mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
sync : ggml (backend v2) (#3912)
* sync : ggml (backend v2) (wip) * sync : migrate examples and llama.cpp to dynamic graphs (wip) * sync : update tests + fix max op params to 64 ggml-ci * sync : ggml-cuda ggml-ci * llama : fix save/load state context size ggml-ci * sync : try to fix build on tvOS * sync : pass custom graph sizes in training examples * sync : update graph copies to new ggml API * sync : update sync-ggml.sh with new files * scripts : fix header in sync script * train : fix context size calculations * llama : increase inference graph size up to 4096 nodes * train : allocate grads for backward graphs * train : allocate grads for gb_tmp
This commit is contained in:
parent
bb50a792ec
commit
4760e7cc0b
@ -32,6 +32,7 @@ struct train_state * init_train_state() {
|
||||
state->opt = new struct ggml_opt_context;
|
||||
state->opt->ctx = NULL;
|
||||
state->opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
state->opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||
state->opt->loss_after = 0.0f;
|
||||
|
||||
return state;
|
||||
|
@ -9,6 +9,8 @@
|
||||
#include "ggml.h"
|
||||
#include "llama.h"
|
||||
|
||||
#define LLAMA_TRAIN_MAX_NODES 16384
|
||||
|
||||
typedef std::string mt19937_state;
|
||||
|
||||
struct train_state {
|
||||
|
@ -171,7 +171,8 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * m11xm2 = ggml_mul_mat(ctx, m11, m2);
|
||||
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf = ggml_build_forward(m11xm2);
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand(gf, m11xm2);
|
||||
|
||||
printf("n_threads=%i\n", benchmark_params.n_threads);
|
||||
|
||||
@ -180,9 +181,9 @@ int main(int argc, char ** argv) {
|
||||
|
||||
std::vector<uint8_t> work_buffer;
|
||||
|
||||
ggml_graph_compute_helper(work_buffer, &gf, benchmark_params.n_threads);
|
||||
ggml_graph_compute_helper(work_buffer, gf, benchmark_params.n_threads);
|
||||
|
||||
TENSOR_DUMP(gf.nodes[0]);
|
||||
TENSOR_DUMP(gf->nodes[0]);
|
||||
|
||||
printf("\n------ Test 2 - Matrix Mult via %s code\n", ggml_type_name(qtype));
|
||||
|
||||
@ -200,7 +201,8 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * q31 = ggml_mul_mat(ctx, q11, m2);
|
||||
|
||||
// printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf31 = ggml_build_forward(q31);
|
||||
struct ggml_cgraph * gf31 = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand(gf31, q31);
|
||||
|
||||
// Set up a second graph computation to make sure we override the CPU cache lines
|
||||
// printf("Creating new tensor q12 & Running quantize\n");
|
||||
@ -211,7 +213,8 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
|
||||
|
||||
//printf("Creating compute graph\n");
|
||||
struct ggml_cgraph gf32 = ggml_build_forward(q32);
|
||||
struct ggml_cgraph * gf32 = ggml_new_graph(ctx);
|
||||
ggml_build_forward_expand(gf32, q32);
|
||||
printf("n_threads=%i\n", benchmark_params.n_threads);
|
||||
|
||||
const int dimx = sizex;
|
||||
@ -223,7 +226,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
|
||||
// Let's use the F32 result from above as a reference for the quantized multiplication
|
||||
float sum_of_F32_reference = tensor_sum_elements(gf.nodes[0]);
|
||||
float sum_of_F32_reference = tensor_sum_elements(gf->nodes[0]);
|
||||
|
||||
printf("Iteration;NThreads; SizeX; SizeY; SizeZ; Required_FLOPS; Elapsed_u_Seconds; gigaFLOPS\n");
|
||||
printf("=====================================================================================\n");
|
||||
@ -233,7 +236,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
long long int start = ggml_time_us();
|
||||
//printf("Running ggml_graph_compute\n");
|
||||
ggml_graph_compute_helper(work_buffer, &gf31, benchmark_params.n_threads);
|
||||
ggml_graph_compute_helper(work_buffer, gf31, benchmark_params.n_threads);
|
||||
|
||||
long long int stop = ggml_time_us();
|
||||
long long int usec = stop-start;
|
||||
@ -251,7 +254,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// Check that the matrix multiplication result is in the right ballpark
|
||||
// We cannot use the exact value from the F32 multiplication because the quantizuation will be slightly different
|
||||
float sum_of_Q4_result = tensor_sum_elements(gf31.nodes[0]);
|
||||
float sum_of_Q4_result = tensor_sum_elements(gf31->nodes[0]);
|
||||
float delta = std::abs(sum_of_Q4_result - sum_of_F32_reference);
|
||||
float allowed_delta = (sum_of_F32_reference) / 1000 / 1000; // Let's accept an epsilon of 10^-6
|
||||
|
||||
@ -266,7 +269,7 @@ int main(int argc, char ** argv) {
|
||||
}
|
||||
|
||||
// Running a different graph computation to make sure we override the CPU cache lines
|
||||
ggml_graph_compute_helper(work_buffer, &gf32, benchmark_params.n_threads);
|
||||
ggml_graph_compute_helper(work_buffer, gf32, benchmark_params.n_threads);
|
||||
}
|
||||
printf("\n");
|
||||
printf("Average%78.2f\n",gflops_sum/((double)benchmark_params.n_iterations));
|
||||
|
@ -240,7 +240,7 @@ static struct lora_data * load_lora(struct lora_info * info) {
|
||||
}
|
||||
|
||||
struct ggml_init_params params_ggml;
|
||||
params_ggml.mem_size = ggml_tensor_overhead() * GGML_MAX_NODES;
|
||||
params_ggml.mem_size = ggml_tensor_overhead() * GGML_DEFAULT_GRAPH_SIZE;
|
||||
params_ggml.mem_buffer = NULL;
|
||||
params_ggml.no_alloc = true;
|
||||
result->ctx = ggml_init(params_ggml);
|
||||
@ -334,7 +334,7 @@ static bool apply_lora(struct ggml_tensor * tensor, struct lora_data * lora, int
|
||||
float scaling = lora->info.scale * (float)lora->lora_alpha / (float)lora->lora_r;
|
||||
|
||||
struct ggml_init_params params;
|
||||
params.mem_size = GGML_OBJECT_SIZE + GGML_GRAPH_SIZE + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
|
||||
params.mem_size = GGML_OBJECT_SIZE + ggml_graph_overhead() + ggml_tensor_overhead()*4 + GGML_MEM_ALIGN*5;
|
||||
params.mem_buffer = NULL;
|
||||
params.no_alloc = true;
|
||||
struct ggml_context * ctx = NULL;
|
||||
|
@ -772,7 +772,7 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
|
||||
if (enable_checkpointing) {
|
||||
ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
|
||||
} else {
|
||||
*gb = *gf;
|
||||
ggml_graph_cpy(gf, gb);
|
||||
ggml_build_backward_expand(ctx, gf, gb, true);
|
||||
}
|
||||
|
||||
@ -1615,6 +1615,7 @@ int main(int argc, char ** argv) {
|
||||
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
opt->params.print_forward_graph = false;
|
||||
opt->params.print_backward_graph = false;
|
||||
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||
opt->params.n_threads = params.common.n_threads;
|
||||
opt->params.past = params.common.opt_past;
|
||||
opt->params.delta = params.common.opt_delta;
|
||||
@ -1741,11 +1742,9 @@ int main(int argc, char ** argv) {
|
||||
ggml_allocr_free(alloc);
|
||||
|
||||
// context for compute tensors without their data
|
||||
size_t estimated_compute_size_wo_data = (
|
||||
ggml_tensor_overhead()*GGML_MAX_NODES*2
|
||||
+ (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*(
|
||||
params.common.use_checkpointing ? 3 : 2
|
||||
)
|
||||
const size_t estimated_compute_size_wo_data = (
|
||||
2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
|
||||
(params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
|
||||
);
|
||||
struct ggml_init_params ctx_compute_params = {
|
||||
estimated_compute_size_wo_data, // mem_size
|
||||
@ -1768,11 +1767,11 @@ int main(int argc, char ** argv) {
|
||||
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
gf = ggml_new_graph(ctx_compute);
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = (enum ggml_cgraph_eval_order) order;
|
||||
gb = ggml_new_graph(ctx_compute);
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gb_tmp = params.common.use_checkpointing
|
||||
? ggml_new_graph(ctx_compute)
|
||||
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
|
||||
: NULL;
|
||||
loss = llama_build_lora_finetune_graphs(
|
||||
&model, &lora, alloc, ctx_compute,
|
||||
@ -1801,11 +1800,11 @@ int main(int argc, char ** argv) {
|
||||
mem_compute_data.resize(max_compute_size);
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
|
||||
gf = ggml_new_graph(ctx_compute);
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = best_order;
|
||||
gb = ggml_new_graph(ctx_compute);
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gb_tmp = params.common.use_checkpointing
|
||||
? ggml_new_graph(ctx_compute)
|
||||
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
|
||||
: NULL;
|
||||
loss = llama_build_lora_finetune_graphs(
|
||||
&model, &lora, alloc, ctx_compute,
|
||||
|
@ -664,7 +664,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||
// measure mem requirement and allocate
|
||||
{
|
||||
static const size_t tensor_alignment = 32;
|
||||
new_clip->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
|
||||
new_clip->buf_compute.resize(ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead());
|
||||
new_clip->alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
clip_image_f32_batch batch;
|
||||
batch.size = 1;
|
||||
|
@ -34,7 +34,7 @@ int main(int argc, char ** argv) {
|
||||
struct ggml_context * ctx_data = NULL;
|
||||
struct ggml_context * ctx_eval = NULL;
|
||||
|
||||
struct ggml_cgraph gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval);
|
||||
struct ggml_cgraph * gf = ggml_graph_import(fname_cgraph, &ctx_data, &ctx_eval);
|
||||
|
||||
// this allocates all Metal resources and memory buffers
|
||||
auto * ctx_metal = ggml_metal_init(1);
|
||||
@ -46,13 +46,13 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// main
|
||||
{
|
||||
struct ggml_tensor * input = ggml_graph_get_tensor(&gf, "embd");
|
||||
struct ggml_tensor * input = ggml_graph_get_tensor(gf, "embd");
|
||||
*(int32_t *) input->data = 1; // BOS
|
||||
|
||||
ggml_metal_set_tensor(ctx_metal, input);
|
||||
|
||||
// warmup
|
||||
ggml_metal_graph_compute(ctx_metal, &gf);
|
||||
ggml_metal_graph_compute(ctx_metal, gf);
|
||||
|
||||
const int n_iter = 16;
|
||||
|
||||
@ -60,7 +60,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// the actual inference happens here
|
||||
for (int i = 0; i < n_iter; ++i) {
|
||||
ggml_metal_graph_compute(ctx_metal, &gf);
|
||||
ggml_metal_graph_compute(ctx_metal, gf);
|
||||
}
|
||||
|
||||
const int64_t t1 = ggml_time_us();
|
||||
@ -70,7 +70,7 @@ int main(int argc, char ** argv) {
|
||||
|
||||
// debug output
|
||||
{
|
||||
struct ggml_tensor * logits = gf.nodes[gf.n_nodes - 1];
|
||||
struct ggml_tensor * logits = gf->nodes[gf->n_nodes - 1];
|
||||
ggml_metal_get_tensor(ctx_metal, logits);
|
||||
|
||||
float * ptr = (float *) ggml_get_data(logits);
|
||||
|
@ -436,7 +436,7 @@ static struct ggml_tensor * llama_build_train_graphs(
|
||||
if (enable_checkpointing) {
|
||||
ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
|
||||
} else {
|
||||
*gb = *gf;
|
||||
ggml_graph_cpy(gf, gb);
|
||||
ggml_build_backward_expand(ctx, gf, gb, true);
|
||||
}
|
||||
|
||||
@ -1006,6 +1006,7 @@ int main(int argc, char ** argv) {
|
||||
opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
|
||||
opt->params.print_forward_graph = false;
|
||||
opt->params.print_backward_graph = false;
|
||||
opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
|
||||
opt->params.n_threads = params.common.n_threads;
|
||||
opt->params.past = params.common.opt_past;
|
||||
opt->params.delta = params.common.opt_delta;
|
||||
@ -1108,11 +1109,9 @@ int main(int argc, char ** argv) {
|
||||
ggml_allocr_free(alloc);
|
||||
|
||||
// context for compute tensors without their data
|
||||
size_t estimated_compute_size_wo_data = (
|
||||
ggml_tensor_overhead()*GGML_MAX_NODES*2
|
||||
+ (GGML_OBJECT_SIZE+GGML_GRAPH_SIZE)*(
|
||||
params.common.use_checkpointing ? 3 : 2
|
||||
)
|
||||
const size_t estimated_compute_size_wo_data = (
|
||||
2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
|
||||
(params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
|
||||
);
|
||||
struct ggml_init_params ctx_compute_params = {
|
||||
estimated_compute_size_wo_data, // mem_size
|
||||
@ -1135,11 +1134,11 @@ int main(int argc, char ** argv) {
|
||||
for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
gf = ggml_new_graph(ctx_compute);
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = (enum ggml_cgraph_eval_order) order;
|
||||
gb = ggml_new_graph(ctx_compute);
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gb_tmp = params.common.use_checkpointing
|
||||
? ggml_new_graph(ctx_compute)
|
||||
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
|
||||
: NULL;
|
||||
loss = llama_build_train_graphs(
|
||||
&model, alloc, ctx_compute,
|
||||
@ -1168,11 +1167,11 @@ int main(int argc, char ** argv) {
|
||||
mem_compute_data.resize(max_compute_size);
|
||||
ctx_compute = ggml_init(ctx_compute_params);
|
||||
alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
|
||||
gf = ggml_new_graph(ctx_compute);
|
||||
gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gf->order = best_order;
|
||||
gb = ggml_new_graph(ctx_compute);
|
||||
gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
|
||||
gb_tmp = params.common.use_checkpointing
|
||||
? ggml_new_graph(ctx_compute)
|
||||
? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
|
||||
: NULL;
|
||||
loss = llama_build_train_graphs(
|
||||
&model, alloc, ctx_compute,
|
||||
|
594
ggml-alloc.c
594
ggml-alloc.c
@ -1,51 +1,21 @@
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-impl.h"
|
||||
#include <assert.h>
|
||||
#include <limits.h>
|
||||
#include <stdarg.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
|
||||
#define MAX_FREE_BLOCKS 256
|
||||
|
||||
//#define GGML_ALLOCATOR_DEBUG
|
||||
|
||||
//#define AT_PRINTF printf
|
||||
#define AT_PRINTF(...) ((void)0)
|
||||
|
||||
struct hash_node {
|
||||
struct ggml_tensor * t;
|
||||
int n_children;
|
||||
int n_views;
|
||||
};
|
||||
|
||||
static size_t hash(void * p) {
|
||||
return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
|
||||
}
|
||||
|
||||
static struct hash_node * hash_get(struct hash_node hash_table[], struct ggml_tensor * t) {
|
||||
size_t h = hash(t);
|
||||
|
||||
// linear probing
|
||||
size_t i = h;
|
||||
while (hash_table[i].t != NULL) {
|
||||
if (hash_table[i].t == t) {
|
||||
return &hash_table[i];
|
||||
}
|
||||
i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
|
||||
if (i == h) {
|
||||
// hash table is full
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
hash_table[i].t = t;
|
||||
return &hash_table[i];
|
||||
}
|
||||
//#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__)
|
||||
#define AT_PRINTF(...)
