mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
Add chat template support for llama-cli (#8068)
* add chat template support for llama-cli * add help message * server: simplify format_chat * more consistent naming * improve * add llama_chat_format_example * fix server * code style * code style * Update examples/main/main.cpp Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
3791ad2193
commit
48e6b92cc3
@ -1444,7 +1444,10 @@ void gpt_params_print_usage(int /*argc*/, char ** argv, const gpt_params & param
|
|||||||
options.push_back({ "main", " --cfg-negative-prompt-file FNAME",
|
options.push_back({ "main", " --cfg-negative-prompt-file FNAME",
|
||||||
"negative prompt file to use for guidance" });
|
"negative prompt file to use for guidance" });
|
||||||
options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale });
|
options.push_back({ "main", " --cfg-scale N", "strength of guidance (default: %.1f, 1.0 = disable)", (double)sparams.cfg_scale });
|
||||||
|
options.push_back({ "main", " --chat-template JINJA_TEMPLATE",
|
||||||
|
"set custom jinja chat template (default: template taken from model's metadata)\n"
|
||||||
|
"only commonly used templates are accepted:\n"
|
||||||
|
"https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template" });
|
||||||
options.push_back({ "grammar" });
|
options.push_back({ "grammar" });
|
||||||
options.push_back({ "*", " --grammar GRAMMAR", "BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", sparams.grammar.c_str() });
|
options.push_back({ "*", " --grammar GRAMMAR", "BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", sparams.grammar.c_str() });
|
||||||
options.push_back({ "*", " --grammar-file FNAME", "file to read grammar from" });
|
options.push_back({ "*", " --grammar-file FNAME", "file to read grammar from" });
|
||||||
@ -2604,12 +2607,67 @@ bool llama_should_add_bos_token(const llama_model * model) {
|
|||||||
return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
|
return add_bos != -1 ? bool(add_bos) : (llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// Chat template utils
|
||||||
|
//
|
||||||
|
|
||||||
bool llama_chat_verify_template(const std::string & tmpl) {
|
bool llama_chat_verify_template(const std::string & tmpl) {
|
||||||
llama_chat_message chat[] = {{"user", "test"}};
|
llama_chat_message chat[] = {{"user", "test"}};
|
||||||
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
|
int res = llama_chat_apply_template(nullptr, tmpl.c_str(), chat, 1, true, nullptr, 0);
|
||||||
return res >= 0;
|
return res >= 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::string llama_chat_apply_template(const struct llama_model * model,
|
||||||
|
const std::string & tmpl,
|
||||||
|
const std::vector<llama_chat_msg> & msgs,
|
||||||
|
bool add_ass) {
|
||||||
|
int alloc_size = 0;
|
||||||
|
std::vector<llama_chat_message> chat;
|
||||||
|
for (auto & msg : msgs) {
|
||||||
|
chat.push_back({msg.role.c_str(), msg.content.c_str()});
|
||||||
|
alloc_size += (msg.role.size() + msg.content.size()) * 1.25;
|
||||||
|
}
|
||||||
|
|
||||||
|
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
|
||||||
|
std::vector<char> buf(alloc_size);
|
||||||
|
|
||||||
|
// run the first time to get the total output length
|
||||||
|
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||||
|
|
||||||
|
// if it turns out that our buffer is too small, we resize it
|
||||||
|
if ((size_t) res > buf.size()) {
|
||||||
|
buf.resize(res);
|
||||||
|
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), add_ass, buf.data(), buf.size());
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string formatted_chat(buf.data(), res);
|
||||||
|
return formatted_chat;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string llama_chat_format_single(const struct llama_model * model,
|
||||||
|
const std::string & tmpl,
