_token_output
assert res.body["truncated"] == truncated
def test_ctx_shift_disabled_long_prompt():
global server
server.disable_ctx_shift = True
server.start()
res = server.make_request("POST", "/completion", data={
"n_predict": 64,
"prompt": LONG_TEXT,
})
assert res.status_code != 200
assert "error" in res.body
assert "exceeds the available context size" in res.body["error"]["message"]

View File

@ -0,0 +1,99 @@
import pytest
from openai import OpenAI
from utils import *
server = ServerPreset.bert_bge_small()
EPSILON = 1e-3
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.bert_bge_small()
def test_embedding_single():
global server
server.start()
res = server.make_request("POST", "/embeddings", data={
"input": "I believe the meaning of life is",
})
assert res.status_code == 200
assert len(res.body['data']) == 1
assert 'embedding' in res.body['data'][0]
assert len(res.body['data'][0]['embedding']) > 1
# make sure embedding vector is normalized
assert abs(sum([x ** 2 for x in res.body['data'][0]['embedding']]) - 1) < EPSILON
def test_embedding_multiple():
global server
server.start()
res = server.make_request("POST", "/embeddings", data={
"input": [
"I believe the meaning of life is",
"Write a joke about AI from a very long prompt which will not be truncated",
"This is a test",
"This is another test",
],
})
assert res.status_code == 200
assert len(res.body['data']) == 4
for d in res.body['data']:
assert 'embedding' in d
assert len(d['embedding']) > 1
def test_embedding_openai_library_single():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
res = client.embeddings.create(model="text-embedding-3-small", input="I believe the meaning of life is")
assert len(res.data) == 1
assert len(res.data[0].embedding) > 1
def test_embedding_openai_library_multiple():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
res = client.embeddings.create(model="text-embedding-3-small", input=[
"I believe the meaning of life is",
"Write a joke about AI from a very long prompt which will not be truncated",
"This is a test",
"This is another test",
])
assert len(res.data) == 4
for d in res.data:
assert len(d.embedding) > 1
def test_embedding_error_prompt_too_long():
global server
server.start()
res = server.make_request("POST", "/embeddings", data={
"input": "This is a test " * 512,
})
assert res.status_code != 200
assert "too large" in res.body["error"]["message"]
def test_same_prompt_give_same_result():
server.start()
res = server.make_request("POST", "/embeddings", data={
"input": [
"I believe the meaning of life is",
"I believe the meaning of life is",
"I believe the meaning of life is",
"I believe the meaning of life is",
"I believe the meaning of life is",
],
})
assert res.status_code == 200
assert len(res.body['data']) == 5
for i in range(1, len(res.body['data'])):
v0 = res.body['data'][0]['embedding']
vi = res.body['data'][i]['embedding']
for x, y in zip(v0, vi):
assert abs(x - y) < EPSILON

View File

@ -0,0 +1,35 @@
import pytest
from utils import *
server = ServerPreset.tinyllama_infill()
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama_infill()
def test_infill_without_input_extra():
global server
server.start()
res = server.make_request("POST", "/infill", data={
"prompt": "Complete this",
"input_prefix": "#include <cstdio>\n#include \"llama.h\"\n\nint main() {\n int n_threads = llama_",
"input_suffix": "}\n",
})
assert res.status_code == 200
assert match_regex("(One|day|she|saw|big|scary|bird)+", res.body["content"])
def test_infill_with_input_extra():
global server
server.start()
res = server.make_request("POST", "/infill", data={
"prompt": "Complete this",
"input_extra": [{
"filename": "llama.h",
"text": "LLAMA_API int32_t llama_n_threads();\n"
}],
"input_prefix": "#include <cstdio>\n#include \"llama.h\"\n\nint main() {\n int n_threads = llama_",
"input_suffix": "}\n",
})
assert res.status_code == 200
assert match_regex("(cuts|Jimmy|mom|came|into|the|room)+", res.body["content"])