|
||||
|
||||
// TODO: GGML_PAD ?
|
||||
static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) {
|
||||
@ -59,20 +29,18 @@ struct free_block {
|
||||
size_t size;
|
||||
};
|
||||
|
||||
#define MAX_FREE_BLOCKS 256
|
||||
|
||||
struct ggml_allocr {
|
||||
struct ggml_tallocr {
|
||||
struct ggml_backend_buffer * buffer;
|
||||
bool buffer_owned;
|
||||
void * data;
|
||||
void * base;
|
||||
size_t alignment;
|
||||
|
||||
int n_free_blocks;
|
||||
struct free_block free_blocks[MAX_FREE_BLOCKS];
|
||||
struct hash_node hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
||||
|
||||
size_t max_size;
|
||||
|
||||
bool measure;
|
||||
int parse_seq[GGML_MAX_CONCUR];
|
||||
int parse_seq_len;
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
struct ggml_tensor * allocated_tensors[1024];
|
||||
@ -80,7 +48,7 @@ struct ggml_allocr {
|
||||
};
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
static void add_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i] == NULL) {
|
||||
alloc->allocated_tensors[i] = tensor;
|
||||
@ -89,7 +57,7 @@ static void add_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor
|
||||
}
|
||||
GGML_ASSERT(!"out of allocated_tensors");
|
||||
}
|
||||
static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
static void remove_allocated_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
|
||||
for (int i = 0; i < 1024; i++) {
|
||||
if (alloc->allocated_tensors[i] == tensor ||
|
||||
(alloc->allocated_tensors[i] != NULL && alloc->allocated_tensors[i]->data == tensor->data)) {
|
||||
@ -103,7 +71,7 @@ static void remove_allocated_tensor(struct ggml_allocr * alloc, struct ggml_tens
|
||||
#endif
|
||||
|
||||
// check if a tensor is allocated by this buffer
|
||||
static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_tensor * tensor) {
|
||||
static bool ggml_tallocr_is_own(ggml_tallocr_t alloc, const struct ggml_tensor * tensor) {
|
||||
return tensor->buffer == alloc->buffer;
|
||||
}
|
||||
|
||||
@ -111,7 +79,7 @@ static bool ggml_is_view(struct ggml_tensor * t) {
|
||||
return t->view_src != NULL;
|
||||
}
|
||||
|
||||
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
void ggml_tallocr_alloc(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
|
||||
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
|
||||
|
||||
@ -162,9 +130,10 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
|
||||
}
|
||||
|
||||
tensor->data = addr;
|
||||
AT_PRINTF("%s: allocated data at %p\n", __func__, tensor->data);
|
||||
tensor->buffer = alloc->buffer;
|
||||
ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
|
||||
if (!alloc->measure) {
|
||||
ggml_backend_buffer_init_tensor(alloc->buffer, tensor);
|
||||
}
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
add_allocated_tensor(alloc, tensor);
|
||||
@ -180,16 +149,16 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
|
||||
}
|
||||
#endif
|
||||
|
||||
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->data + size);
|
||||
alloc->max_size = MAX(alloc->max_size, (char*)addr - (char*)alloc->base + size);
|
||||
}
|
||||
|
||||
// this is a very naive implementation, but for our case the number of free blocks should be very small
|
||||
static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
|
||||
if (ggml_allocr_is_own(alloc, tensor) == false) {
|
||||
static void ggml_tallocr_free_tensor(ggml_tallocr_t alloc, struct ggml_tensor * tensor) {
|
||||
if (ggml_tallocr_is_own(alloc, tensor) == false) {
|
||||
// the tensor was not allocated in this buffer
|
||||
// this can happen because the graph allocator will try to free weights and other tensors from different buffers
|
||||
// the easiest way to deal with this is just to ignore it
|
||||
AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
|
||||
// AT_PRINTF("ignoring %s (their buffer: %p, our buffer: %p)\n", tensor->name, (void *)tensor->buffer, (void *)alloc->buffer);
|
||||
return;
|
||||
}
|
||||
|
||||
@ -199,7 +168,9 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens
|
||||
size = aligned_offset(NULL, size, alloc->alignment);
|
||||
AT_PRINTF("%s: freeing %s at %p (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, ptr, size, alloc->n_free_blocks);
|
||||
|
||||
ggml_backend_buffer_free_tensor(alloc->buffer, tensor);
|
||||
if (!alloc->measure) {
|
||||
ggml_backend_buffer_free_tensor(alloc->buffer, tensor);
|
||||
}
|
||||
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
remove_allocated_tensor(alloc, tensor);
|
||||
@ -253,91 +224,180 @@ static void ggml_allocr_free_tensor(struct ggml_allocr * alloc, struct ggml_tens
|
||||
alloc->n_free_blocks++;
|
||||
}
|
||||
|
||||
void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n) {
|
||||
for (int i = 0; i < n; i++) {
|
||||
alloc->parse_seq[i] = list[i];
|
||||
}
|
||||
alloc->parse_seq_len = n;
|
||||
}
|
||||
|
||||
void ggml_allocr_reset(struct ggml_allocr * alloc) {
|
||||
void ggml_tallocr_reset(ggml_tallocr_t alloc) {
|
||||
alloc->n_free_blocks = 1;
|
||||
size_t align_offset = aligned_offset(alloc->data, 0, alloc->alignment);
|
||||
alloc->free_blocks[0].addr = (char *)alloc->data + align_offset;
|
||||
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
|
||||
size_t align_offset = aligned_offset(alloc->base, 0, alloc->alignment);
|
||||
alloc->free_blocks[0].addr = (char *)alloc->base + align_offset;
|
||||
|
||||
if (alloc->measure) {
|
||||
alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows
|
||||
} else {
|
||||
alloc->free_blocks[0].size = ggml_backend_buffer_get_size(alloc->buffer) - align_offset;
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment) {
|
||||
ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment) {
|
||||
struct ggml_backend_buffer * buffer = ggml_backend_cpu_buffer_from_ptr(NULL, data, size);
|
||||
|
||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr));
|
||||
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
|
||||
|
||||
*alloc = (struct ggml_allocr){
|
||||
*alloc = (struct ggml_tallocr) {
|
||||
/*.buffer = */ buffer,
|
||||
/*.buffer_owned = */ true,
|
||||
/*.base = */ ggml_backend_buffer_get_base(buffer),
|
||||
/*.alignment = */ alignment,
|
||||
/*.n_free_blocks = */ 0,
|
||||
/*.free_blocks = */ {{0}},
|
||||
/*.hash_table = */ {{0}},
|
||||
/*.max_size = */ 0,
|
||||
/*.measure = */ false,
|
||||
/*.parse_seq = */ {0},
|
||||
/*.parse_seq_len = */ 0,
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
/*.allocated_tensors = */ {0},
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_allocr_reset(alloc);
|
||||
ggml_tallocr_reset(alloc);
|
||||
|
||||
return alloc;
|
||||
}
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||
struct ggml_allocr * alloc = ggml_allocr_new((void *)0x1000, (size_t)-0x1001, alignment);
|
||||
ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment) {
|
||||
ggml_tallocr_t alloc = ggml_tallocr_new((void *)0x1000, SIZE_MAX/2, alignment);
|
||||
alloc->measure = true;
|
||||
|
||||
return alloc;
|
||||
}
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
|
||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr));
|
||||
ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend) {
|
||||
// create a backend buffer to get the correct tensor allocation sizes
|
||||
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, 1);
|
||||
|
||||
*alloc = (struct ggml_allocr){
|
||||
// TODO: move alloc initialization to a common ggml_tallocr_new_impl function
|
||||
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
|
||||
alloc->buffer_owned = true;
|
||||
alloc->measure = true;
|
||||
ggml_tallocr_reset(alloc);
|
||||
return alloc;
|
||||
}
|
||||
|
||||
ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size) {
|
||||
ggml_backend_buffer_t buffer = ggml_backend_alloc_buffer(backend, size);
|
||||
ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(buffer);
|
||||
alloc->buffer_owned = true;
|
||||
return alloc;
|
||||
}
|
||||
|
||||
ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
|
||||
ggml_tallocr_t alloc = (ggml_tallocr_t)malloc(sizeof(struct ggml_tallocr));
|
||||
|
||||
*alloc = (struct ggml_tallocr) {
|
||||
/*.buffer = */ buffer,
|
||||
/*.buffer_owned = */ false,
|
||||
/*.base = */ ggml_backend_buffer_get_base(buffer),
|
||||
/*.alignment = */ ggml_backend_buffer_get_alignment(buffer),
|
||||
/*.n_free_blocks = */ 0,
|
||||
/*.free_blocks = */ {{0}},
|
||||
/*.hash_table = */ {{0}},
|
||||
/*.max_size = */ 0,
|
||||
/*.measure = */ false,
|
||||
/*.parse_seq = */ {0},
|
||||
/*.parse_seq_len = */ 0,
|
||||
#ifdef GGML_ALLOCATOR_DEBUG
|
||||
/*.allocated_tensors = */ {0},
|
||||
#endif
|
||||
};
|
||||
|
||||
ggml_allocr_reset(alloc);
|
||||
ggml_tallocr_reset(alloc);
|
||||
|
||||
return alloc;
|
||||
}
|
||||
|
||||
void ggml_allocr_free(struct ggml_allocr * alloc) {
|
||||
struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t alloc) {
|
||||
return alloc->buffer;
|
||||
}
|
||||
|
||||
void ggml_tallocr_free(ggml_tallocr_t alloc) {
|
||||
if (alloc == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (alloc->buffer_owned) {
|
||||
ggml_backend_buffer_free(alloc->buffer);
|
||||
}
|
||||
free(alloc);
|
||||
}
|
||||
|
||||
bool ggml_allocr_is_measure(struct ggml_allocr * alloc) {
|
||||
bool ggml_tallocr_is_measure(ggml_tallocr_t alloc) {
|
||||
return alloc->measure;
|
||||
}
|
||||
|
||||
//////////// compute graph allocator
|
||||
size_t ggml_tallocr_max_size(ggml_tallocr_t alloc) {
|
||||
return alloc->max_size;
|
||||
}
|
||||
|
||||
// graph allocator
|
||||
|
||||
struct hash_node {
|
||||
int n_children;
|
||||
int n_views;
|
||||
};
|
||||
|
||||
struct ggml_gallocr {
|
||||
ggml_tallocr_t talloc;
|
||||
struct ggml_hash_set hash_set;
|
||||
struct hash_node * hash_values;
|
||||
size_t hash_values_size;
|
||||
ggml_tallocr_t * hash_allocs;
|
||||
int * parse_seq;
|
||||
int parse_seq_len;
|
||||
};
|
||||
|
||||
ggml_gallocr_t ggml_gallocr_new(void) {
|
||||
ggml_gallocr_t galloc = (ggml_gallocr_t)malloc(sizeof(struct ggml_gallocr));
|
||||
|
||||
*galloc = (struct ggml_gallocr) {
|
||||
/*.talloc = */ NULL,
|
||||
/*.hash_set = */ {0},
|
||||
/*.hash_values = */ NULL,
|
||||
/*.hash_values_size = */ 0,
|
||||
/*.hash_allocs = */ NULL,
|
||||
/*.parse_seq = */ NULL,
|
||||
/*.parse_seq_len = */ 0,
|
||||
};
|
||||
|
||||
return galloc;
|
||||
}
|
||||
|
||||
void ggml_gallocr_free(ggml_gallocr_t galloc) {
|
||||
if (galloc == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (galloc->hash_set.keys != NULL) {
|
||||
free(galloc->hash_set.keys);
|
||||
}
|
||||
if (galloc->hash_values != NULL) {
|
||||
free(galloc->hash_values);
|
||||
}
|
||||
if (galloc->hash_allocs != NULL) {
|
||||
free(galloc->hash_allocs);
|
||||
}
|
||||
if (galloc->parse_seq != NULL) {
|
||||
free(galloc->parse_seq);
|
||||
}
|
||||
free(galloc);
|
||||
}
|
||||
|
||||
void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n) {
|
||||
free(galloc->parse_seq);
|
||||
galloc->parse_seq = malloc(sizeof(int) * n);
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
galloc->parse_seq[i] = list[i];
|
||||
}
|
||||
galloc->parse_seq_len = n;
|
||||
}
|
||||
|
||||
static struct hash_node * hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) {
|
||||
size_t i = ggml_hash_find_or_insert(galloc->hash_set, t);
|
||||
return &galloc->hash_values[i];
|
||||
}
|
||||
|
||||
static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
|
||||
if (a->type != b->type) {
|
||||
@ -378,27 +438,40 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
|
||||
}
|
||||
}
|
||||
|
||||
static void init_view(struct ggml_allocr * alloc, struct ggml_tensor * view, bool update_backend) {
|
||||
assert(view->view_src != NULL && view->view_src->data != NULL);
|
||||
static ggml_tallocr_t node_tallocr(ggml_gallocr_t galloc, struct ggml_tensor * node) {
|
||||
if (galloc->talloc != NULL) {
|
||||
