mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 13:28:50 +01:00
model: support arch DbrxForCausalLM
(#6515)
* model: dbrx convert to gguf #6344 * llama: support dbrx #6344 * doc: dbrx: add the model as supported * scripts: get-wikitext-2 add unzip * llama: increase maximum experts allowed * llama: factorize moe graph implementation between grok, mixtral and dbrx --------- Co-authored-by: Megha Agarwal <16129366+megha95@users.noreply.github.com>
This commit is contained in:
parent
ab9a3240a9
commit
4bd0f93e4a
@ -94,6 +94,7 @@ Typically finetunes of the base models below are supported as well.
|
|||||||
- [x] LLaMA 2 🦙🦙
|
- [x] LLaMA 2 🦙🦙
|
||||||
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
- [X] [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1)
|
||||||
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
|
- [x] [Mixtral MoE](https://huggingface.co/models?search=mistral-ai/Mixtral)
|
||||||
|
- [x] [DBRX](https://huggingface.co/databricks/dbrx-instruct)
|
||||||
- [X] Falcon
|
- [X] Falcon
|
||||||
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
- [X] [Chinese LLaMA / Alpaca](https://github.com/ymcui/Chinese-LLaMA-Alpaca) and [Chinese LLaMA-2 / Alpaca-2](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2)
|
||||||
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
- [X] [Vigogne (French)](https://github.com/bofenghuang/vigogne)
|
||||||
|
@ -1427,6 +1427,102 @@ class GrokModel(Model):
|
|||||||
self.gguf_writer.add_tensor(new_name, data)
|
self.gguf_writer.add_tensor(new_name, data)
|
||||||
|
|
||||||
|
|
||||||
|
@Model.register("DbrxForCausalLM")
|
||||||
|
class DbrxModel(Model):
|
||||||
|
model_arch = gguf.MODEL_ARCH.DBRX
|
||||||
|
|
||||||
|
def set_gguf_parameters(self):
|
||||||
|
ffn_config = self.hparams["ffn_config"]
|
||||||
|
attn_config = self.hparams["attn_config"]
|
||||||
|
self.gguf_writer.add_name(self.hparams["model_type"])
|
||||||
|
self.gguf_writer.add_block_count(self.hparams["n_layers"])
|
||||||
|
|
||||||
|
self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
|
||||||
|
self.gguf_writer.add_embedding_length(self.hparams["d_model"])
|
||||||
|
self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
|
||||||
|
|
||||||
|
self.gguf_writer.add_head_count(self.hparams["n_heads"])
|
||||||
|
self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
|
||||||
|
|
||||||
|
self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
|
||||||
|
|
||||||
|
self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
|
||||||
|
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
|
||||||
|
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
|
||||||
|
|
||||||
|
self.gguf_writer.add_layer_norm_eps(1e-5)
|
||||||
|
|
||||||
|
self.gguf_writer.add_file_type(self.ftype)
|
||||||
|
print(f"gguf: file type = {self.ftype}")
|
||||||
|
|
||||||
|
def write_tensors(self):
|
||||||
|
block_count = self.hparams.get("n_layers")
|
||||||
|
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||||
|
for name, data_torch in self.get_tensors():
|
||||||
|
n_expert = self.hparams["ffn_config"]["moe_num_experts"]
|
||||||
|
n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
|
||||||
|
n_embd = self.hparams["d_model"]
|
||||||
|
|
||||||
|
# Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
|
||||||
|
# original implementation expects (n_expert, n_ff, n_embd) for all experts weights
|
||||||
|
# But llama.cpp moe graph works differently
|
||||||
|
# AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
|
||||||
|
# so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
|
||||||
|
exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
|
||||||
|
"ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
|
||||||
|
"ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
|
||||||
|
experts = False
|
||||||
|
for exp_tensor_name in exp_tensor_names.keys():
|
||||||
|
if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
|
||||||
|
experts = True
|
||||||
|
data_torch = data_torch.view(n_expert, n_ff, n_embd)
|
||||||
|
if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
|
||||||
|
data_torch = data_torch.permute(*permute_tensor)
|
||||||
|
break
|
||||||
|
|
||||||
|
old_dtype = data_torch.dtype
|
||||||
|
|
||||||
|
# convert any unsupported data types to float32
|
||||||
|
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||||
|
data_torch = data_torch.to(torch.float32)
|
||||||
|
|
||||||
|
data = data_torch.squeeze().numpy()
|
||||||
|
|
||||||
|
# map tensor names
|
||||||
|
# In MoE models the ffn tensors are typically most of the model weights,
|
||||||
|
# and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
|
||||||
|
# Every other model has the weight names ending in .weight,
|
||||||
|
# let's assume that is the convention which is not the case for dbrx:
|
||||||
|
# https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
|
||||||
|
new_name = tensor_map.get_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
|
||||||
|
if new_name is None:
|
||||||
|
print(f"Can not map tensor {name!r}")