View File

@ -0,0 +1,42 @@
import pytest
import os
from utils import *
server = ServerPreset.stories15m_moe()
LORA_FILE_URL = "https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/moe_shakespeare15M.gguf"
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.stories15m_moe()
# download lora file if needed
file_name = LORA_FILE_URL.split('/').pop()
lora_file = f'../../../{file_name}'
if not os.path.exists(lora_file):
print(f"Downloading {LORA_FILE_URL} to {lora_file}")
with open(lora_file, 'wb') as f:
f.write(requests.get(LORA_FILE_URL).content)
print(f"Done downloading lora file")
server.lora_files = [lora_file]
@pytest.mark.parametrize("scale,re_content", [
# without applying lora, the model should behave like a bedtime story generator
(0.0, "(little|girl|three|years|old)+"),
# with lora, the model should behave like a Shakespearean text generator
(1.0, "(eye|love|glass|sun)+"),
])
def test_lora(scale: float, re_content: str):
global server
server.start()
res_lora_control = server.make_request("POST", "/lora-adapters", data=[
{"id": 0, "scale": scale}
])
assert res_lora_control.status_code == 200
res = server.make_request("POST", "/completion", data={
"prompt": "Look in thy glass",
})
assert res.status_code == 200
assert match_regex(re_content, res.body["content"])

View File

@ -0,0 +1,38 @@
import pytest
from utils import *
server = ServerPreset.jina_reranker_tiny()
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.jina_reranker_tiny()
def test_rerank():
global server
server.start()
res = server.make_request("POST", "/rerank", data={
"query": "Machine learning is",
"documents": [
"A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines.",
"Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and some machines; there is also evidence for some kind of learning in certain plants.",
"Machine learning is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions.",
"Paris, capitale de la France, est une grande ville européenne et un centre mondial de l'art, de la mode, de la gastronomie et de la culture. Son paysage urbain du XIXe siècle est traversé par de larges boulevards et la Seine."
]
})
assert res.status_code == 200
assert len(res.body["results"]) == 4
most_relevant = res.body["results"][0]
least_relevant = res.body["results"][0]
for doc in res.body["results"]:
if doc["relevance_score"] > most_relevant["relevance_score"]:
most_relevant = doc
if doc["relevance_score"] < least_relevant["relevance_score"]:
least_relevant = doc
assert most_relevant["relevance_score"] > least_relevant["relevance_score"]
assert most_relevant["index"] == 2
assert least_relevant["index"] == 3

View File

@ -0,0 +1,83 @@
import pytest
from openai import OpenAI
from utils import *
server = ServerPreset.tinyllama2()
TEST_API_KEY = "sk-this-is-the-secret-key"
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama2()
server.api_key = TEST_API_KEY
@pytest.mark.parametrize("endpoint", ["/health", "/models"])
def test_access_public_endpoint(endpoint: str):
global server
server.start()
res = server.make_request("GET", endpoint)
assert res.status_code == 200
assert "error" not in res.body
@pytest.mark.parametrize("api_key", [None, "invalid-key"])
def test_incorrect_api_key(api_key: str):
global server
server.start()
res = server.make_request("POST", "/completions", data={
"prompt": "I believe the meaning of life is",
}, headers={
"Authorization": f"Bearer {api_key}" if api_key else None,
})
assert res.status_code == 401
assert "error" in res.body
assert res.body["error"]["type"] == "authentication_error"
def test_correct_api_key():
global server
server.start()
res = server.make_request("POST", "/completions", data={
"prompt": "I believe the meaning of life is",
}, headers={
"Authorization": f"Bearer {TEST_API_KEY}",
})
assert res.status_code == 200
assert "error" not in res.body
assert "content" in res.body
def test_openai_library_correct_api_key():
global server
server.start()
client = OpenAI(api_key=TEST_API_KEY, base_url=f"http://{server.server_host}:{server.server_port}")
res = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a chatbot."},
{"role": "user", "content": "What is the meaning of life?"},
],
)
assert len(res.choices) == 1
@pytest.mark.parametrize("origin,cors_header,cors_header_value", [
("localhost", "Access-Control-Allow-Origin", "localhost"),
("web.mydomain.fr", "Access-Control-Allow-Origin", "web.mydomain.fr"),
("origin", "Access-Control-Allow-Credentials", "true"),
("web.mydomain.fr", "Access-Control-Allow-Methods", "GET, POST"),
("web.mydomain.fr", "Access-Control-Allow-Headers", "*"),
])
def test_cors_options(origin: str, cors_header: str, cors_header_value: str):
global server
server.start()
res = server.make_request("OPTIONS", "/completions", headers={
"Origin": origin,
"Access-Control-Request-Method": "POST",
"Access-Control-Request-Headers": "Authorization",
})
assert res.status_code == 200
assert cors_header in res.headers
assert res.headers[cors_header] == cors_header_value