return galloc->talloc;
|
||||
}
|
||||
|
||||
return galloc->hash_allocs[ggml_hash_find_or_insert(galloc->hash_set, node)];
|
||||
}
|
||||
|
||||
static void init_view(ggml_gallocr_t galloc, struct ggml_tensor * view, bool update_backend) {
|
||||
ggml_tallocr_t alloc = node_tallocr(galloc, view);
|
||||
|
||||
//printf("init_view: %s from src %s\n", view->name, view->view_src->name);
|
||||
GGML_ASSERT(view->view_src != NULL && view->view_src->data != NULL);
|
||||
if (update_backend) {
|
||||
view->backend = view->view_src->backend;
|
||||
}
|
||||
|
||||
view->buffer = view->view_src->buffer;
|
||||
view->data = (char *)view->view_src->data + view->view_offs;
|
||||
|
||||
// FIXME: the view should be initialized by the owning buffer, but currently this breaks the CUDA backend
|
||||
// due to the ggml_tensor_extra_gpu ring buffer overwriting the KV cache extras
|
||||
assert(ggml_allocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
|
||||
ggml_backend_buffer_init_tensor(alloc->buffer, view);
|
||||
assert(ggml_tallocr_is_measure(alloc) || !view->buffer || view->buffer->backend == alloc->buffer->backend);
|
||||
|
||||
if (!alloc->measure) {
|
||||
ggml_backend_buffer_init_tensor(alloc->buffer, view);
|
||||
}
|
||||
}
|
||||
|
||||
static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node) {
|
||||
struct hash_node * ht = alloc->hash_table;
|
||||
static void allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
|
||||
ggml_tallocr_t alloc = node_tallocr(galloc, node);
|
||||
|
||||
if (node->data == NULL) {
|
||||
if (ggml_is_view(node)) {
|
||||
init_view(alloc, node, true);
|
||||
init_view(galloc, node, true);
|
||||
} else {
|
||||
// see if we can reuse a parent's buffer (inplace)
|
||||
if (ggml_op_can_inplace(node->op)) {
|
||||
@ -409,16 +482,16 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
||||
}
|
||||
|
||||
// if the node's data is external, then we cannot re-use it
|
||||
if (ggml_allocr_is_own(alloc, parent) == false) {
|
||||
if (ggml_tallocr_is_own(alloc, parent) == false) {
|
||||
AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data);
|
||||
continue;
|
||||
}
|
||||
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
struct hash_node * p_hn = hash_get(galloc, parent);
|
||||
if (parent->data != NULL && p_hn->n_children == 1 && p_hn->n_views == 0 && ggml_are_same_layout(node, parent)) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = parent->view_src;
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
struct hash_node * view_src_hn = hash_get(galloc, view_src);
|
||||
if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) {
|
||||
// TODO: the offset of the view parent must be kept to ensure that the op doesn't overwrite
|
||||
// the parent's data that it will need later (same layout requirement). the problem is that then
|
||||
@ -428,170 +501,267 @@ static void allocate_node(struct ggml_allocr * alloc, struct ggml_tensor * node)
|
||||
AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name);
|
||||
node->view_src = view_src;
|
||||
view_src_hn->n_views += 1;
|
||||
init_view(alloc, node, false);
|
||||
init_view(galloc, node, false);
|
||||
return;
|
||||
}
|
||||
} else {
|
||||
AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name);
|
||||
node->view_src = parent;
|
||||
p_hn->n_views += 1;
|
||||
init_view(alloc, node, false);
|
||||
init_view(galloc, node, false);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
ggml_allocr_alloc(alloc, node);
|
||||
ggml_tallocr_alloc(alloc, node);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
size_t ggml_allocr_alloc_graph_n(
|
||||
struct ggml_allocr * alloc,
|
||||
struct ggml_cgraph ** graphs, int n_graphs,
|
||||
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs) {
|
||||
static void free_node(ggml_gallocr_t galloc, struct ggml_tensor * node) {
|
||||
ggml_tallocr_t alloc = node_tallocr(galloc, node);
|
||||
|
||||
// reset hash table
|
||||
struct hash_node * ht = alloc->hash_table;
|
||||
memset(ht, 0, sizeof(struct hash_node) * GGML_GRAPH_HASHTABLE_SIZE);
|
||||
ggml_tallocr_free_tensor(alloc, node);
|
||||
}
|
||||
|
||||
static void ggml_tallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * gf) {
|
||||
const int * parse_seq = galloc->parse_seq;
|
||||
int parse_seq_len = galloc->parse_seq_len;
|
||||
|
||||
// count number of children and views
|
||||
for (int g = 0; g < n_graphs; g++) {
|
||||
struct ggml_cgraph * gf = graphs[g];
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
for (int i = 0; i < gf->n_nodes; i++) {
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
if (ggml_is_view(node)) {
|
||||
struct ggml_tensor * view_src = node->view_src;
|
||||
hash_get(galloc, view_src)->n_views += 1;
|
||||
if (node->buffer == NULL && node->data != NULL) {
|
||||
// view of a pre-allocated tensor, didn't call init_view() yet
|
||||
init_view(galloc, node, true);
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
hash_get(galloc, parent)->n_children += 1;
|
||||
if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
|
||||
init_view(galloc, parent, true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// allocate tensors
|
||||
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
|
||||
int last_barrier_pos = 0;
|
||||
int n_nodes = parse_seq_len ? parse_seq_len : gf->n_nodes;
|
||||
|
||||
for (int ind = 0; ind < n_nodes; ind++) {
|
||||
// allocate a node if there is no parse_seq or this is not a barrier
|
||||
if (parse_seq_len == 0 || parse_seq[ind] != -1) {
|
||||
int i = parse_seq_len ? parse_seq[ind] : ind;
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
if (ggml_is_view(node)) {
|
||||
struct ggml_tensor * view_src = node->view_src;
|
||||
hash_get(ht, view_src)->n_views += 1;
|
||||
if (node->buffer == NULL && node->data != NULL) {
|
||||
// view of a pre-allocated tensor, didn't call init_view() yet
|
||||
init_view(alloc, node, true);
|
||||
}
|
||||
}
|
||||
|
||||
// allocate parents (leafs)
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
hash_get(ht, parent)->n_children += 1;
|
||||
if (ggml_is_view(parent) && parent->buffer == NULL && parent->data != NULL) {
|
||||
init_view(alloc, parent, true);
|
||||
allocate_node(galloc, parent);
|
||||
}
|
||||
|
||||
// allocate node
|
||||
allocate_node(galloc, node);
|
||||
|
||||
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
AT_PRINTF("%s", parent->name);
|
||||
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
||||
AT_PRINTF(", ");
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
}
|
||||
}
|
||||
|
||||
// allocate tensors
|
||||
for (int g = 0; g < n_graphs; g++) {
|
||||
struct ggml_cgraph * gf = graphs[g];
|
||||
AT_PRINTF("####### graph %d/%d\n", g, n_graphs);
|
||||
// graph inputs are allocated first to ensure that they are not overwritten by each other
|
||||
if (inputs != NULL && inputs[g] != NULL) {
|
||||
for (int i = 0; inputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * input = inputs[g][i];
|
||||
AT_PRINTF("input: %s\n", input->name);
|
||||
allocate_node(alloc, input);
|
||||
}
|
||||
}
|
||||
// if we have parse_seq then we allocate nodes following the list, and we only free nodes at barriers
|
||||
int last_barrier_pos = 0;
|
||||
int n_nodes = alloc->parse_seq_len ? alloc->parse_seq_len : gf->n_nodes;
|
||||
// update parents
|
||||
// update immediately if there is no parse_seq
|
||||
// update only at barriers if there is parse_seq
|
||||
if ((parse_seq_len == 0) || parse_seq[ind] == -1) {
|
||||
int update_start = parse_seq_len ? last_barrier_pos : ind;
|
||||
int update_end = parse_seq_len ? ind : ind + 1;
|
||||
for (int i = update_start; i < update_end; i++) {
|
||||
int node_i = parse_seq_len ? parse_seq[i] : i;
|
||||
struct ggml_tensor * node = gf->nodes[node_i];
|
||||
|
||||
for (int ind = 0; ind < n_nodes; ind++) {
|
||||
// allocate a node if there is no parse_seq or this is not a barrier
|
||||
if ((alloc->parse_seq_len==0) || alloc->parse_seq[ind] != -1) {
|
||||
int i = alloc->parse_seq_len ? alloc->parse_seq[ind] : ind;
|
||||
struct ggml_tensor * node = gf->nodes[i];
|
||||
|
||||
// allocate parents (leafs)
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
allocate_node(alloc, parent);
|
||||
}
|
||||
struct hash_node * p_hn = hash_get(galloc, parent);
|
||||
p_hn->n_children -= 1;
|
||||
|
||||
// allocate node
|
||||
allocate_node(alloc, node);
|
||||
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
|
||||
|
||||
AT_PRINTF("exec: %s (%s) <= ", ggml_op_name(node->op), node->name);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
}
|
||||
AT_PRINTF("%s", parent->name);
|
||||
if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) {
|
||||
AT_PRINTF(", ");
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
}
|
||||
|
||||
// update parents
|
||||
// update immediately if there is no parse_seq
|
||||
// update only at barriers if there is parse_seq
|
||||
if ((alloc->parse_seq_len == 0) || alloc->parse_seq[ind] == -1) {
|
||||
int update_start = alloc->parse_seq_len ? last_barrier_pos : ind;
|
||||
int update_end = alloc->parse_seq_len ? ind : ind + 1;
|
||||
for (int i = update_start; i < update_end; i++) {
|
||||
int node_i = alloc->parse_seq_len ? alloc->parse_seq[i] : i;
|
||||
struct ggml_tensor * node = gf->nodes[node_i];
|
||||
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * parent = node->src[j];
|
||||
if (parent == NULL) {
|
||||
break;
|
||||
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = parent->view_src;
|
||||
struct hash_node * view_src_hn = hash_get(galloc, view_src);
|
||||
view_src_hn->n_views -= 1;
|
||||
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
||||
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0) {
|
||||
free_node(galloc, view_src);
|
||||
}
|
||||
}
|
||||
struct hash_node * p_hn = hash_get(ht, parent);
|
||||
p_hn->n_children -= 1;
|
||||
|
||||
//AT_PRINTF("parent %s: %d children, %d views\n", parent->name, parent->n_children, parent->n_views);
|
||||
|
||||
if (p_hn->n_children == 0 && p_hn->n_views == 0) {
|
||||
if (ggml_is_view(parent)) {
|
||||
struct ggml_tensor * view_src = parent->view_src;
|
||||
struct hash_node * view_src_hn = hash_get(ht, view_src);
|
||||
view_src_hn->n_views -= 1;
|
||||
AT_PRINTF("view_src %s: %d children, %d views\n", view_src->name, view_src_hn->n_children, view_src_hn->n_views);
|
||||
if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src->data != node->data) {
|
||||
ggml_allocr_free_tensor(alloc, view_src);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (parent->data != node->data) {
|
||||
ggml_allocr_free_tensor(alloc, parent);
|
||||
}
|
||||
}
|
||||
else {
|
||||
free_node(galloc, parent);
|
||||
}
|
||||
}
|
||||
}
|
||||
AT_PRINTF("\n");
|
||||
if (alloc->parse_seq_len) {
|
||||
last_barrier_pos = ind + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
// free graph outputs here that wouldn't be freed otherwise because they have no children
|
||||
if (outputs != NULL && outputs[g] != NULL) {
|
||||
for (int i = 0; outputs[g][i] != NULL; i++) {
|
||||
struct ggml_tensor * output = outputs[g][i];
|
||||
AT_PRINTF("output: %s\n", output->name);
|
||||
ggml_allocr_free_tensor(alloc, output);
|
||||
AT_PRINTF("\n");
|
||||
if (parse_seq_len) {
|
||||
last_barrier_pos = ind + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return alloc->max_size;
|
||||
}
|
||||
|
||||
size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph) {
|
||||
return ggml_allocr_alloc_graph_n(alloc, &graph, 1, NULL, NULL);
|
||||
size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph) {
|
||||
size_t hash_size = graph->visited_hash_table.size;
|
||||
|
||||
// check if the hash table is initialized and large enough
|
||||
if (galloc->hash_set.size < hash_size) {
|
||||
if (galloc->hash_set.keys != NULL) {
|
||||
free(galloc->hash_set.keys);