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
data_dtype = data.dtype
|
||||||
|
|
||||||
|
# Most of the codebase that takes in 1D tensors only handles F32 tensors
|
||||||
|
# and most of the outputs tensors are F32.
|
||||||
|
if data_dtype != np.float32 and n_dims == 1:
|
||||||
|
print(f"Can not map tensor {name!r}: all 1D tensors must be F32")
|
||||||
|
sys.exit()
|
||||||
|
|
||||||
|
# if f32 desired, convert any float16 to float32
|
||||||
|
if self.ftype == 0 and data_dtype == np.float16:
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
|
||||||
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||||
|
if self.ftype == 1 and data_dtype == np.float32 and n_dims > 1:
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
|
||||||
|
print(f"{new_name}, n_dims = {n_dims}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||||
|
|
||||||
|
self.gguf_writer.add_tensor(new_name, data)
|
||||||
|
|
||||||
|
|
||||||
@Model.register("MiniCPMForCausalLM")
|
@Model.register("MiniCPMForCausalLM")
|
||||||
class MiniCPMModel(Model):
|
class MiniCPMModel(Model):
|
||||||
model_arch = gguf.MODEL_ARCH.MINICPM
|
model_arch = gguf.MODEL_ARCH.MINICPM
|
||||||
|
@ -28,14 +28,27 @@ static std::string ggml_ne_string(const ggml_tensor * t) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
|
static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne, const size_t * nb, int64_t n) {
|
||||||
|
GGML_ASSERT(n > 0);
|
||||||
float sum = 0;
|
float sum = 0;
|
||||||
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
for (int64_t i3 = 0; i3 < ne[3]; i3++) {
|
||||||
printf(" [\n");
|
printf(" [\n");
|
||||||
for (int64_t i2 = 0; i2 < ne[2] && i2 < n; i2++) {
|
for (int64_t i2 = 0; i2 < ne[2]; i2++) {
|
||||||
|
if (i2 == n && ne[2] > 2*n) {
|
||||||
|
printf(" ..., \n");
|
||||||
|
i2 = ne[2] - n;
|
||||||
|
}
|
||||||
printf(" [\n");
|
printf(" [\n");
|
||||||
for (int64_t i1 = 0; i1 < ne[1] && i1 < n; i1++) {
|
for (int64_t i1 = 0; i1 < ne[1]; i1++) {
|
||||||
|
if (i1 == n && ne[1] > 2*n) {
|
||||||
|
printf(" ..., \n");
|
||||||
|
i1 = ne[1] - n;
|
||||||
|
}
|
||||||
printf(" [");
|
printf(" [");
|
||||||
for (int64_t i0 = 0; i0 < ne[0] && i0 < n; i0++) {
|
for (int64_t i0 = 0; i0 < ne[0]; i0++) {
|
||||||
|
if (i0 == n && ne[0] > 2*n) {
|
||||||
|
printf("..., ");
|
||||||
|
i0 = ne[0] - n;
|
||||||
|
}
|
||||||
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
|
||||||
float v;
|
float v;
|
||||||
if (type == GGML_TYPE_F16) {
|
if (type == GGML_TYPE_F16) {
|
||||||
@ -51,17 +64,14 @@ static void ggml_print_tensor(uint8_t * data, ggml_type type, const int64_t * ne
|
|||||||
} else {
|
} else {
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
printf("%8.4f", v);
|
printf("%12.4f", v);
|
||||||
sum += v;
|
sum += v;
|
||||||
if (i0 < ne[0] - 1 && i0 < n - 1) printf(", ");
|
if (i0 < ne[0] - 1) printf(", ");
|
||||||
}
|
}
|
||||||
if (ne[0] > n) printf(", ...");
|
|
||||||
printf("],\n");
|
printf("],\n");
|
||||||
}
|
}
|
||||||
if (ne[1] > n) printf(" ...\n");
|
|
||||||
printf(" ],\n");
|
printf(" ],\n");
|
||||||
}
|
}
|
||||||
if (ne[2] > n) printf(" ...\n");
|
|
||||||
printf(" ]\n");
|
printf(" ]\n");
|
||||||
printf(" sum = %f\n", sum);
|
printf(" sum = %f\n", sum);
|
||||||
