mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-25 22:08:46 +01:00
Refactoring convert-pth-to-ggml.py
: more concise and readable (#109)
* Refactor get_n_parts function to simplify code and improve readability * Use f-strings instead of concatenation * Refactoring: more concise and readable * modularize --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
70f01cb863
commit
467b149761
@ -16,7 +16,7 @@
|
|||||||
# At the start of the ggml file we write the model parameters
|
# At the start of the ggml file we write the model parameters
|
||||||
# and vocabulary.
|
# and vocabulary.
|
||||||
#
|
#
|
||||||
import os
|
import argparse
|
||||||
import sys
|
import sys
|
||||||
import json
|
import json
|
||||||
import struct
|
import struct
|
||||||
@ -24,137 +24,91 @@ import numpy as np
|
|||||||
import torch
|
import torch
|
||||||
from sentencepiece import SentencePieceProcessor
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
|
||||||
if len(sys.argv) < 3:
|
def parse_args():
|
||||||
print("Usage: convert-ckpt-to-ggml.py dir-model ftype\n")
|
|
||||||
print(" ftype == 0 -> float32")
|
|
||||||
print(" ftype == 1 -> float16")
|
|
||||||
sys.exit(1)
|
|
||||||
|
|
||||||
# output in the same directory as the model
|
parser = argparse.ArgumentParser(description='Convert a LLaMA model checkpoint to a ggml compatible file')
|
||||||
dir_model = sys.argv[1]
|
parser.add_argument('dir_model', help='directory containing the model checkpoint')
|
||||||
|
parser.add_argument('ftype', type=int, choices=[0, 1], default=1, help='file type (0: float32, 1: float16)')
|
||||||
fname_hparams = sys.argv[1] + "/params.json"
|
return parser.parse_args()
|
||||||
fname_tokenizer = sys.argv[1] + "/../tokenizer.model"
|
|
||||||
|
|
||||||
def get_n_parts(dim):
|
def get_n_parts(dim):
|
||||||
if dim == 4096:
|
|
||||||
return 1
|
mappings = {4096: 1, 5120: 2, 6656: 4, 8192: 8}
|
||||||
elif dim == 5120:
|
n_parts = mappings.get(dim)
|
||||||
return 2
|
if n_parts is None:
|
||||||
elif dim == 6656:
|
print(f"Invalid dim: {dim}")
|
||||||
return 4
|
|
||||||
elif dim == 8192:
|
|
||||||
return 8
|
|
||||||
else:
|
|
||||||
print("Invalid dim: " + str(dim))
|
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
# possible data types
|
print(f"n_parts = {n_parts}\n")
|
||||||
# ftype == 0 -> float32
|
return n_parts
|
||||||
# ftype == 1 -> float16
|
|
||||||
#
|
|
||||||
# map from ftype to string
|
|
||||||
ftype_str = ["f32", "f16"]
|
|
||||||
|
|
||||||
ftype = 1
|
def load_hparams_and_tokenizer(dir_model):
|
||||||
if len(sys.argv) > 2:
|
|
||||||
ftype = int(sys.argv[2])
|
|
||||||
if ftype < 0 or ftype > 1:
|
|
||||||
print("Invalid ftype: " + str(ftype))
|
|
||||||
sys.exit(1)
|
|
||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
|
||||||
|
|
||||||
if os.path.exists(fname_out):
|
fname_hparams = f"{dir_model}/params.json"
|
||||||
print(f"Skip conversion, it already exists: {fname_out}")
|
fname_tokenizer = f"{dir_model}/../tokenizer.model"
|
||||||
sys.exit(0)
|
|
||||||
|
|
||||||
with open(fname_hparams, "r") as f:
|
with open(fname_hparams, "r") as f:
|