|
||||
}
|
||||
if (galloc->hash_values != NULL) {
|
||||
free(galloc->hash_values);
|
||||
}
|
||||
galloc->hash_set.keys = malloc(sizeof(struct ggml_tensor *) * hash_size);
|
||||
galloc->hash_set.size = hash_size;
|
||||
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
|
||||
}
|
||||
|
||||
// reset hash table
|
||||
memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * hash_size);
|
||||
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
|
||||
|
||||
galloc->talloc = talloc;
|
||||
ggml_tallocr_alloc_graph_impl(galloc, graph);
|
||||
galloc->talloc = NULL;
|
||||
|
||||
size_t max_size = ggml_tallocr_max_size(talloc);
|
||||
|
||||
return max_size;
|
||||
}
|
||||
|
||||
size_t ggml_allocr_max_size(struct ggml_allocr * alloc) {
|
||||
return alloc->max_size;
|
||||
void ggml_gallocr_alloc_graph_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, struct ggml_hash_set hash_set, ggml_tallocr_t * hash_node_talloc) {
|
||||
const size_t hash_size = hash_set.size;
|
||||
|
||||
GGML_ASSERT(hash_size >= (size_t)(graph->n_nodes + graph->n_leafs));
|
||||
|
||||
galloc->talloc = NULL;
|
||||
|
||||
// alloc hash_values if needed
|
||||
if (galloc->hash_values == NULL || galloc->hash_values_size < hash_size) {
|
||||
free(galloc->hash_values);
|
||||
galloc->hash_values = malloc(sizeof(struct hash_node) * hash_size);
|
||||
galloc->hash_values_size = hash_size;
|
||||
}
|
||||
|
||||
// free hash_set.keys if needed
|
||||
if (galloc->hash_set.keys != NULL) {
|
||||
free(galloc->hash_set.keys);
|
||||
}
|
||||
galloc->hash_set = hash_set;
|
||||
|
||||
// reset hash values
|
||||
memset(galloc->hash_values, 0, sizeof(struct hash_node) * hash_size);
|
||||
|
||||
galloc->hash_allocs = hash_node_talloc;
|
||||
|
||||
ggml_tallocr_alloc_graph_impl(galloc, graph);
|
||||
|
||||
// remove unowned resources
|
||||
galloc->hash_set.keys = NULL;
|
||||
galloc->hash_allocs = NULL;
|
||||
}
|
||||
|
||||
// legacy API wrapper
|
||||
|
||||
struct ggml_allocr {
|
||||
ggml_tallocr_t talloc;
|
||||
ggml_gallocr_t galloc;
|
||||
};
|
||||
|
||||
static ggml_allocr_t ggml_allocr_new_impl(ggml_tallocr_t talloc) {
|
||||
ggml_allocr_t alloc = (ggml_allocr_t)malloc(sizeof(struct ggml_allocr));
|
||||
*alloc = (struct ggml_allocr) {
|
||||
/*.talloc = */ talloc,
|
||||
/*.galloc = */ ggml_gallocr_new(),
|
||||
};
|
||||
return alloc;
|
||||
}
|
||||
|
||||
ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment) {
|
||||
return ggml_allocr_new_impl(ggml_tallocr_new(data, size, alignment));
|
||||
}
|
||||
|
||||
ggml_allocr_t ggml_allocr_new_measure(size_t alignment) {
|
||||
return ggml_allocr_new_impl(ggml_tallocr_new_measure(alignment));
|
||||
}
|
||||
|
||||
ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer) {
|
||||
return ggml_allocr_new_impl(ggml_tallocr_new_from_buffer(buffer));
|
||||
}
|
||||
|
||||
ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size) {
|
||||
return ggml_allocr_new_impl(ggml_tallocr_new_from_backend(backend, size));
|
||||
}
|
||||
|
||||
ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend) {
|
||||
return ggml_allocr_new_impl(ggml_tallocr_new_measure_from_backend(backend));
|
||||
}
|
||||
|
||||
struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc) {
|
||||
return ggml_tallocr_get_buffer(alloc->talloc);
|
||||
}
|
||||
|
||||
void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n) {
|
||||
ggml_gallocr_set_parse_seq(alloc->galloc, list, n);
|
||||
}
|
||||
|
||||
void ggml_allocr_free(ggml_allocr_t alloc) {
|
||||
ggml_gallocr_free(alloc->galloc);
|
||||
ggml_tallocr_free(alloc->talloc);
|
||||
free(alloc);
|
||||
}
|
||||
|
||||
bool ggml_allocr_is_measure(ggml_allocr_t alloc) {
|
||||
return ggml_tallocr_is_measure(alloc->talloc);
|
||||
}
|
||||
|
||||
void ggml_allocr_reset(ggml_allocr_t alloc) {
|
||||
ggml_tallocr_reset(alloc->talloc);
|
||||
}
|
||||
|
||||
void ggml_allocr_alloc(ggml_allocr_t alloc, struct ggml_tensor * tensor) {
|
||||
ggml_tallocr_alloc(alloc->talloc, tensor);
|
||||
}
|
||||
|
||||
size_t ggml_allocr_max_size(ggml_allocr_t alloc) {
|
||||
return ggml_tallocr_max_size(alloc->talloc);
|
||||
}
|
||||
|
||||
size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph) {
|
||||
return ggml_gallocr_alloc_graph(alloc->galloc, alloc->talloc, graph);
|
||||
}
|
||||
|
80
ggml-alloc.h
80
ggml-alloc.h
@ -6,27 +6,79 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
struct ggml_backend;
|
||||
struct ggml_backend_buffer;
|
||||
|
||||
GGML_API struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment);
|
||||
GGML_API struct ggml_allocr * ggml_allocr_new_measure(size_t alignment);
|
||||
GGML_API struct ggml_allocr * ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
|
||||
//
|
||||
// Legacy API
|
||||
//
|
||||
|
||||
typedef struct ggml_allocr * ggml_allocr_t;
|
||||
|
||||
// initialize allocator for use with CPU backend only
|
||||
GGML_API ggml_allocr_t ggml_allocr_new(void * data, size_t size, size_t alignment);
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_measure(size_t alignment);
|
||||
|
||||
// initialize allocator for use with ggml-backend
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_from_buffer(struct ggml_backend_buffer * buffer);
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
|
||||
GGML_API ggml_allocr_t ggml_allocr_new_measure_from_backend(struct ggml_backend * backend);
|
||||
|
||||
GGML_API struct ggml_backend_buffer * ggml_allocr_get_buffer(ggml_allocr_t alloc);
|
||||
|
||||
// tell the allocator to parse nodes following the order described in the list
|
||||
// you should call this if your graph are optimized to execute out-of-order
|
||||
GGML_API void ggml_allocr_set_parse_seq(struct ggml_allocr * alloc, const int * list, int n);
|
||||
GGML_API void ggml_allocr_set_parse_seq(ggml_allocr_t alloc, const int * list, int n);
|
||||
|
||||
GGML_API void ggml_allocr_free (struct ggml_allocr * alloc);
|
||||
GGML_API bool ggml_allocr_is_measure (struct ggml_allocr * alloc);
|
||||
GGML_API void ggml_allocr_reset (struct ggml_allocr * alloc);
|
||||
GGML_API void ggml_allocr_alloc (struct ggml_allocr * alloc, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_allocr_alloc_graph(struct ggml_allocr * alloc, struct ggml_cgraph * graph);
|
||||
GGML_API size_t ggml_allocr_max_size (struct ggml_allocr * alloc);
|
||||
GGML_API void ggml_allocr_free (ggml_allocr_t alloc);
|
||||
GGML_API bool ggml_allocr_is_measure (ggml_allocr_t alloc);
|
||||
GGML_API void ggml_allocr_reset (ggml_allocr_t alloc);
|
||||
GGML_API void ggml_allocr_alloc (ggml_allocr_t alloc, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_allocr_max_size (ggml_allocr_t alloc);
|
||||
|
||||
GGML_API size_t ggml_allocr_alloc_graph_n(
|
||||
struct ggml_allocr * alloc,
|
||||
struct ggml_cgraph ** graphs, int n_graphs,
|
||||
struct ggml_tensor *** inputs, struct ggml_tensor *** outputs);
|
||||
GGML_API size_t ggml_allocr_alloc_graph(ggml_allocr_t alloc, struct ggml_cgraph * graph);
|
||||
|
||||
//
|
||||
// ggml-backend v2 API
|
||||
//
|
||||
|
||||
// Seperate tensor and graph allocator objects
|
||||
// This is necessary for multi-backend allocation because the graph allocator needs to use multiple tensor allocators
|
||||
// The original API is kept as a wrapper around the new API
|
||||
|
||||
// Tensor allocator
|
||||
typedef struct ggml_tallocr * ggml_tallocr_t;
|
||||
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new(void * data, size_t size, size_t alignment);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_measure(size_t alignment);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_from_buffer(struct ggml_backend_buffer * buffer);
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_from_backend(struct ggml_backend * backend, size_t size); // allocates an owned buffer
|
||||
GGML_API ggml_tallocr_t ggml_tallocr_new_measure_from_backend(struct ggml_backend * backend);
|
||||
|
||||
GGML_API struct ggml_backend_buffer * ggml_tallocr_get_buffer(ggml_tallocr_t talloc);
|
||||
|
||||
GGML_API void ggml_tallocr_free (ggml_tallocr_t talloc);
|
||||
GGML_API bool ggml_tallocr_is_measure (ggml_tallocr_t talloc);
|
||||
GGML_API void ggml_tallocr_reset (ggml_tallocr_t talloc);
|
||||
GGML_API void ggml_tallocr_alloc (ggml_tallocr_t talloc, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_tallocr_max_size (ggml_tallocr_t talloc);
|
||||
|
||||
|
||||
// Graph allocator
|
||||
typedef struct ggml_gallocr * ggml_gallocr_t;
|
||||
|
||||
GGML_API ggml_gallocr_t ggml_gallocr_new(void);
|
||||
GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc);
|
||||
|
||||
GGML_API void ggml_gallocr_set_parse_seq(ggml_gallocr_t galloc, const int * list, int n);
|
||||
GGML_API size_t ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, ggml_tallocr_t talloc, struct ggml_cgraph * graph);
|
||||
|
||||
// Allocate tensors from the allocators given by the hash table
|
||||
GGML_API void ggml_gallocr_alloc_graph_n(
|
||||
ggml_gallocr_t galloc,
|
||||
struct ggml_cgraph * graph,
|
||||
struct ggml_hash_set hash_set,
|
||||
ggml_tallocr_t * hash_node_talloc);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
87
ggml-backend-impl.h
Normal file
87
ggml-backend-impl.h
Normal file
@ -0,0 +1,87 @@
|
||||
#pragma once
|
||||
|
||||
// ggml-backend internal header
|
||||
|
||||
#include "ggml-backend.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
//
|
||||
// Backend buffer
|
||||
//
|
||||
|
||||
typedef void * ggml_backend_buffer_context_t;
|
||||
|
||||
struct ggml_backend_buffer_i {
|
||||
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
|
||||
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
|
||||
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
|
||||
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
|
||||
};
|
||||
|
||||
struct ggml_backend_buffer {
|
||||
struct ggml_backend_buffer_i iface;
|
||||
|
||||
ggml_backend_t backend;
|
||||
ggml_backend_buffer_context_t context;
|
||||
|
||||
size_t size;
|
||||
};
|
||||
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
struct ggml_backend * backend,
|
||||
struct ggml_backend_buffer_i iface,
|
||||
ggml_backend_buffer_context_t context,
|
||||
size_t size);
|
||||
|
||||
//
|
||||
// Backend
|
||||
//
|
||||
|
||||
typedef void * ggml_backend_context_t;
|
||||
|
||||
struct ggml_backend_i {
|
||||
const char * (*get_name)(ggml_backend_t backend);
|
||||
|
||||
void (*free)(ggml_backend_t backend);
|
||||
|
||||
// buffer allocation
|
||||
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
|
||||
|
||||
// get buffer alignment
|
||||
size_t (*get_alignment)(ggml_backend_t backend);
|
||||
|
||||
// tensor data access
|
||||
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
|
||||
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
void (*synchronize) (ggml_backend_t backend);
|
||||
|
||||
// (optional) copy tensor between different backends, allow for single-copy tranfers
|
||||
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// compute graph with a plan
|
||||
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
// compute graph without a plan
|
||||
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// check if the backend supports an operation
|
||||
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
};
|
||||
|
||||
struct ggml_backend {
|
||||
struct ggml_backend_i iface;
|
||||
|
||||
ggml_backend_context_t context;
|
||||
};
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
591
ggml-backend.c
591
ggml-backend.c
@ -1,7 +1,9 @@
|
||||
#include "ggml-backend.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-impl.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <limits.h>
|
||||
#include <stdarg.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
@ -33,6 +35,10 @@ ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
|