View File

@ -0,0 +1,98 @@
import pytest
from utils import *
server = ServerPreset.tinyllama2()
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama2()
server.slot_save_path = "./tmp"
server.temperature = 0.0
def test_slot_save_restore():
global server
server.start()
# First prompt in slot 1 should be fully processed
res = server.make_request("POST", "/completion", data={
"prompt": "What is the capital of France?",
"id_slot": 1,
"cache_prompt": True,
})
assert res.status_code == 200
assert match_regex("(Whiskers|Flana)+", res.body["content"])
assert res.body["timings"]["prompt_n"] == 21 # all tokens are processed
# Save state of slot 1
res = server.make_request("POST", "/slots/1?action=save", data={
"filename": "slot1.bin",
})
assert res.status_code == 200
assert res.body["n_saved"] == 84
# Since we have cache, this should only process the last tokens
res = server.make_request("POST", "/completion", data={
"prompt": "What is the capital of Germany?",
"id_slot": 1,
"cache_prompt": True,
})
assert res.status_code == 200
assert match_regex("(Jack|said)+", res.body["content"])
assert res.body["timings"]["prompt_n"] == 6 # only different part is processed
# Loading the saved cache into slot 0
res = server.make_request("POST", "/slots/0?action=restore", data={
"filename": "slot1.bin",
})
assert res.status_code == 200
assert res.body["n_restored"] == 84
# Since we have cache, slot 0 should only process the last tokens
res = server.make_request("POST", "/completion", data={
"prompt": "What is the capital of Germany?",
"id_slot": 0,
"cache_prompt": True,
})
assert res.status_code == 200
assert match_regex("(Jack|said)+", res.body["content"])
assert res.body["timings"]["prompt_n"] == 6 # only different part is processed
# For verification that slot 1 was not corrupted during slot 0 load, same thing should work
res = server.make_request("POST", "/completion", data={
"prompt": "What is the capital of Germany?",
"id_slot": 1,
"cache_prompt": True,
})
assert res.status_code == 200
assert match_regex("(Jack|said)+", res.body["content"])
assert res.body["timings"]["prompt_n"] == 1
def test_slot_erase():
global server
server.start()
res = server.make_request("POST", "/completion", data={
"prompt": "What is the capital of France?",
"id_slot": 1,
"cache_prompt": True,
})
assert res.status_code == 200
assert match_regex("(Whiskers|Flana)+", res.body["content"])
assert res.body["timings"]["prompt_n"] == 21 # all tokens are processed
# erase slot 1
res = server.make_request("POST", "/slots/1?action=erase")
assert res.status_code == 200
# re-run the same prompt, it should process all tokens again
res = server.make_request("POST", "/completion", data={
"prompt": "What is the capital of France?",
"id_slot": 1,
"cache_prompt": True,
})
assert res.status_code == 200
assert match_regex("(Whiskers|Flana)+", res.body["content"])
assert res.body["timings"]["prompt_n"] == 21 # all tokens are processed

View File

@ -0,0 +1,59 @@
import pytest
from utils import *
server = ServerPreset.tinyllama2()
@pytest.fixture(scope="module", autouse=True)
def create_server():
global server
server = ServerPreset.tinyllama2()
def test_tokenize_detokenize():
global server
server.start()
# tokenize
content = "What is the capital of France ?"
res_tok = server.make_request("POST", "/tokenize", data={
"content": content
})
assert res_tok.status_code == 200
assert len(res_tok.body["tokens"]) > 5
# detokenize
res_detok = server.make_request("POST", "/detokenize", data={
"tokens": res_tok.body["tokens"],
})
assert res_detok.status_code == 200
assert res_detok.body["content"].strip() == content
def test_tokenize_with_bos():
global server
server.start()
# tokenize
content = "What is the capital of France ?"
bosId = 1
res_tok = server.make_request("POST", "/tokenize", data={
"content": content,
"add_special": True,
})
assert res_tok.status_code == 200
assert res_tok.body["tokens"][0] == bosId
def test_tokenize_with_pieces():
global server
server.start()
# tokenize
content = "This is a test string with unicode 媽 and emoji 🤗"
res_tok = server.make_request("POST", "/tokenize", data={
"content": content,
"with_pieces": True,
})
assert res_tok.status_code == 200
for token in res_tok.body["tokens"]:
assert "id" in token
assert token["id"] > 0
assert "piece" in token
assert len(token["piece"]) > 0