|
||||||
|
const std::vector<llama_chat_msg> & past_msg,
|
||||||
|
const llama_chat_msg & new_msg,
|
||||||
|
bool add_ass) {
|
||||||
|
auto fmt_past_msg = llama_chat_apply_template(model, tmpl, past_msg, false);
|
||||||
|
std::vector<llama_chat_msg> chat_new(past_msg);
|
||||||
|
chat_new.push_back(new_msg);
|
||||||
|
auto fmt_new_msg = llama_chat_apply_template(model, tmpl, chat_new, add_ass);
|
||||||
|
auto formatted = fmt_new_msg.substr(fmt_past_msg.size(), fmt_new_msg.size() - fmt_past_msg.size());
|
||||||
|
return formatted;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string llama_chat_format_example(const struct llama_model * model,
|
||||||
|
const std::string & tmpl) {
|
||||||
|
std::vector<llama_chat_msg> msgs = {
|
||||||
|
{"system", "You are a helpful assistant"},
|
||||||
|
{"user", "Hello"},
|
||||||
|
{"assistant", "Hi there"},
|
||||||
|
{"user", "How are you?"},
|
||||||
|
};
|
||||||
|
return llama_chat_apply_template(model, tmpl, msgs, true);
|
||||||
|
}
|
||||||
|
|
||||||
//
|
//
|
||||||
// KV cache utils
|
// KV cache utils
|
||||||
//
|
//
|
||||||
|
@ -365,9 +365,32 @@ bool llama_should_add_bos_token(const llama_model * model);
|
|||||||
// Chat template utils
|
// Chat template utils
|
||||||
//
|
//
|
||||||
|
|
||||||
|
// same with llama_chat_message, but uses std::string
|
||||||
|
struct llama_chat_msg {
|
||||||
|
std::string role;
|
||||||
|
std::string content;
|
||||||
|
};
|
||||||
|
|
||||||
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
// Check if the template supplied via "--chat-template" is supported or not. Returns true if it's valid
|
||||||
bool llama_chat_verify_template(const std::string & tmpl);
|
bool llama_chat_verify_template(const std::string & tmpl);
|
||||||
|
|
||||||
|
// CPP wrapper for llama_chat_apply_template
|
||||||
|
std::string llama_chat_apply_template(const struct llama_model * model,
|
||||||
|
const std::string & tmpl,
|
||||||
|
const std::vector<llama_chat_msg> & chat,
|
||||||
|
bool add_ass);
|
||||||
|
|
||||||
|
// Format single message, while taking into account the position of that message in chat history
|
||||||
|
std::string llama_chat_format_single(const struct llama_model * model,
|
||||||
|
const std::string & tmpl,
|
||||||
|
const std::vector<llama_chat_msg> & past_msg,
|
||||||
|
const llama_chat_msg & new_msg,
|
||||||
|
bool add_ass);
|
||||||
|
|
||||||
|
// Returns an example of formatted chat
|
||||||
|
std::string llama_chat_format_example(const struct llama_model * model,
|
||||||
|
const std::string & tmpl);
|
||||||
|
|
||||||
//
|
//
|
||||||
// KV cache utils
|
// KV cache utils
|
||||||
//
|
//
|
||||||
|
@ -39,12 +39,12 @@ static std::ostringstream * g_output_ss;
|
|||||||
static std::vector<llama_token> * g_output_tokens;
|
static std::vector<llama_token> * g_output_tokens;
|
||||||
static bool is_interacting = false;
|
static bool is_interacting = false;
|
||||||
|
|
||||||
static bool file_exists(const std::string &path) {
|
static bool file_exists(const std::string & path) {
|
||||||
std::ifstream f(path.c_str());
|
std::ifstream f(path.c_str());
|
||||||
return f.good();
|
return f.good();
|
||||||
}
|
}
|
||||||
|
|
||||||
static bool file_is_empty(const std::string &path) {
|
static bool file_is_empty(const std::string & path) {
|
||||||
std::ifstream f;
|
std::ifstream f;
|
||||||
f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
f.exceptions(std::ifstream::failbit | std::ifstream::badbit);
|
||||||
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
|
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate);
|
||||||
@ -117,6 +117,14 @@ static void llama_log_callback_logTee(ggml_log_level level, const char * text, v
|
|||||||
LOG_TEE("%s", text);
|