||||
if (buffer == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (buffer->iface.free_buffer != NULL) {
|
||||
buffer->iface.free_buffer(buffer);
|
||||
}
|
||||
@ -43,15 +49,20 @@ size_t ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) {
|
||||
return ggml_backend_get_alignment(buffer->backend);
|
||||
}
|
||||
|
||||
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return buffer->iface.get_base(buffer);
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
|
||||
return buffer->size;
|
||||
}
|
||||
|
||||
void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
void * base = buffer->iface.get_base(buffer);
|
||||
|
||||
GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
|
||||
|
||||
return base;
|
||||
}
|
||||
|
||||
size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
// get_alloc_size is optional, defaults to ggml_nbytes
|
||||
if (buffer->iface.get_alloc_size) {
|
||||
return buffer->iface.get_alloc_size(buffer, tensor);
|
||||
}
|
||||
@ -59,12 +70,14 @@ size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct g
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
// init_tensor is optional
|
||||
if (buffer->iface.init_tensor) {
|
||||
buffer->iface.init_tensor(buffer, tensor);
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
// free_tensor is optional
|
||||
if (buffer->iface.free_tensor) {
|
||||
buffer->iface.free_tensor(buffer, tensor);
|
||||
}
|
||||
@ -73,14 +86,21 @@ void ggml_backend_buffer_free_tensor(ggml_backend_buffer_t buffer, struct ggml_t
|
||||
// backend
|
||||
|
||||
ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor) {
|
||||
return tensor->buffer->backend;
|
||||
return tensor->buffer ? tensor->buffer->backend : NULL;
|
||||
}
|
||||
|
||||
const char * ggml_backend_name(ggml_backend_t backend) {
|
||||
if (backend == NULL) {
|
||||
return "NULL";
|
||||
}
|
||||
return backend->iface.get_name(backend);
|
||||
}
|
||||
|
||||
void ggml_backend_free(ggml_backend_t backend) {
|
||||
if (backend == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
backend->iface.free(backend);
|
||||
}
|
||||
|
||||
@ -101,13 +121,23 @@ void ggml_backend_tensor_get_async(const struct ggml_tensor * tensor, void * dat
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
ggml_get_backend(tensor)->iface.set_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
|
||||
ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
|
||||
ggml_backend_t backend = ggml_get_backend(tensor);
|
||||
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(backend != NULL && "tensor backend not set");
|
||||
|
||||
backend->iface.set_tensor_async(backend, tensor, data, offset, size);
|
||||
backend->iface.synchronize(backend);
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
|
||||
ggml_get_backend(tensor)->iface.get_tensor_async(ggml_get_backend(tensor), tensor, data, offset, size);
|
||||
ggml_get_backend(tensor)->iface.synchronize(ggml_get_backend(tensor));
|
||||
ggml_backend_t backend = ggml_get_backend(tensor);
|
||||
|
||||
GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
|
||||
GGML_ASSERT(backend != NULL && "tensor backend not set");
|
||||
|
||||
backend->iface.get_tensor_async(backend, tensor, data, offset, size);
|
||||
backend->iface.synchronize(backend);
|
||||
}
|
||||
|
||||
void ggml_backend_synchronize(ggml_backend_t backend) {
|
||||
@ -156,7 +186,7 @@ void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst
|
||||
//printf("dst: %s ne: [%d %d %d %d] nb: [%d %d %d %d]\n", dst->name, (int)dst->ne[0], (int)dst->ne[1], (int)dst->ne[2], (int)dst->ne[3], (int)dst->nb[0], (int)dst->nb[1], (int)dst->nb[2], (int)dst->nb[3]);
|
||||
GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
|
||||
|
||||
// printf("cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
|
||||
// fprintf(stderr, "cpy tensor %s from %s to %s (%lu bytes)\n", src->name, ggml_backend_name(src->backend), ggml_backend_name(dst->backend), ggml_nbytes(src));
|
||||
|
||||
if (src == dst) {
|
||||
return;
|
||||
@ -234,6 +264,8 @@ static ggml_backend_buffer_t ggml_backend_cpu_alloc_buffer(ggml_backend_t backen
|
||||
size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
|
||||
void * data = malloc(size); // TODO: maybe use GGML_ALIGNED_MALLOC?
|
||||
|
||||
GGML_ASSERT(data != NULL && "failed to allocate buffer");
|
||||
|
||||
return ggml_backend_buffer_init(backend, cpu_backend_buffer_i, data, size);
|
||||
}
|
||||
|
||||
@ -271,8 +303,7 @@ static void ggml_backend_cpu_cpy_tensor_from(ggml_backend_t backend, struct ggml
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_cpy_tensor_to(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
|
||||
// for a backend such as CUDA that can queue async calls, it is ok to do this asynchronously, but it may not be the case for other backends
|
||||
ggml_backend_tensor_set_async(dst, src->data, 0, ggml_nbytes(src));
|
||||
ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
|
||||
|
||||
UNUSED(backend);
|
||||
}
|
||||
@ -383,3 +414,537 @@ void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
|
||||
ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size) {
|
||||
return ggml_backend_buffer_init(backend_cpu, cpu_backend_buffer_i_from_ptr, ptr, size);
|
||||
}
|
||||
|
||||
// scheduler
|
||||
|
||||
#define GGML_MAX_BACKENDS 4
|
||||
#define GGML_MAX_SPLITS 256
|
||||
#define GGML_MAX_SPLIT_INPUTS 16
|
||||
|
||||
struct ggml_backend_sched_split {
|
||||
ggml_tallocr_t tallocr;
|
||||
int i_start;
|
||||
int i_end;
|
||||
struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
|
||||
int n_inputs;
|
||||
struct ggml_cgraph * graph;
|
||||
};
|
||||
|
||||
struct ggml_backend_sched {
|
||||
int n_backends;
|
||||
ggml_backend_t backends[GGML_MAX_BACKENDS];
|
||||
ggml_tallocr_t tallocs[GGML_MAX_BACKENDS];
|
||||
|
||||
ggml_gallocr_t galloc;
|
||||
|
||||
struct ggml_hash_set hash_set;
|
||||
ggml_tallocr_t * node_talloc; // [hash_set.size]
|
||||
struct ggml_tensor * (* node_copies)[GGML_MAX_BACKENDS]; // [hash_set.size][GGML_MAX_BACKENDS]
|
||||
|
||||
struct ggml_cgraph * graph;
|
||||
struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
|
||||
int n_splits;
|
||||
|
||||
struct ggml_context * ctx;
|
||||
|
||||
// align context_buffer to GGML_MEM_ALIGN
|
||||
#ifdef _MSC_VER
|
||||
__declspec(align(GGML_MEM_ALIGN))
|
||||
#else
|
||||
__attribute__((aligned(GGML_MEM_ALIGN)))
|
||||
#endif
|
||||
char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*sizeof(struct ggml_tensor) + GGML_MAX_SPLITS*sizeof(struct ggml_cgraph)];
|
||||
};
|
||||
|
||||
#define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
|
||||
#define node_allocr(node) sched->node_talloc[hash_id(node)]
|
||||
|
||||
static bool ggml_is_view_op(enum ggml_op op) {
|
||||
return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
|
||||
}
|
||||
|
||||
// returns the priority of the backend, lower is better
|
||||
static int sched_backend_prio(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (sched->backends[i] == backend) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return INT_MAX;
|
||||
}
|
||||
|
||||
static int sched_allocr_prio(ggml_backend_sched_t sched, ggml_tallocr_t allocr) {
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (sched->tallocs[i] == allocr) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return INT_MAX;
|
||||
}
|
||||
|
||||
// returns the backend that should be used for the node based on the current locations
|
||||
char causes[GGML_DEFAULT_GRAPH_SIZE*4 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove
|
||||
static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * node) {
|
||||
// if the dst tensor is already allocated in a buffer, we must assume that it is critical to keep it there
|
||||
// ie. kv cache updates
|
||||
// note that this doesn't allow fallback to CPU. need to add output tensors to the splits to copy the data back to the original backend.
|
||||
// dst
|
||||
ggml_backend_t cur_backend = ggml_get_backend(node);
|
||||
if (cur_backend != NULL) {
|
||||
sprintf(causes[hash_id(node)], "1.dst");
|
||||
return cur_backend;
|
||||
}
|
||||
|
||||
// view_src
|
||||
if (node->view_src != NULL && ggml_get_backend(node->view_src) != NULL) {
|
||||
sprintf(causes[hash_id(node)], "1.vsrc");
|
||||
return ggml_get_backend(node->view_src);
|
||||
}
|
||||
|
||||
// src
|
||||
int cur_prio = INT_MAX;
|
||||
size_t cur_size = 0;
|
||||
|
||||
for (int i = 0; i < GGML_MAX_SRC; i++) {
|
||||
const struct ggml_tensor * src = node->src[i];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_backend_t src_backend = ggml_get_backend(src);
|
||||
if (src_backend != NULL) {
|
||||
int src_prio = sched_backend_prio(sched, src_backend);
|
||||
size_t src_size = ggml_nbytes(src);
|
||||
if (src_prio < cur_prio && src_size >= cur_size) {
|
||||
cur_prio = src_prio;
|
||||
cur_size = src_size;
|
||||
cur_backend = src_backend;
|
||||
sprintf(causes[hash_id(node)], "1.src%d", i);
|
||||
}
|
||||
}
|
||||
}
|
||||
return cur_backend;
|
||||
}
|
||||
|
||||
static char * fmt_size(size_t size) {
|
||||
static char buffer[128];
|
||||
if (size >= 1024*1024) {
|
||||
sprintf(buffer, "%zuM", size/1024/1024);
|
||||
} else {
|
||||
sprintf(buffer, "%zuK", size/1024);
|
||||
}
|
||||
return buffer;
|
||||
}
|
||||
|
||||
static void sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
int cur_split = 0;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
|
||||
ggml_backend_t split_backend = ggml_tallocr_get_buffer(sched->splits[cur_split].tallocr)->backend;
|
||||
fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), sched->splits[cur_split].n_inputs);
|
||||
for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
|
||||
fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
cur_split++;
|
||||
}
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
ggml_backend_t node_backend = node_allocr ? ggml_tallocr_get_buffer(node_allocr)->backend : NULL;
|
||||
fprintf(stderr, "node #%3d (%10.10s): %20.20s (%4.4s) [%4.4s %8.8s]:", i, ggml_op_name(node->op), node->name, fmt_size(ggml_nbytes(node)), node_allocr ? ggml_backend_name(node_backend) : "NULL", causes[hash_id(node)]);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
ggml_backend_t src_backend = src_allocr ? ggml_tallocr_get_buffer(src_allocr)->backend : NULL;
|
||||
fprintf(stderr, " %20.20s (%4.4s) [%4.4s %8.8s]", src->name, fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", causes[hash_id(src)]);
|
||||
}
|
||||
fprintf(stderr, "\n");
|
||||
}
|
||||
}
|
||||
|
||||
// creates a copy of the tensor with the same memory layout
|
||||
static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
|
||||
struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
|
||||
for (int i = 0; i < GGML_MAX_DIMS; i++) {
|
||||
dup->nb[i] = tensor->nb[i];
|
||||
}
|
||||
return dup;
|
||||
}
|
||||
|
||||
// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
|
||||
// TODO: merge passes
|
||||
static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
// reset state
|
||||
size_t hash_size = sched->hash_set.size;
|
||||
memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size);
|
||||
memset(sched->node_talloc, 0, sizeof(sched->node_talloc[0]) * hash_size);
|
||||
memset(sched->node_copies, 0, sizeof(sched->node_copies[0]) * hash_size);
|
||||
sched->n_splits = 0;
|
||||
|
||||
struct ggml_init_params params = {
|
||||
/*.mem_size = */ sizeof(sched->context_buffer),
|
||||
/*.mem_buffer = */ sched->context_buffer,
|
||||
/*.no_alloc = */ true
|
||||
};
|
||||
|
||||
if (sched->ctx != NULL) {
|
||||
ggml_free(sched->ctx);
|
||||
}
|
||||
|
||||
sched->ctx = ggml_init(params);
|
||||
|
||||
// pass 1: assign backends to ops with allocated inputs
|
||||
for (int i = 0; i < graph->n_leafs; i++) {
|
||||
struct ggml_tensor * leaf = graph->leafs[i];
|
||||
if (node_allocr(leaf) != NULL) {