View File

@ -0,0 +1,377 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# type: ignore[reportUnusedImport]
import subprocess
import os
import re
import json
import sys
import threading
import requests
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import (
Any,
Callable,
ContextManager,
Iterable,
Iterator,
List,
Literal,
Tuple,
Set,
)
from re import RegexFlag
class ServerResponse:
headers: dict
status_code: int
body: dict | Any
class ServerProcess:
# default options
debug: bool = False
server_port: int = 8080
server_host: str = "127.0.0.1"
model_hf_repo: str = "ggml-org/models"
model_hf_file: str = "tinyllamas/stories260K.gguf"
model_alias: str = "tinyllama-2"
temperature: float = 0.8
seed: int = 42
# custom options
model_alias: str | None = None
model_url: str | None = None
model_file: str | None = None
n_threads: int | None = None
n_gpu_layer: int | None = None
n_batch: int | None = None
n_ubatch: int | None = None
n_ctx: int | None = None
n_ga: int | None = None
n_ga_w: int | None = None
n_predict: int | None = None
n_prompts: int | None = 0
slot_save_path: str | None = None
id_slot: int | None = None
cache_prompt: bool | None = None
n_slots: int | None = None
server_continuous_batching: bool | None = False
server_embeddings: bool | None = False
server_reranking: bool | None = False
server_metrics: bool | None = False
draft: int | None = None
api_key: str | None = None
response_format: str | None = None
lora_files: List[str] | None = None
disable_ctx_shift: int | None = False
# session variables
process: subprocess.Popen | None = None
def __init__(self):
if "N_GPU_LAYERS" in os.environ:
self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
if "DEBUG" in os.environ:
self.debug = True
if "PORT" in os.environ:
self.server_port = int(os.environ["PORT"])
def start(self, timeout_seconds: int = 10) -> None:
if "LLAMA_SERVER_BIN_PATH" in os.environ:
server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
elif os.name == "nt":
server_path = "../../../build/bin/Release/llama-server.exe"
else:
server_path = "../../../build/bin/llama-server"
server_args = [
"--slots", # requires to get slot status via /slots endpoint
"--host",
self.server_host,
"--port",
self.server_port,
"--temp",
self.temperature,
"--seed",
self.seed,
]
if self.model_file:
server_args.extend(["--model", self.model_file])
if self.model_url:
server_args.extend(["--model-url", self.model_url])
if self.model_hf_repo:
server_args.extend(["--hf-repo", self.model_hf_repo])
if self.model_hf_file:
server_args.extend(["--hf-file", self.model_hf_file])
if self.n_batch:
server_args.extend(["--batch-size", self.n_batch])
if self.n_ubatch:
server_args.extend(["--ubatch-size", self.n_ubatch])
if self.n_threads:
server_args.extend(["--threads", self.n_threads])
if self.n_gpu_layer:
server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
if self.draft is not None:
server_args.extend(["--draft", self.draft])
if self.server_continuous_batching:
server_args.append("--cont-batching")
if self.server_embeddings:
server_args.append("--embedding")
if self.server_reranking:
server_args.append("--reranking")
if self.server_metrics:
server_args.append("--metrics")
if self.model_alias:
server_args.extend(["--alias", self.model_alias])
if self.n_ctx:
server_args.extend(["--ctx-size", self.n_ctx])
if self.n_slots:
server_args.extend(["--parallel", self.n_slots])
if self.n_predict:
server_args.extend(["--n-predict", self.n_predict])
if self.slot_save_path:
server_args.extend(["--slot-save-path", self.slot_save_path])
if self.n_ga:
server_args.extend(["--grp-attn-n", self.n_ga])
if self.n_ga_w:
server_args.extend(["--grp-attn-w", self.n_ga_w])
if self.debug:
server_args.append("--verbose")
if self.lora_files:
for lora_file in self.lora_files:
server_args.extend(["--lora", lora_file])
if self.disable_ctx_shift:
server_args.extend(["--no-context-shift"])
if self.api_key:
server_args.extend(["--api-key", self.api_key])
args = [str(arg) for arg in [server_path, *server_args]]
print(f"bench: starting server with: {' '.join(args)}")
flags = 0
if "nt" == os.name:
flags |= subprocess.DETACHED_PROCESS
flags |= subprocess.CREATE_NEW_PROCESS_GROUP
flags |= subprocess.CREATE_NO_WINDOW
self.process = subprocess.Popen(
[str(arg) for arg in [server_path, *server_args]],
creationflags=flags,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
env={**os.environ, "LLAMA_CACHE": "tmp"},
)
server_instances.add(self)
def server_log(in_stream, out_stream):
for line in iter(in_stream.readline, b""):
print(line.decode("utf-8"), end="", file=out_stream)
thread_stdout = threading.Thread(
target=server_log, args=(self.process.stdout, sys.stdout), daemon=True