LOG_TEE("%s", text);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static std::string chat_add_and_format(struct llama_model * model, std::vector<llama_chat_msg> & chat_msgs, std::string role, std::string content) {
|
||||||
|
llama_chat_msg new_msg{role, content};
|
||||||
|
auto formatted = llama_chat_format_single(
|
||||||
|
model, g_params->chat_template, chat_msgs, new_msg, role == "user");
|
||||||
|
chat_msgs.push_back({role, content});
|
||||||
|
return formatted;
|
||||||
|
}
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
int main(int argc, char ** argv) {
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
g_params = ¶ms;
|
g_params = ¶ms;
|
||||||
@ -190,6 +198,7 @@ int main(int argc, char ** argv) {
|
|||||||
llama_model * model;
|
llama_model * model;
|
||||||
llama_context * ctx;
|
llama_context * ctx;
|
||||||
llama_context * ctx_guidance = NULL;
|
llama_context * ctx_guidance = NULL;
|
||||||
|
std::vector<llama_chat_msg> chat_msgs;
|
||||||
g_model = &model;
|
g_model = &model;
|
||||||
g_ctx = &ctx;
|
g_ctx = &ctx;
|
||||||
|
|
||||||
@ -215,6 +224,8 @@ int main(int argc, char ** argv) {
|
|||||||
__func__, n_ctx_train, n_ctx);
|
__func__, n_ctx_train, n_ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
LOG_TEE("%s: chat template example: %s\n", __func__, llama_chat_format_example(model, params.chat_template).c_str());
|
||||||
|
|
||||||
// print system information
|
// print system information
|
||||||
{
|
{
|
||||||
LOG_TEE("\n");
|
LOG_TEE("\n");
|
||||||
@ -249,16 +260,21 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
std::vector<llama_token> embd_inp;
|
std::vector<llama_token> embd_inp;
|
||||||
|
|
||||||
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
|
{
|
||||||
LOG("tokenize the prompt\n");
|
auto prompt = params.conversation
|
||||||
embd_inp = ::llama_tokenize(ctx, params.prompt, true, true);
|
? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode
|
||||||
} else {
|
: params.prompt;
|
||||||
LOG("use session tokens\n");
|
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) {
|
||||||
embd_inp = session_tokens;
|
LOG("tokenize the prompt\n");
|
||||||
}
|
embd_inp = ::llama_tokenize(ctx, prompt, true, true);
|
||||||
|
} else {
|
||||||
|
LOG("use session tokens\n");
|
||||||
|
embd_inp = session_tokens;
|
||||||
|
}
|
||||||
|
|
||||||
LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
|
LOG("prompt: \"%s\"\n", log_tostr(prompt));
|
||||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
||||||
|
}
|
||||||
|
|
||||||
// Should not run without any tokens
|
// Should not run without any tokens
|
||||||
if (embd_inp.empty()) {
|
if (embd_inp.empty()) {
|
||||||
@ -478,6 +494,7 @@ int main(int argc, char ** argv) {
|
|||||||
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
||||||
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
||||||
std::ostringstream output_ss; g_output_ss = &output_ss;
|
std::ostringstream output_ss; g_output_ss = &output_ss;
|
||||||
|
std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode
|
||||||
|
|
||||||
// the first thing we will do is to output the prompt, so set color accordingly
|
// the first thing we will do is to output the prompt, so set color accordingly
|
||||||
console::set_display(console::prompt);
|
console::set_display(console::prompt);
|
||||||
@ -793,11 +810,18 @@ int main(int argc, char ** argv) {
|
|||||||
is_antiprompt = true;
|
is_antiprompt = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
chat_add_and_format(model, chat_msgs, "system", assistant_ss.str());
|
||||||
is_interacting = true;
|
is_interacting = true;
|
||||||
printf("\n");
|
printf("\n");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// if current token is not EOG, we add it to current assistant message
|
||||||
|
if (params.conversation) {
|
||||||
|
auto id = llama_sampling_last(ctx_sampling);
|
||||||
|
assistant_ss << llama_token_to_piece(ctx, id, false);