|
||||
// do not overwrite user assignments
|
||||
continue;
|
||||
}
|
||||
ggml_backend_t leaf_backend = ggml_get_backend(leaf);
|
||||
if (leaf_backend == NULL && leaf->view_src != NULL) {
|
||||
leaf_backend = ggml_get_backend(leaf->view_src);
|
||||
}
|
||||
if (leaf_backend != NULL) {
|
||||
node_allocr(leaf) = ggml_backend_sched_get_tallocr(sched, leaf_backend);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (node_allocr(node) != NULL) {
|
||||
// do not overwrite user assignments
|
||||
continue;
|
||||
}
|
||||
ggml_backend_t node_backend = sched_backend_from_cur(sched, node);
|
||||
if (node_backend != NULL) {
|
||||
node_allocr(node) = ggml_backend_sched_get_tallocr(sched, node_backend);
|
||||
}
|
||||
}
|
||||
//printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
|
||||
|
||||
// pass 2: assign backends to ops from current assignments
|
||||
// TODO:
|
||||
// - reuse sched_backend_from_cur
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
if (node_allocr == NULL) {
|
||||
int cur_prio = INT_MAX;
|
||||
size_t cur_size = 0;
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
if (src_allocr != NULL) {
|
||||
int src_prio = sched_allocr_prio(sched, src_allocr);
|
||||
size_t src_size = ggml_nbytes(src);
|
||||
if (src_prio < cur_prio && src_size >= cur_size) {
|
||||
cur_prio = src_prio;
|
||||
cur_size = src_size;
|
||||
node_allocr = src_allocr;
|
||||
sprintf(causes[hash_id(node)], "2.src%d", j);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (node_allocr != NULL) {
|
||||
node_allocr(node) = node_allocr;
|
||||
}
|
||||
}
|
||||
}
|
||||
//printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
|
||||
|
||||
// pass 3: assign backends to remaining src from dst (should only be leafs)
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
if (src_allocr == NULL) {
|
||||
node_allocr(src) = node_allocr;
|
||||
}
|
||||
}
|
||||
}
|
||||
//printf("PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
|
||||
|
||||
// pass 4: split graph, find tensors that need to be copied
|
||||
// TODO:
|
||||
// - when switching from a less preferred backend to a more preferred backend, check if it is possible to move the switch to an earlier point for the same cost
|
||||
// find first backend
|
||||
int cur_split = 0;
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
if (node->view_src == NULL) {
|
||||
sched->splits[0].tallocr = node_allocr(node);
|
||||
break;
|
||||
}
|
||||
}
|
||||
sched->splits[0].i_start = 0;
|
||||
sched->splits[0].n_inputs = 0;
|
||||
memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
|
||||
ggml_tallocr_t cur_allocr = sched->splits[0].tallocr;
|
||||
size_t cur_backend_id = sched_allocr_prio(sched, cur_allocr);
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
|
||||
if (ggml_is_view_op(node->op)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
|
||||
if (node_allocr != cur_allocr) {
|
||||
sched->splits[cur_split].i_end = i;
|
||||
cur_split++;
|
||||
GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
|
||||
sched->splits[cur_split].tallocr = node_allocr;
|
||||
sched->splits[cur_split].i_start = i;
|
||||
sched->splits[cur_split].n_inputs = 0;
|
||||
memset(sched->splits[cur_split].inputs, 0, sizeof(sched->splits[cur_split].inputs)); //HACK
|
||||
cur_allocr = node_allocr;
|
||||
cur_backend_id = sched_allocr_prio(sched, cur_allocr);
|
||||
}
|
||||
|
||||
// find inputs that are not on the same backend
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
if (src_allocr != node_allocr) {
|
||||
int n_inputs = sched->splits[cur_split].n_inputs++;
|
||||
GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
|
||||
sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src;
|
||||
|
||||
// create copies
|
||||
size_t id = hash_id(src);
|
||||
if (sched->node_copies[id][cur_backend_id] == NULL) {
|
||||
struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
|
||||
sched->node_copies[id][cur_backend_id] = tensor_copy;
|
||||
node_allocr(tensor_copy) = cur_allocr;
|
||||
ggml_backend_t backend = ggml_tallocr_get_buffer(cur_allocr)->backend;
|
||||
ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
|
||||
}
|
||||
node->src[j] = sched->node_copies[id][cur_backend_id];
|
||||
}
|
||||
}
|
||||
}
|
||||
sched->splits[cur_split].i_end = graph->n_nodes;
|
||||
sched->n_splits = cur_split + 1;
|
||||
|
||||
//fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); fflush(stdout);
|
||||
|
||||
#if 1
|
||||
// sanity check: all sources should have the same backend as the node
|
||||
for (int i = 0; i < graph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = graph->nodes[i];
|
||||
ggml_tallocr_t node_allocr = node_allocr(node);
|
||||
if (node_allocr == NULL) {
|
||||
fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
|
||||
}
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
struct ggml_tensor * src = node->src[j];
|
||||
if (src == NULL) {
|
||||
break;
|
||||
}
|
||||
ggml_tallocr_t src_allocr = node_allocr(src);
|
||||
if (src_allocr != node_allocr /* && src_backend != NULL */) { // ignore nulls for now
|
||||
fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
|
||||
node->name, node_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(node_allocr)->backend) : "NULL",
|
||||
j, src->name, src_allocr ? ggml_backend_name(ggml_tallocr_get_buffer(src_allocr)->backend) : "NULL");
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
// create copies of the graph for each split
|
||||
// FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
|
||||
struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
struct ggml_backend_sched_split * split = &sched->splits[i];
|
||||
split->graph = ggml_graph_view(sched->ctx, graph, split->i_start, split->i_end);
|
||||
|
||||
// add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
struct ggml_tensor * input = split->inputs[j];
|
||||
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(input)][sched_allocr_prio(sched, split->tallocr)];
|
||||
input_cpy->src[0] = input;
|
||||
graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
|
||||
}
|
||||
|
||||
for (int j = split->i_start; j < split->i_end; j++) {
|
||||
graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
|
||||
}
|
||||
}
|
||||
sched->graph = graph_copy;
|
||||
}
|
||||
|
||||
static void sched_alloc_splits(ggml_backend_sched_t sched) {
|
||||
ggml_gallocr_alloc_graph_n(
|
||||
sched->galloc,
|
||||
sched->graph,
|
||||
sched->hash_set,
|
||||
sched->node_talloc);
|
||||
}
|
||||
|
||||
static void sched_compute_splits(ggml_backend_sched_t sched) {
|
||||
uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
|
||||
uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
|
||||
|
||||
struct ggml_backend_sched_split * splits = sched->splits;
|
||||
|
||||
for (int i = 0; i < sched->n_splits; i++) {
|
||||
struct ggml_backend_sched_split * split = &splits[i];
|
||||
ggml_backend_t split_backend = ggml_tallocr_get_buffer(split->tallocr)->backend;
|
||||
int split_backend_id = sched_backend_prio(sched, split_backend);
|
||||
|
||||
// copy the input tensors to the split backend
|
||||
uint64_t copy_start_us = ggml_time_us();
|
||||
for (int j = 0; j < split->n_inputs; j++) {
|
||||
struct ggml_tensor * input_cpy = sched->node_copies[hash_id(split->inputs[j])][sched_backend_prio(sched, split_backend)];
|
||||
if (split->inputs[j]->buffer == NULL) {
|
||||
if (split->inputs[j]->view_src == NULL) {
|
||||
fprintf(stderr, "input %s has no buffer and no view_src\n", split->inputs[j]->name);
|
||||
exit(1);
|
||||
}
|
||||
struct ggml_tensor * view = split->inputs[j];
|
||||
view->backend = view->view_src->backend;
|
||||
view->buffer = view->view_src->buffer;
|
||||
view->data = (char *)view->view_src->data + view->view_offs;
|
||||
ggml_backend_buffer_init_tensor(ggml_backend_sched_get_buffer(sched, view->buffer->backend), view);
|
||||
}
|
||||
if (input_cpy->buffer == NULL) {
|
||||
fprintf(stderr, "input_cpy %s has no buffer\n", input_cpy->name);
|
||||
exit(1);
|
||||
}
|
||||
GGML_ASSERT(split->inputs[j]->buffer->backend != input_cpy->buffer->backend);
|
||||
GGML_ASSERT(input_cpy->buffer->backend == split_backend);
|
||||
ggml_backend_tensor_copy(split->inputs[j], input_cpy);
|
||||
}
|
||||
// ggml_backend_synchronize(split_backend);
|
||||
int64_t copy_end_us = ggml_time_us();
|
||||
copy_us[split_backend_id] += copy_end_us - copy_start_us;
|
||||
|
||||
#if 0
|
||||
char split_filename[GGML_MAX_NAME];
|
||||
snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
|
||||
ggml_graph_dump_dot(split->graph, NULL, split_filename);
|
||||
#endif
|
||||
|
||||
uint64_t compute_start_us = ggml_time_us();
|
||||
ggml_backend_graph_compute(split_backend, split->graph);
|
||||
// ggml_backend_synchronize(split_backend);
|
||||
uint64_t compute_end_us = ggml_time_us();
|
||||
compute_us[split_backend_id] += compute_end_us - compute_start_us;
|
||||
}
|
||||
|
||||
#if 0
|
||||
// per-backend timings
|
||||
fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
if (copy_us[i] > 0 || compute_us[i] > 0) {
|
||||
fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static void sched_reset(ggml_backend_sched_t sched) {
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_tallocr_reset(sched->tallocs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends) {
|
||||
GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
|
||||
|
||||
struct ggml_backend_sched * sched = malloc(sizeof(struct ggml_backend_sched));
|
||||
memset(sched, 0, sizeof(struct ggml_backend_sched));
|
||||
|
||||
fprintf(stderr, "ggml_backend_sched size: %lu KB\n", sizeof(struct ggml_backend_sched)/1024);
|
||||
|
||||
sched->n_backends = n_backends;
|
||||
for (int i = 0; i < n_backends; i++) {
|
||||
sched->backends[i] = backends[i];
|
||||
}
|
||||
|
||||
sched->galloc = ggml_gallocr_new();
|
||||
|
||||
// init measure allocs for each backend
|
||||
for (int i = 0; i < n_backends; i++) {
|
||||
sched->tallocs[i] = ggml_tallocr_new_measure_from_backend(backends[i]);
|
||||
}
|
||||
|
||||
return sched;
|
||||
}
|
||||
|
||||
void ggml_backend_sched_free(ggml_backend_sched_t sched) {
|
||||
if (sched == NULL) {
|
||||
return;
|
||||
}
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
ggml_tallocr_free(sched->tallocs[i]);
|
||||
}
|
||||
ggml_gallocr_free(sched->galloc);
|
||||
free(sched->hash_set.keys);
|
||||
free(sched->node_talloc);
|
||||
free(sched->node_copies);
|
||||
free(sched);
|
||||
}
|
||||
|
||||
void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
|
||||
// initialize hash tables
|
||||
size_t hash_size = measure_graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS;
|
||||
sched->hash_set.size = hash_size;
|
||||
sched->hash_set.keys = malloc(sizeof(sched->hash_set.keys[0]) * hash_size);
|
||||
sched->node_talloc = malloc(sizeof(sched->node_talloc[0]) * hash_size);
|
||||
sched->node_copies = malloc(sizeof(sched->node_copies[0]) * hash_size);
|
||||
|
||||
sched_split_graph(sched, measure_graph);
|
||||
sched_alloc_splits(sched);
|
||||
|
||||
// allocate buffers and reset allocators
|
||||
for (int i = 0; i < sched->n_backends; i++) {
|
||||
size_t size = ggml_tallocr_max_size(sched->tallocs[i]);
|
||||
ggml_tallocr_free(sched->tallocs[i]);
|
||||
sched->tallocs[i] = ggml_tallocr_new_from_backend(sched->backends[i], size);
|
||||
}
|
||||
|
||||
sched_reset(sched);
|
||||
}
|
||||
|
||||
void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
|
||||
GGML_ASSERT(sched->hash_set.size >= graph->visited_hash_table.size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
|
||||
|
||||
sched_split_graph(sched, graph);
|
||||
sched_alloc_splits(sched);
|
||||
sched_compute_splits(sched);
|
||||
sched_reset(sched);
|
||||
}
|
||||
|
||||
ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
int backend_index = sched_backend_prio(sched, backend);
|
||||
