mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-15 06:40:45 +01:00
tests : avoid creating RNGs for each tensor
ggml-ci
This commit is contained in:
parent
8eb8fd94e2
commit
49bafe0986
@ -16,39 +16,37 @@
|
|||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
|
static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float max = 1.0f) {
|
||||||
|
// static RNG initialization (revisit if n_threads stops being constant)
|
||||||
|
static const size_t n_threads = std::thread::hardware_concurrency();
|
||||||
|
static std::vector<std::default_random_engine> generators = []() {
|
||||||
|
std::random_device rd;
|
||||||
|
std::vector<std::default_random_engine> vec;
|
||||||
|
vec.reserve(n_threads);
|
||||||
|
//for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(1234 + i); } // fixed seed
|
||||||
|
for (size_t i = 0; i < n_threads; i++) { vec.emplace_back(rd()); }
|
||||||
|
return vec;
|
||||||
|
}();
|
||||||
|
|
||||||
size_t size = ggml_nelements(tensor);
|
size_t size = ggml_nelements(tensor);
|
||||||
std::vector<float> data(size);
|
std::vector<float> data(size);
|
||||||
|
|
||||||
#if 0
|
auto init_thread = [&](size_t ith, size_t start, size_t end) {
|
||||||
static std::default_random_engine generator(1234);
|
|
||||||
std::uniform_real_distribution<float> distribution(min, max);
|
|
||||||
|
|
||||||
for (size_t i = 0; i < size; i++) {
|
|
||||||
data[i] = distribution(generator);
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
auto init_thread = [&](size_t start, size_t end) {
|
|
||||||
std::random_device rd;
|
|
||||||
std::default_random_engine generator(rd());
|
|
||||||
std::uniform_real_distribution<float> distribution(min, max);
|
std::uniform_real_distribution<float> distribution(min, max);
|
||||||
|
|
||||||
for (size_t i = start; i < end; i++) {
|
for (size_t i = start; i < end; i++) {
|
||||||
data[i] = distribution(generator);
|
data[i] = distribution(generators[ith]);
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
size_t n_threads = std::thread::hardware_concurrency();
|
|
||||||
std::vector<std::thread> threads;
|
std::vector<std::thread> threads;
|
||||||
threads.reserve(n_threads);
|
threads.reserve(n_threads);
|
||||||
for (size_t i = 0; i < n_threads; i++) {
|
for (size_t i = 0; i < n_threads; i++) {
|
||||||
size_t start = i*size/n_threads;
|
size_t start = i*size/n_threads;
|
||||||
size_t end = (i+1)*size/n_threads;
|
size_t end = (i+1)*size/n_threads;
|
||||||
threads.emplace_back(init_thread, start, end);
|
threads.emplace_back(init_thread, i, start, end);
|
||||||
}
|
}
|
||||||
for (auto & t : threads) {
|
for (auto & t : threads) {
|
||||||
t.join();
|
t.join();
|
||||||
}
|
}
|
||||||
#endif
|
|
||||||
|
|
||||||
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
|
if (tensor->type == GGML_TYPE_F32 || tensor->type == GGML_TYPE_I32) {
|
||||||
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
|
ggml_backend_tensor_set(tensor, data.data(), 0, size * sizeof(float));
|
||||||
|
Loading…
Reference in New Issue
Block a user