|
||||||
|
}
|
||||||
|
|
||||||
if (n_past > 0 && is_interacting) {
|
if (n_past > 0 && is_interacting) {
|
||||||
LOG("waiting for user input\n");
|
LOG("waiting for user input\n");
|
||||||
|
|
||||||
@ -848,8 +872,12 @@ int main(int argc, char ** argv) {
|
|||||||
string_process_escapes(buffer);
|
string_process_escapes(buffer);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
std::string user_inp = params.conversation
|
||||||
|
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer))
|
||||||
|
: std::move(buffer);
|
||||||
|
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix)
|
||||||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
||||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
|
const auto line_inp = ::llama_tokenize(ctx, user_inp, false, params.conversation);
|
||||||
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
||||||
|
|
||||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
||||||
@ -864,6 +892,9 @@ int main(int argc, char ** argv) {
|
|||||||
output_ss << llama_token_to_piece(ctx, token);
|
output_ss << llama_token_to_piece(ctx, token);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// reset assistant message
|
||||||
|
assistant_ss.str("");
|
||||||
|
|
||||||
n_remain -= line_inp.size();
|
n_remain -= line_inp.size();
|
||||||
LOG("n_remain: %d\n", n_remain);
|
LOG("n_remain: %d\n", n_remain);
|
||||||
} else {
|
} else {
|
||||||
|
@ -2606,17 +2606,9 @@ int main(int argc, char ** argv) {
|
|||||||
|
|
||||||
// print sample chat example to make it clear which template is used
|
// print sample chat example to make it clear which template is used
|
||||||
{
|
{
|
||||||
json chat;
|
|
||||||
chat.push_back({{"role", "system"}, {"content", "You are a helpful assistant"}});
|
|
||||||
chat.push_back({{"role", "user"}, {"content", "Hello"}});
|
|
||||||
chat.push_back({{"role", "assistant"}, {"content", "Hi there"}});
|
|
||||||
chat.push_back({{"role", "user"}, {"content", "How are you?"}});
|
|
||||||
|
|
||||||
const std::string chat_example = format_chat(ctx_server.model, params.chat_template, chat);
|
|
||||||
|
|
||||||
LOG_INFO("chat template", {
|
LOG_INFO("chat template", {
|
||||||
{"chat_example", chat_example},
|
{"chat_example", llama_chat_format_example(ctx_server.model, params.chat_template)},
|
||||||
{"built_in", params.chat_template.empty()},
|
{"built_in", params.chat_template.empty()},
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -118,36 +118,17 @@ static inline void server_log(const char * level, const char * function, int lin
|
|||||||
|
|
||||||
// Format given chat. If tmpl is empty, we take the template from model metadata
|
// Format given chat. If tmpl is empty, we take the template from model metadata
|
||||||
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
|
inline std::string format_chat(const struct llama_model * model, const std::string & tmpl, const std::vector<json> & messages) {
|
||||||
size_t alloc_size = 0;
|
std::vector<llama_chat_msg> chat;
|
||||||
// vector holding all allocated string to be passed to llama_chat_apply_template
|
|
||||||
std::vector<std::string> str(messages.size() * 2);
|
|
||||||
std::vector<llama_chat_message> chat(messages.size());
|
|
||||||
|
|
||||||
for (size_t i = 0; i < messages.size(); ++i) {
|
for (size_t i = 0; i < messages.size(); ++i) {
|
||||||
const auto & curr_msg = messages[i];
|
const auto & curr_msg = messages[i];
|
||||||
str[i*2 + 0] = json_value(curr_msg, "role", std::string(""));
|
std::string role = json_value(curr_msg, "role", std::string(""));
|
||||||
str[i*2 + 1] = json_value(curr_msg, "content", std::string(""));
|
std::string content = json_value(curr_msg, "content", std::string(""));
|
||||||
alloc_size += str[i*2 + 1].length();
|
chat.push_back({role, content});
|
||||||
chat[i].role = str[i*2 + 0].c_str();
|
|
||||||