return sched->tallocs[backend_index];
|
||||
}
|
||||
|
||||
ggml_backend_buffer_t ggml_backend_sched_get_buffer(ggml_backend_sched_t sched, ggml_backend_t backend) {
|
||||
int backend_index = sched_backend_prio(sched, backend);
|
||||
return ggml_tallocr_get_buffer(sched->tallocs[backend_index]);
|
||||
}
|
||||
|
||||
void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
|
||||
int backend_index = sched_backend_prio(sched, backend);
|
||||
GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
|
||||
node_allocr(node) = sched->tallocs[backend_index];
|
||||
}
|
||||
|
151
ggml-backend.h
151
ggml-backend.h
@ -1,51 +1,20 @@
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
struct ggml_backend;
|
||||
|
||||
//
|
||||
// Backend buffer
|
||||
//
|
||||
|
||||
struct ggml_backend_buffer;
|
||||
|
||||
// type-erased backend-specific types / wrappers
|
||||
typedef void * ggml_backend_context_t;
|
||||
typedef void * ggml_backend_graph_plan_t;
|
||||
typedef void * ggml_backend_buffer_context_t;
|
||||
|
||||
// avoid accessing internals of these types
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
typedef struct ggml_backend_buffer * ggml_backend_buffer_t;
|
||||
|
||||
//
|
||||
// backend buffer
|
||||
//
|
||||
|
||||
struct ggml_backend_buffer_i {
|
||||
void (*free_buffer) (ggml_backend_buffer_t buffer);
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer); // get base pointer
|
||||
size_t (*get_alloc_size)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-allocation callback
|
||||
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // post-allocation callback
|
||||
void (*free_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); // pre-free callback
|
||||
};
|
||||
|
||||
// TODO: hide behind API
|
||||
struct ggml_backend_buffer {
|
||||
struct ggml_backend_buffer_i iface;
|
||||
|
||||
ggml_backend_t backend;
|
||||
ggml_backend_buffer_context_t context;
|
||||
|
||||
size_t size;
|
||||
};
|
||||
|
||||
// backend buffer functions
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_buffer_init(
|
||||
struct ggml_backend * backend,
|
||||
struct ggml_backend_buffer_i iface,
|
||||
ggml_backend_buffer_context_t context,
|
||||
size_t size);
|
||||
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
@ -55,50 +24,13 @@ extern "C" {
|
||||
GGML_API void ggml_backend_buffer_free_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
|
||||
//
|
||||
// backend
|
||||
// Backend
|
||||
//
|
||||
|
||||
struct ggml_backend_i {
|
||||
const char * (*get_name)(ggml_backend_t backend);
|
||||
struct ggml_backend;
|
||||
typedef struct ggml_backend * ggml_backend_t;
|
||||
typedef void * ggml_backend_graph_plan_t;
|
||||
|
||||
void (*free)(ggml_backend_t backend);
|
||||
|
||||
// buffer allocation
|
||||
ggml_backend_buffer_t (*alloc_buffer)(ggml_backend_t backend, size_t size);
|
||||
|
||||
// get buffer alignment
|
||||
size_t (*get_alignment)(ggml_backend_t backend);
|
||||
|
||||
// tensor data access
|
||||
// these functions can be asynchronous, helper functions are provided for synchronous access that automatically call synchronize
|
||||
void (*set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
void (*get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size);
|
||||
void (*synchronize) (ggml_backend_t backend);
|
||||
|
||||
// (optional) copy tensor between different backends, allow for single-copy tranfers
|
||||
void (*cpy_tensor_from)(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
void (*cpy_tensor_to) (ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst);
|
||||
|
||||
// compute graph with a plan
|
||||
ggml_backend_graph_plan_t (*graph_plan_create) (ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
void (*graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
void (*graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan);
|
||||
|
||||
// compute graph without a plan
|
||||
void (*graph_compute)(ggml_backend_t backend, struct ggml_cgraph * cgraph);
|
||||
|
||||
// check if the backend supports an operation
|
||||
bool (*supports_op)(ggml_backend_t backend, const struct ggml_tensor * op);
|
||||
};
|
||||
|
||||
// TODO: hide behind API
|
||||
struct ggml_backend {
|
||||
struct ggml_backend_i iface;
|
||||
|
||||
ggml_backend_context_t context;
|
||||
};
|
||||
|
||||
// backend helper functions
|
||||
GGML_API ggml_backend_t ggml_get_backend(const struct ggml_tensor * tensor);
|
||||
|
||||
GGML_API const char * ggml_backend_name(ggml_backend_t backend);
|
||||
@ -133,11 +65,72 @@ extern "C" {
|
||||
GGML_API ggml_backend_t ggml_backend_cpu_init(void);
|
||||
|
||||
GGML_API bool ggml_backend_is_cpu(ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads);
|
||||
|
||||
// Create a backend buffer from an existing pointer
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(ggml_backend_t backend_cpu, void * ptr, size_t size);
|
||||
|
||||
|
||||
//
|
||||
// Backend scheduler
|
||||
//
|
||||
|
||||
// The backend scheduler allows for multiple backends to be used together
|
||||
// Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends
|
||||
// The backends are selected based on:
|
||||
// - the backend that supports the operation
|
||||
// - the location of the pre-allocated tensors (e.g. the weights)
|
||||
/*
|
||||
Example usage:
|
||||
|
||||
sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, num_backends);
|
||||
// sched is initialized with measure allocators and cannot be used until allocated with a measure graph
|
||||
|
||||
// initialize buffers from a measure graph
|
||||
measure_graph = build_graph(sched); // use the allocr to allocate inputs as needed
|
||||
|
||||
// in build_graph:
|
||||
build_graph(...) {
|
||||
// allocating tensors in a specific backend (optional, recommended: pre-allocate inputs in a different buffer)
|
||||
alloc_cpu = ggml_backend_sched_get_allocr(sched, backend_cpu);
|
||||
ggml_allocr_alloc(alloc_cpu, tensor);
|
||||
|
||||
// manually assigning nodes to a backend (optional, shouldn't be needed in most cases)
|
||||
struct ggml_tensor * node = ggml_mul_mat(ctx, ...);
|
||||
ggml_backend_sched_set_node_backend(sched, node, backend_gpu);
|
||||
}
|
||||
|
||||
// allocate backend buffers from measure graph
|
||||
ggml_backend_sched_init_measure(sched, measure_graph);
|
||||
|
||||
// the scheduler is now ready to compute graphs
|
||||
|
||||
// compute
|
||||
graph = build_graph(sched);
|
||||
ggml_backend_sched_graph_compute(sched, graph);
|
||||
*/
|
||||
|
||||
struct ggml_backend_sched;
|
||||
typedef struct ggml_backend_sched * ggml_backend_sched_t;
|
||||
|
||||
// Initialize a backend scheduler
|
||||
GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, int n_backends);
|
||||
|
||||
GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched);
|
||||
|
||||
// Initialize backend buffers from a measure graph
|
||||
GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph);
|
||||
|
||||
GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend);
|
||||
|
||||
GGML_API void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend);
|
||||
|
||||
// Allocate a graph on the backend scheduler
|
||||
GGML_API void ggml_backend_sched_graph_compute(
|
||||
ggml_backend_sched_t sched,
|
||||
struct ggml_cgraph * graph);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
16
ggml-cuda.cu
16
ggml-cuda.cu
@ -81,6 +81,7 @@
|
||||
|
||||
#include "ggml-cuda.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend-impl.h"
|
||||
|
||||
#define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
|
||||
#define CC_VOLTA 700
|
||||
@ -7751,11 +7752,11 @@ static size_t g_temp_tensor_extra_index = 0;
|
||||
|
||||
static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
||||
if (g_temp_tensor_extras == nullptr) {
|
||||
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES];
|
||||
g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
|
||||
}
|
||||
|
||||
size_t alloc_index = g_temp_tensor_extra_index;
|
||||
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_MAX_NODES;
|
||||
g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
|
||||
ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index];
|
||||
memset(extra, 0, sizeof(*extra));
|
||||
|
||||
@ -8070,11 +8071,11 @@ struct ggml_backend_buffer_context_cuda {
|
||||
|
||||
ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() {
|
||||
if (temp_tensor_extras == nullptr) {
|
||||
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_MAX_NODES];
|
||||
temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_DEFAULT_GRAPH_SIZE];
|
||||
}
|
||||
|
||||
size_t alloc_index = temp_tensor_extra_index;
|
||||
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_MAX_NODES;
|
||||
temp_tensor_extra_index = (temp_tensor_extra_index + 1) % GGML_DEFAULT_GRAPH_SIZE;
|
||||
ggml_tensor_extra_gpu * extra = &temp_tensor_extras[alloc_index];
|
||||
memset(extra, 0, sizeof(*extra));
|
||||
|
||||
@ -8160,7 +8161,12 @@ static ggml_backend_buffer_t ggml_backend_cuda_alloc_buffer(ggml_backend_t backe
|
||||
ggml_cuda_set_device(g_main_device);
|
||||
|
||||
ggml_backend_buffer_context_cuda * ctx = new ggml_backend_buffer_context_cuda;
|
||||
|
||||
size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
|
||||
|
||||
ggml_cuda_set_device(g_main_device);
|
||||
CUDA_CHECK(cudaMalloc(&ctx->device, size));
|
||||
|
||||
return ggml_backend_buffer_init(backend, cuda_backend_buffer_interface, ctx, size);
|
||||
}
|
||||
|
||||
@ -8227,6 +8233,8 @@ static void ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE)
|
||||
continue;
|
||||
assert(node->backend == GGML_BACKEND_GPU);
|
||||
for (int j = 0; j < GGML_MAX_SRC; j++) {
|
||||
if (node->src[j] != nullptr) {
|
||||
|
14
ggml-impl.h
14
ggml-impl.h
@ -230,7 +230,19 @@ inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
||||
|
||||
#endif
|
||||
|
||||
// TODO: backend v2 PR
|
||||
#define GGML_HASHTABLE_FULL ((size_t)-1)
|
||||
#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2)
|
||||
|
||||
bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||
|
||||
// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted
|
||||
size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||
|
||||
// returns GGML_HAHSHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
|
||||
size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||
|
||||
// return index, asserts if table is full
|
||||
size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
25
ggml-metal.m
25
ggml-metal.m
@ -1,5 +1,6 @@
|
||||
#import "ggml-metal.h"
|
||||
|
||||
#import "ggml-backend-impl.h"
|
||||
#import "ggml.h"
|
||||
|
||||
#import <Foundation/Foundation.h>
|
||||
@ -23,7 +24,7 @@
|
||||
|
||||
#define UNUSED(x) (void)(x)
|
||||
|
||||
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
|
||||
#define GGML_MAX_CONCUR (2*GGML_DEFAULT_GRAPH_SIZE)
|
||||
|
||||
struct ggml_metal_buffer {
|
||||
const char * name;
|
||||
@ -744,6 +745,20 @@ void ggml_metal_graph_compute(
|
||||
struct ggml_tensor * src1 = gf->nodes[i]->src[1];
|
||||
struct ggml_tensor * dst = gf->nodes[i];
|
||||
|
||||
switch (dst->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_PERMUTE:
|
||||
{
|
||||
// noop -> next node
|
||||
} continue;
|
||||
default:
|
||||
{
|
||||
} break;
|
||||
}
|
||||
|
||||
const int64_t ne00 = src0 ? src0->ne[0] : 0;
|
||||
const int64_t ne01 = src0 ? src0->ne[1] : 0;
|
||||
const int64_t ne02 = src0 ? src0->ne[2] : 0;
|
||||
@ -797,14 +812,6 @@ void ggml_metal_graph_compute(
|
||||
//}
|
||||
|
||||
switch (dst->op) {
|
||||
case GGML_OP_NONE:
|
||||
case GGML_OP_RESHAPE:
|
||||
case GGML_OP_VIEW:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_PERMUTE:
|
||||
{
|
||||
// noop
|
||||
} break;
|
||||
case GGML_OP_CONCAT:
|
||||
{
|
||||
const int64_t nb = ne00;
|
||||
|
89
ggml.h
89
ggml.h
@ -58,7 +58,8 @@
|
||||
// {
|
||||
// ...