)
thread_stdout.start()
thread_stderr = threading.Thread(
target=server_log, args=(self.process.stderr, sys.stderr), daemon=True
)
thread_stderr.start()
print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")
# wait for server to start
start_time = time.time()
while time.time() - start_time < timeout_seconds:
try:
response = self.make_request("GET", "/slots", headers={
"Authorization": f"Bearer {self.api_key}" if self.api_key else None
})
if response.status_code == 200:
self.ready = True
return # server is ready
except Exception as e:
pass
print(f"Waiting for server to start...")
time.sleep(0.5)
raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
def stop(self) -> None:
server_instances.remove(self)
if self.process:
print(f"Stopping server with pid={self.process.pid}")
self.process.kill()
self.process = None
def make_request(
self,
method: str,
path: str,
data: dict | Any | None = None,
headers: dict | None = None,
) -> ServerResponse:
url = f"http://{self.server_host}:{self.server_port}{path}"
parse_body = False
if method == "GET":
response = requests.get(url, headers=headers)
parse_body = True
elif method == "POST":
response = requests.post(url, headers=headers, json=data)
parse_body = True
elif method == "OPTIONS":
response = requests.options(url, headers=headers)
else:
raise ValueError(f"Unimplemented method: {method}")
result = ServerResponse()
result.headers = dict(response.headers)
result.status_code = response.status_code
result.body = response.json() if parse_body else None
print("Response from server", result.body)
return result
def make_stream_request(
self,
method: str,
path: str,
data: dict | None = None,
headers: dict | None = None,
) -> Iterator[dict]:
url = f"http://{self.server_host}:{self.server_port}{path}"
if method == "POST":
response = requests.post(url, headers=headers, json=data, stream=True)
else:
raise ValueError(f"Unimplemented method: {method}")
for line_bytes in response.iter_lines():
line = line_bytes.decode("utf-8")
if '[DONE]' in line:
break
elif line.startswith('data: '):
data = json.loads(line[6:])
print("Partial response from server", data)
yield data
server_instances: Set[ServerProcess] = set()
class ServerPreset:
@staticmethod
def tinyllama2() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "tinyllamas/stories260K.gguf"
server.model_alias = "tinyllama-2"
server.n_ctx = 256
server.n_batch = 32
server.n_slots = 2
server.n_predict = 64
server.seed = 42
return server
@staticmethod
def bert_bge_small() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
server.model_alias = "bert-bge-small"
server.n_ctx = 512
server.n_batch = 128
server.n_ubatch = 128
server.n_slots = 2
server.seed = 42
server.server_embeddings = True
return server
@staticmethod
def tinyllama_infill() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
server.model_alias = "tinyllama-infill"
server.n_ctx = 2048
server.n_batch = 1024
server.n_slots = 1
server.n_predict = 64
server.temperature = 0.0
server.seed = 42
return server
@staticmethod
def stories15m_moe() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/stories15M_MOE"
server.model_hf_file = "stories15M_MOE-F16.gguf"
server.model_alias = "stories15m-moe"
server.n_ctx = 2048
server.n_batch = 1024
server.n_slots = 1
server.n_predict = 64
server.temperature = 0.0
server.seed = 42
return server
@staticmethod
def jina_reranker_tiny() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
server.model_alias = "jina-reranker"
server.model_file = "./tmp/jina-reranker-v1-tiny-en.gguf"
server.n_ctx = 512
server.n_batch = 512
server.n_slots = 1
server.seed = 42
server.server_reranking = True
return server
def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
"""
Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.
Example usage:
results = parallel_function_calls([
(func1, (arg1, arg2)),
(func2, (arg3, arg4)),
])
"""
results = [None] * len(function_list)
exceptions = []
def worker(index, func, args):
try:
result = func(*args)
results[index] = result
except Exception as e:
exceptions.append((index, str(e)))
with ThreadPoolExecutor() as executor:
futures = []
for i, (func, args) in enumerate(function_list):
future = executor.submit(worker, i, func, args)
futures.append(future)
# Wait for all futures to complete
for future in as_completed(futures):
pass
# Check if there were any exceptions
if exceptions:
print("Exceptions occurred:")
for index, error in exceptions:
print(f"Function at index {index}: {error}")
return results
def match_regex(regex: str, text: str) -> bool:
return (
re.compile(
regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
).search(text)
is not None
)