||||||
hparams = json.load(f)
|
hparams = json.load(f)
|
||||||
|
print(hparams)
|
||||||
|
|
||||||
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
tokenizer = SentencePieceProcessor(fname_tokenizer)
|
||||||
|
|
||||||
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
hparams.update({"vocab_size": tokenizer.vocab_size()})
|
||||||
|
|
||||||
n_parts = get_n_parts(hparams["dim"])
|
return hparams, tokenizer
|
||||||
|
|
||||||
print(hparams)
|
def write_header(fout, hparams, ftype):
|
||||||
print('n_parts = ', n_parts)
|
|
||||||
|
|
||||||
for p in range(n_parts):
|
keys = ["vocab_size", "dim", "multiple_of", "n_heads", "n_layers"]
|
||||||
print('Processing part ', p)
|
values = [
|
||||||
|
0x67676d6c, # magic: ggml in hex
|
||||||
|
*[hparams[key] for key in keys],
|
||||||
|
hparams["dim"] // hparams["n_heads"], # rot (obsolete)
|
||||||
|
ftype
|
||||||
|
]
|
||||||
|
fout.write(struct.pack("i" * len(values), *values))
|
||||||
|
|
||||||
#fname_model = sys.argv[1] + "/consolidated.00.pth"
|
def write_tokens(fout, tokenizer):
|
||||||
fname_model = sys.argv[1] + "/consolidated.0" + str(p) + ".pth"
|
|
||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin"
|
|
||||||
if (p > 0):
|
|
||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".bin" + "." + str(p)
|
|
||||||
|
|
||||||
model = torch.load(fname_model, map_location="cpu")
|
|
||||||
|
|
||||||
fout = open(fname_out, "wb")
|
|
||||||
|
|
||||||
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex
|
|
||||||
fout.write(struct.pack("i", hparams["vocab_size"]))
|
|
||||||
fout.write(struct.pack("i", hparams["dim"]))
|
|
||||||
fout.write(struct.pack("i", hparams["multiple_of"]))
|
|
||||||
fout.write(struct.pack("i", hparams["n_heads"]))
|
|
||||||
fout.write(struct.pack("i", hparams["n_layers"]))
|
|
||||||
fout.write(struct.pack("i", hparams["dim"] // hparams["n_heads"])) # rot (obsolete)
|
|
||||||
fout.write(struct.pack("i", ftype))
|
|
||||||
|
|
||||||
# Is this correct??
|
|
||||||
for i in range(tokenizer.vocab_size()):
|
for i in range(tokenizer.vocab_size()):
|
||||||
if tokenizer.is_unknown(i):
|
if tokenizer.is_unknown(i):
|
||||||
# "<unk>" token (translated as ??)
|
|
||||||
text = " \u2047 ".encode("utf-8")
|
text = " \u2047 ".encode("utf-8")
|
||||||
fout.write(struct.pack("i", len(text)))
|
|
||||||
fout.write(text)
|
|
||||||
elif tokenizer.is_control(i):
|
elif tokenizer.is_control(i):
|
||||||
# "<s>"/"</s>" tokens
|
text = b""
|
||||||
fout.write(struct.pack("i", 0))
|
|
||||||
elif tokenizer.is_byte(i):
|
elif tokenizer.is_byte(i):
|
||||||
# "<U+XX>" tokens (which may be invalid UTF-8)
|
|
||||||
piece = tokenizer.id_to_piece(i)
|
piece = tokenizer.id_to_piece(i)
|
||||||
if len(piece) != 6:
|
if len(piece) != 6:
|
||||||
print("Invalid token: " + piece)
|
print(f"Invalid token: {piece}")
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
byte_value = int(piece[3:-1], 16)
|
byte_value = int(piece[3:-1], 16)
|
||||||
fout.write(struct.pack("i", 1))
|
text = struct.pack("B", byte_value)
|
||||||
fout.write(struct.pack("B", byte_value))
|
|
||||||
else:
|
else:
|
||||||
# normal token. Uses U+2581 (LOWER ONE EIGHTH BLOCK) to represent spaces.
|
|
||||||
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
|
||||||
fout.write(struct.pack("i", len(text)))
|
fout.write(struct.pack("i", len(text)))
|
||||||
fout.write(text)
|
fout.write(text)
|
||||||
|
|
||||||
for k, v in model.items():
|
def process_and_write_variables(fout, model, ftype):
|
||||||
name = k
|
|
||||||
shape = v.shape
|
|
||||||
|
|
||||||
# skip layers.X.attention.inner_attention.rope.freqs
|
for name, data in model.items():
|
||||||
if name[-5:] == "freqs":
|
|
||||||
|
if name.endswith("freqs"):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
print("Processing variable: " + name + " with shape: ", shape, " and type: ", v.dtype)
|
shape = data.shape
|
||||||
|
|
||||||
#data = tf.train.load_variable(dir_model, name).squeeze()
|
print(f"Processing variable: {name} with shape: {shape} and type: {data.dtype}\n")
|
||||||
data = v.numpy().squeeze()
|
|
||||||
n_dims = len(data.shape);
|
data = np.squeeze(data)
|
||||||
|
n_dims = len(shape)
|
||||||
|
|
||||||
# for efficiency - transpose some matrices
|
# for efficiency - transpose some matrices
|
||||||
# "model/h.*/attn/c_attn/w"
|
# "model/h.*/attn/c_attn/w"
|
||||||
# "model/h.*/attn/c_proj/w"
|
# "model/h.*/attn/c_proj/w"
|
||||||
# "model/h.*/mlp/c_fc/w"
|
# "model/h.*/mlp/c_fc/w"
|
||||||
# "model/h.*/mlp/c_proj/w"
|
# "model/h.*/mlp/c_proj/w"
|
||||||
#if name[-14:] == "/attn/c_attn/w" or \
|
#if name.endswith(("/attn/c_attn/w", "/attn/c_proj/w", "/mlp/c_fc/w", "/mlp/c_proj/w")):
|
||||||
# name[-14:] == "/attn/c_proj/w" or \
|
|
||||||
# name[-11:] == "/mlp/c_fc/w" or \
|
|
||||||
# name[-13:] == "/mlp/c_proj/w":
|
|
||||||
# print("Transposing")
|
# print("Transposing")
|
||||||
# data = data.transpose()
|
# data = data.transpose()
|
||||||
|
|
||||||
dshape = data.shape
|
|
||||||
|
|
||||||
# default type is fp16
|
# default type is fp16
|
||||||
ftype_cur = 1
|
ftype_cur = 1
|
||||||
if ftype == 0 or n_dims == 1:
|
if ftype == 0 or n_dims == 1:
|
||||||
@ -164,18 +118,40 @@ for p in range(n_parts):
|
|||||||
|
|
||||||
# header
|
# header
|
||||||
sname = name.encode('utf-8')
|
sname = name.encode('utf-8')
|
||||||
fout.write(struct.pack("iii", n_dims, len(sname), ftype_cur))
|
fout.write(struct.pack("iii", len(data.shape), len(sname), ftype_cur))
|
||||||
for i in range(n_dims):
|
for dim in reversed(data.shape):
|
||||||
fout.write(struct.pack("i", dshape[n_dims - 1 - i]))
|
fout.write(struct.pack("i", dim))
|
||||||
fout.write(sname);
|
fout.write(sname)
|
||||||
|
|
||||||
# data
|
# data
|
||||||
data.tofile(fout)
|
data.tofile(fout)
|
||||||
|
|
||||||
# I hope this deallocates the memory ..
|
def main():
|
||||||
model = None
|
|
||||||
|
|
||||||
fout.close()
|
args = parse_args()
|
||||||
|
dir_model = args.dir_model
|
||||||
|
ftype = args.ftype
|
||||||
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
print("Done. Output file: " + fname_out + ", (part ", p, ")")
|
hparams, tokenizer = load_hparams_and_tokenizer(dir_model)
|
||||||
print("")
|
n_parts = get_n_parts(hparams["dim"])
|
||||||
|
|
||||||
|
for p in range(n_parts):
|
||||||
|
|
||||||
|
print(f"Processing part {p}\n")
|
||||||
|
|
||||||
|
fname_model = f"{dir_model}/consolidated.0{p}.pth"
|
||||||
|
fname_out = f"{dir_model}/ggml-model-{ftype_str[ftype]}.bin{'' if p == 0 else '.' + str(p)}"
|
||||||
|
|
||||||
|
model = torch.load(fname_model, map_location="cpu")
|
||||||
|
|
||||||
|
with open(fname_out, "wb") as fout:
|
||||||
|
write_header(fout, hparams, ftype)
|
||||||
|
write_tokens(fout, tokenizer)
|
||||||
|
process_and_write_variables(fout, model, ftype)
|
||||||
|
|
||||||
|
del model
|
||||||
|
print(f"Done. Output file: {fname_out}, (part {p})\n")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
Loading…
Reference in New Issue
Block a user