|
||||
//
|
||||
// struct ggml_cgraph gf = ggml_build_forward(f);
|
||||
// struct ggml_cgraph * gf = ggml_new_graph(ctx);
|
||||
// ggml_build_forward_expand(gf, f);
|
||||
//
|
||||
// // set the input variable and parameter values
|
||||
// ggml_set_f32(x, 2.0f);
|
||||
@ -213,15 +214,14 @@
|
||||
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
|
||||
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
|
||||
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_NODES 16384
|
||||
#define GGML_MAX_PARAMS 1024
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_SRC 6
|
||||
#define GGML_MAX_NAME 64
|
||||
#define GGML_MAX_OP_PARAMS 64
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
|
||||
#define GGML_MAX_DIMS 4
|
||||
#define GGML_MAX_PARAMS 1024
|
||||
#define GGML_MAX_CONTEXTS 64
|
||||
#define GGML_MAX_SRC 6
|
||||
#define GGML_MAX_NAME 64
|
||||
#define GGML_MAX_OP_PARAMS 64
|
||||
#define GGML_DEFAULT_N_THREADS 4
|
||||
#define GGML_DEFAULT_GRAPH_SIZE 2048
|
||||
#if UINTPTR_MAX == 0xFFFFFFFF
|
||||
#define GGML_MEM_ALIGN 4
|
||||
#else
|
||||
@ -245,7 +245,10 @@
|
||||
do { \
|
||||
if (!(x)) { \
|
||||
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||
abort(); \
|
||||
fflush(stderr); \
|
||||
fflush(stdout); \
|
||||
ggml_print_backtrace(); \
|
||||
exit(1); \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
@ -451,6 +454,7 @@ extern "C" {
|
||||
GGML_UNARY_OP_GELU,
|
||||
GGML_UNARY_OP_GELU_QUICK,
|
||||
GGML_UNARY_OP_SILU,
|
||||
GGML_UNARY_OP_LEAKY
|
||||
};
|
||||
|
||||
enum ggml_object_type {
|
||||
@ -531,37 +535,33 @@ extern "C" {
|
||||
|
||||
int n_threads;
|
||||
|
||||
// the `n_tasks` of nodes, 1:1 mapping to cgraph nodes
|
||||
int n_tasks[GGML_MAX_NODES];
|
||||
|
||||
// abort ggml_graph_compute when true
|
||||
bool (*abort_callback)(void * data);
|
||||
void * abort_callback_data;
|
||||
};
|
||||
|
||||
// next prime after GGML_MAX_NODES
|
||||
// #define GGML_GRAPH_HASHTABLE_SIZE 4099
|
||||
// next prime after GGML_MAX_NODES * 2 (nodes + leafs)
|
||||
// #define GGML_GRAPH_HASHTABLE_SIZE 8273
|
||||
// #define GGML_GRAPH_HASHTABLE_SIZE 16411
|
||||
#define GGML_GRAPH_HASHTABLE_SIZE 32771
|
||||
|
||||
enum ggml_cgraph_eval_order {
|
||||
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
|
||||
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
|
||||
GGML_CGRAPH_EVAL_ORDER_COUNT
|
||||
};
|
||||
|
||||
struct ggml_hash_set {
|
||||
size_t size;
|
||||
struct ggml_tensor ** keys;
|
||||
};
|
||||
|
||||
// computation graph
|
||||
struct ggml_cgraph {
|
||||
int size;
|
||||
int n_nodes;
|
||||
int n_leafs;
|
||||
|
||||
struct ggml_tensor * nodes[GGML_MAX_NODES];
|
||||
struct ggml_tensor * grads[GGML_MAX_NODES];
|
||||
struct ggml_tensor * leafs[GGML_MAX_NODES];
|
||||
struct ggml_tensor ** nodes;
|
||||
struct ggml_tensor ** grads;
|
||||
struct ggml_tensor ** leafs;
|
||||
|
||||
void * visited_hash_table[GGML_GRAPH_HASHTABLE_SIZE];
|
||||
struct ggml_hash_set visited_hash_table;
|
||||
|
||||
enum ggml_cgraph_eval_order order;
|
||||
|
||||
@ -571,8 +571,6 @@ extern "C" {
|
||||
int64_t perf_time_us;
|
||||
};
|
||||
|
||||
static const size_t GGML_GRAPH_SIZE = sizeof(struct ggml_cgraph);
|
||||
|
||||
// scratch buffer
|
||||
struct ggml_scratch {
|
||||
size_t offs;
|
||||
@ -617,6 +615,8 @@ extern "C" {
|
||||
GGML_API int64_t ggml_cycles(void);
|
||||
GGML_API int64_t ggml_cycles_per_ms(void);
|
||||
|
||||
GGML_API void ggml_print_backtrace(void);
|
||||
|
||||
GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
|
||||
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
|
||||
|
||||
@ -709,7 +709,7 @@ extern "C" {
|
||||
// Context tensor enumeration and lookup
|
||||
GGML_API struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx);
|
||||
GGML_API struct ggml_tensor * ggml_get_next_tensor (struct ggml_context * ctx, struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_tensor * ggml_get_tensor (struct ggml_context * ctx, const char * name);
|
||||
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
|
||||
@ -943,6 +943,10 @@ extern "C" {
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_leaky(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_relu_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a);
|
||||
@ -1482,6 +1486,8 @@ extern "C" {
|
||||
int s0, // stride
|
||||
int p0); // padding
|
||||
|
||||
// the result will have 2*p0 padding for the first dimension
|
||||
// and 2*p1 padding for the second dimension
|
||||
GGML_API struct ggml_tensor * ggml_pool_2d(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
@ -1490,8 +1496,8 @@ extern "C" {
|
||||
int k1,
|
||||
int s0,
|
||||
int s1,
|
||||
int p0,
|
||||
int p1);
|
||||
float p0,
|
||||
float p1);
|
||||
|
||||
// nearest interpolate
|
||||
// used in stable-diffusion
|
||||
@ -1732,19 +1738,22 @@ extern "C" {
|
||||
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
|
||||
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
|
||||
|
||||
GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
|
||||
|
||||
// graph allocation in a context
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx);
|
||||
GGML_API struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor);
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
|
||||
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_view (struct ggml_context * ctx, struct ggml_cgraph * cgraph, int i0, int i1);
|
||||
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
|
||||
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
|
||||
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
|
||||
|
||||
GGML_API size_t ggml_graph_overhead(void);
|
||||
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
|
||||
|
||||
// ggml_graph_plan() has to be called before ggml_graph_compute()
|
||||
// when plan.work_size > 0, caller must allocate memory for plan.work_data
|
||||
GGML_API struct ggml_cplan ggml_graph_plan (struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
|
||||
GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
|
||||
GGML_API int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
|
||||
|
||||
// same as ggml_graph_compute() but the work data is allocated as a part of the context
|
||||
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
|
||||
@ -1752,8 +1761,8 @@ extern "C" {
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
|
||||
|
||||
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
||||
GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
|
||||
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
|
||||
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
|
||||
|
||||
// print info and performance information for the graph
|
||||
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
|
||||
@ -1816,6 +1825,8 @@ extern "C" {
|
||||
struct ggml_opt_params {
|
||||
enum ggml_opt_type type;
|
||||
|
||||
size_t graph_size;
|
||||
|
||||
int n_threads;
|
||||
|
||||
// delta-based convergence test
|
||||
|
40
llama.cpp
40
llama.cpp
@ -91,6 +91,8 @@
|
||||
#define LLAMA_ATTRIBUTE_FORMAT(...)
|
||||
#endif
|
||||
|
||||
#define LLAMA_MAX_NODES 4096
|
||||
|
||||
//
|
||||
// logging
|
||||
//
|
||||
@ -3618,7 +3620,7 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_llama() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
@ -3730,7 +3732,7 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_baichuan() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
@ -3850,7 +3852,7 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_falcon() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
@ -3972,7 +3974,7 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_starcoder() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * pos;
|
||||
@ -4071,7 +4073,7 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_persimmon() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_rot = n_embd_head / 2;
|
||||
|
||||
@ -4281,7 +4283,7 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_refact() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
@ -4372,7 +4374,7 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_bloom() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
@ -4466,7 +4468,7 @@ struct llm_build_context {
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_mpt() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
@ -8208,7 +8210,7 @@ struct llama_context * llama_new_context_with_model(
|
||||
{
|
||||
static const size_t tensor_alignment = 32;
|
||||
// the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
|
||||
ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
|
||||
ctx->buf_compute.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead());
|
||||
|
||||
// create measure allocator
|
||||
ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
|
||||
@ -8597,8 +8599,8 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
|
||||
if (kv_buf_size) {
|
||||
const size_t elt_size = ggml_element_size(kv_self.k);
|
||||
|
||||
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
|
||||
ggml_cgraph gf{};
|
||||
ggml_context * cpy_ctx = ggml_init({ 6*ggml_tensor_overhead() + ggml_graph_overhead(), NULL, /* no_alloc */ true });
|
||||
ggml_cgraph * gf = ggml_new_graph(cpy_ctx);
|
||||
|
||||
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
|
||||
std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
|
||||
@ -8616,9 +8618,9 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
|
||||
kv_head, n_embd, n_layer,
|
||||
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
|
||||
ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, k3d, kout3d));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, v3d, vout3d));
|
||||
ggml_graph_compute_helper(ctx->work_buffer, gf, /*n_threads*/ 1);
|
||||
|
||||
ggml_free(cpy_ctx);
|
||||
|
||||
@ -8725,8 +8727,8 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
||||
|
||||
const size_t elt_size = ggml_element_size(kv_self.k);
|
||||
|
||||
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
|
||||
ggml_cgraph gf{};
|
||||
ggml_context * cpy_ctx = ggml_init({ 6*ggml_tensor_overhead() + ggml_graph_overhead(), NULL, /* no_alloc */ true });
|
||||
ggml_cgraph * gf = ggml_new_graph(cpy_ctx);
|
||||
|
||||
ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_head, n_layer);
|
||||
kin3d->data = (void *) inp;
|
||||
@ -8744,9 +8746,9 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
||||
kv_head, n_embd, n_layer,
|
||||
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
|
||||
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
|
||||
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
|
||||
ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, kin3d, k3d));
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, vin3d, v3d));
|
||||
ggml_graph_compute_helper(ctx->work_buffer, gf, /*n_threads*/ 1);
|
||||
|
||||
ggml_free(cpy_ctx);
|
||||
}
|
||||
|
@ -2,14 +2,20 @@
|
||||
|
||||
cp -rpv ../ggml/src/ggml.c ./ggml.c
|
||||
cp -rpv ../ggml/src/ggml-alloc.c ./ggml-alloc.c
|
||||
cp -rpv ../ggml/src/ggml-backend-impl.h ./ggml-backend-impl.h
|
||||
cp -rpv ../ggml/src/ggml-backend.c ./ggml-backend.c
|
||||
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
||||
cp -rpv ../ggml/src/ggml-cuda.cu ./ggml-cuda.cu
|
||||
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
|
||||
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
|
||||
cp -rpv ../ggml/src/ggml-cuda.h ./ggml-cuda.h
|
||||
cp -rpv ../ggml/src/ggml-impl.h ./ggml-impl.h
|
||||
cp -rpv ../ggml/src/ggml-metal.h ./ggml-metal.h
|
||||
cp -rpv ../ggml/src/ggml-metal.m ./ggml-metal.m
|
||||
cp -rpv ../ggml/src/ggml-metal.metal ./ggml-metal.metal
|
||||
cp -rpv ../ggml/src/ggml-mpi.h ./ggml-mpi.h
|
||||
cp -rpv ../ggml/src/ggml-mpi.c ./ggml-mpi.c
|
||||
cp -rpv ../ggml/src/ggml-opencl.cpp ./ggml-opencl.cpp
|
||||
cp -rpv ../ggml/src/ggml-opencl.h ./ggml-opencl.h
|
||||
cp -rpv ../ggml/src/ggml-quants.c ./ggml-quants.c
|
||||
cp -rpv ../ggml/src/ggml-quants.h ./ggml-quants.h
|
||||
cp -rpv ../ggml/include/ggml/ggml.h ./ggml.h
|
||||
cp -rpv ../ggml/include/ggml/ggml-alloc.h ./ggml-alloc.h
|
||||
cp -rpv ../ggml/include/ggml/ggml-backend.h ./ggml-backend.h
|
||||
|
@ -231,9 +231,10 @@ static bool check_gradient(
|
||||
printf("GGML_N_THREADS = %d\n", n_threads);
|
||||
}
|
||||
|
||||
struct ggml_cgraph * gf = ggml_build_forward_ctx(ctx0, f);
|
||||
struct ggml_cgraph * gb = ggml_new_graph(ctx0);
|
||||
*gb = *gf;
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true);
|
||||
struct ggml_cgraph * gb = ggml_new_graph_custom(ctx0, GGML_DEFAULT_GRAPH_SIZE, true);
|
||||
ggml_build_forward_expand(gf, f);
|
||||
ggml_graph_cpy(gf, gb);
|
||||
ggml_build_backward_expand(ctx0, gf, gb, false);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx0, gf, n_threads);
|
||||
|
@ -109,10 +109,11 @@ int main(void) {
|
||||
struct ggml_tensor * d = ggml_sub(ctx, c, ab);
|
||||
struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d));
|
||||
|
||||
struct ggml_cgraph ge = ggml_build_forward(e);
|
||||
ggml_graph_reset(&ge);
|
||||
struct ggml_cgraph * ge = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
|
||||
ggml_build_forward_expand(ge, e);
|
||||
ggml_graph_reset(ge);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
|
||||
ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
|
||||
|
||||
const float fe = ggml_get_f32_1d(e, 0);
|
||||
printf("%s: e = %.4f\n", __func__, fe);
|
||||
@ -121,9 +122,9 @@ int main(void) {
|
||||
|
||||
ggml_opt(ctx, opt_params, e);
|
||||
|
||||
ggml_graph_reset(&ge);
|
||||
ggml_graph_reset(ge);
|
||||
|
||||
ggml_graph_compute_with_ctx(ctx, &ge, /*n_threads*/ 1);
|
||||
ggml_graph_compute_with_ctx(ctx, ge, /*n_threads*/ 1);
|
||||
|
||||
const float fe_opt = ggml_get_f32_1d(e, 0);
|
||||
printf("%s: original e = %.4f\n", __func__, fe);
|
||||
|
Loading…
Reference in New Issue
Block a user