}
|
}
|
||||||
|
@ -126,6 +126,7 @@ class MODEL_ARCH(IntEnum):
|
|||||||
MAMBA = auto()
|
MAMBA = auto()
|
||||||
XVERSE = auto()
|
XVERSE = auto()
|
||||||
COMMAND_R = auto()
|
COMMAND_R = auto()
|
||||||
|
DBRX = auto()
|
||||||
|
|
||||||
|
|
||||||
class MODEL_TENSOR(IntEnum):
|
class MODEL_TENSOR(IntEnum):
|
||||||
@ -195,6 +196,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||||||
MODEL_ARCH.MAMBA: "mamba",
|
MODEL_ARCH.MAMBA: "mamba",
|
||||||
MODEL_ARCH.XVERSE: "xverse",
|
MODEL_ARCH.XVERSE: "xverse",
|
||||||
MODEL_ARCH.COMMAND_R: "command-r",
|
MODEL_ARCH.COMMAND_R: "command-r",
|
||||||
|
MODEL_ARCH.DBRX: "dbrx",
|
||||||
}
|
}
|
||||||
|
|
||||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||||
@ -642,6 +644,19 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||||||
MODEL_TENSOR.ATTN_K_NORM,
|
MODEL_TENSOR.ATTN_K_NORM,
|
||||||
MODEL_TENSOR.ATTN_Q_NORM,
|
MODEL_TENSOR.ATTN_Q_NORM,
|
||||||
],
|
],
|
||||||
|
MODEL_ARCH.DBRX: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.ATTN_OUT_NORM,
|
||||||
|
MODEL_TENSOR.FFN_GATE_INP,
|
||||||
|
MODEL_TENSOR.FFN_GATE_EXP,
|
||||||
|
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||||
|
MODEL_TENSOR.FFN_UP_EXP,
|
||||||
|
],
|
||||||
# TODO
|
# TODO
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -10,7 +10,7 @@ class TensorNameMap:
|
|||||||
# Token embeddings
|
# Token embeddings
|
||||||
MODEL_TENSOR.TOKEN_EMBD: (
|
MODEL_TENSOR.TOKEN_EMBD: (
|
||||||
"gpt_neox.embed_in", # gptneox
|
"gpt_neox.embed_in", # gptneox
|
||||||
"transformer.wte", # gpt2 gpt-j mpt refact qwen
|
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx
|
||||||
"transformer.word_embeddings", # falcon
|
"transformer.word_embeddings", # falcon
|
||||||
"word_embeddings", # bloom
|
"word_embeddings", # bloom
|
||||||
"model.embed_tokens", # llama-hf
|
"model.embed_tokens", # llama-hf
|
||||||
@ -48,7 +48,7 @@ class TensorNameMap:
|
|||||||
# Output
|
# Output
|
||||||
MODEL_TENSOR.OUTPUT: (
|
MODEL_TENSOR.OUTPUT: (
|
||||||
"embed_out", # gptneox
|
"embed_out", # gptneox
|
||||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba
|
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx
|
||||||
"output", # llama-pth bloom internlm2
|
"output", # llama-pth bloom internlm2
|
||||||
"word_embeddings_for_head", # persimmon
|
"word_embeddings_for_head", # persimmon
|
||||||
"lm_head.linear", # phi2
|
"lm_head.linear", # phi2
|
||||||
@ -60,7 +60,7 @@ class TensorNameMap:
|
|||||||
"transformer.ln_f", # gpt2 gpt-j falcon
|
"transformer.ln_f", # gpt2 gpt-j falcon
|
||||||
"model.norm", # llama-hf baichuan internlm2
|
"model.norm", # llama-hf baichuan internlm2
|
||||||
"norm", # llama-pth
|
"norm", # llama-pth
|
||||||
"transformer.norm_f", # mpt
|
"transformer.norm_f", # mpt dbrx
|
||||||
"ln_f", # refact bloom qwen gpt2
|
"ln_f", # refact bloom qwen gpt2
|
||||||
"language_model.encoder.final_layernorm", # persimmon
|
"language_model.encoder.final_layernorm", # persimmon
|
||||||
"model.final_layernorm", # persimmon
|
"model.final_layernorm", # persimmon
|
||||||
@ -96,6 +96,7 @@ class TensorNameMap:
|
|||||||
"model.layers.{bid}.norm", # mamba-qbert
|
"model.layers.{bid}.norm", # mamba-qbert
|
||||||
"backbone.layers.{bid}.norm", # mamba
|