chat[i].content = str[i*2 + 1].c_str();
|
|
||||||
}
|
}
|
||||||
|
|
||||||
const char * ptr_tmpl = tmpl.empty() ? nullptr : tmpl.c_str();
|
auto formatted_chat = llama_chat_apply_template(model, tmpl, chat, true);
|
||||||
std::vector<char> buf(alloc_size * 2);
|
|
||||||
|
|
||||||
// run the first time to get the total output length
|
|
||||||
int32_t res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
|
|
||||||
|
|
||||||
// if it turns out that our buffer is too small, we resize it
|
|
||||||
if ((size_t) res > buf.size()) {
|
|
||||||
buf.resize(res);
|
|
||||||
res = llama_chat_apply_template(model, ptr_tmpl, chat.data(), chat.size(), true, buf.data(), buf.size());
|
|
||||||
}
|
|
||||||
|
|
||||||
const std::string formatted_chat(buf.data(), res);
|
|
||||||
|
|
||||||
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
|
LOG_VERBOSE("formatted_chat", {{"text", formatted_chat.c_str()}});
|
||||||
|
|
||||||
return formatted_chat;
|
return formatted_chat;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -18818,10 +18818,10 @@ static int32_t llama_chat_apply_template_internal(
|
|||||||
if (add_ass) {
|
if (add_ass) {
|
||||||
ss << "<|im_start|>assistant\n";
|
ss << "<|im_start|>assistant\n";
|
||||||
}
|
}
|
||||||
} else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
|
} else if (tmpl == "llama2" || tmpl == "mistral" || tmpl.find("[INST]") != std::string::npos) {
|
||||||
// llama2 template and its variants
|
// llama2 template and its variants
|
||||||
// [variant] support system message
|
// [variant] support system message
|
||||||
bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
|
bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos || tmpl == "mistral";
|
||||||
// [variant] space before + after response
|
// [variant] space before + after response
|
||||||
bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
|
bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
|
||||||
// [variant] add BOS inside history
|
// [variant] add BOS inside history
|
||||||
|
@ -7,6 +7,7 @@
|
|||||||
#include <cassert>
|
#include <cassert>
|
||||||
|
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
|
#include "common.h"
|
||||||
|
|
||||||
int main(void) {
|
int main(void) {
|
||||||
llama_chat_message conversation[] = {
|
llama_chat_message conversation[] = {
|
||||||
@ -119,5 +120,24 @@ int main(void) {
|
|||||||
std::cout << output << "\n-------------------------\n";
|
std::cout << output << "\n-------------------------\n";
|
||||||
assert(output == expected);
|
assert(output == expected);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// test llama_chat_format_single
|
||||||
|
std::cout << "\n\n=== llama_chat_format_single ===\n\n";
|
||||||
|
std::vector<llama_chat_msg> chat2;
|
||||||
|
chat2.push_back({"system", "You are a helpful assistant"});
|
||||||
|
chat2.push_back({"user", "Hello"});
|
||||||
|
chat2.push_back({"assistant", "I am assistant"});
|
||||||
|
llama_chat_msg new_msg{"user", "How are you"};
|
||||||
|
|
||||||
|
auto fmt_single = [&](std::string tmpl) {
|
||||||
|
auto output = llama_chat_format_single(nullptr, tmpl, chat2, new_msg, true);
|
||||||
|
std::cout << "fmt_single(" << tmpl << ")\n" << output << "\n-------------------------\n";
|
||||||
|
return output;
|
||||||
|
};
|
||||||
|
assert(fmt_single("chatml") == "<|im_start|>user\nHow are you<|im_end|>\n<|im_start|>assistant\n");
|
||||||
|
assert(fmt_single("llama2") == "[INST] How are you [/INST]");
|
||||||
|
assert(fmt_single("gemma") == "<start_of_turn>user\nHow are you<end_of_turn>\n<start_of_turn>model\n");
|
||||||
|
assert(fmt_single("llama3") == "<|start_header_id|>user<|end_header_id|>\n\nHow are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n");
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
Loading…
Reference in New Issue
Block a user