"backbone.layers.{bid}.norm", # mamba
|
||||||
"transformer.decoder_layer.{bid}.rms_norm", # Grok
|
"transformer.decoder_layer.{bid}.rms_norm", # Grok
|
||||||
|
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention norm 2
|
# Attention norm 2
|
||||||
@ -108,6 +109,7 @@ class TensorNameMap:
|
|||||||
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
||||||
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen
|
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen
|
||||||
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
||||||
|
"transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
|
||||||
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
||||||
"h.{bid}.self_attention.query_key_value", # bloom
|
"h.{bid}.self_attention.query_key_value", # bloom
|
||||||
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
|
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
|
||||||
@ -152,23 +154,24 @@ class TensorNameMap:
|
|||||||
|
|
||||||
# Attention output
|
# Attention output
|
||||||
MODEL_TENSOR.ATTN_OUT: (
|
MODEL_TENSOR.ATTN_OUT: (
|
||||||
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
||||||
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
|
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
|
||||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||||
"h.{bid}.self_attention.dense", # bloom
|
"h.{bid}.self_attention.dense", # bloom
|
||||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
||||||
"layers.{bid}.attention.wo", # llama-pth
|
"layers.{bid}.attention.wo", # llama-pth
|
||||||
"encoder.layer.{bid}.attention.output.dense", # bert
|
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||||
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
||||||
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
|
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
|
||||||
"model.layers.{bid}.self_attn.dense", # persimmon
|
"model.layers.{bid}.self_attn.dense", # persimmon
|
||||||
"h.{bid}.attn.c_proj", # gpt2
|
"h.{bid}.attn.c_proj", # gpt2
|
||||||
"transformer.h.{bid}.mixer.out_proj", # phi2
|
"transformer.h.{bid}.mixer.out_proj", # phi2
|
||||||
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
|
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
|
||||||
"model.layers.{bid}.attention.wo", # internlm2
|
"model.layers.{bid}.attention.wo", # internlm2
|
||||||
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
|
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
|
||||||
"transformer.decoder_layer.{bid}.multi_head_attention.linear"# Grok
|
"transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
|
||||||
|
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention output norm
|
# Attention output norm
|
||||||
@ -176,6 +179,7 @@ class TensorNameMap:
|
|||||||
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
|
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
|
||||||
"encoder.layers.{bid}.norm1", # nomic-bert
|
"encoder.layers.{bid}.norm1", # nomic-bert
|
||||||
"transformer.decoder_layer.{bid}.rms_norm_1", # Grok
|
"transformer.decoder_layer.{bid}.rms_norm_1", # Grok
|
||||||
|
"transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
|
||||||
),
|
),
|
||||||
|
|
||||||
# Rotary embeddings
|
# Rotary embeddings
|
||||||
@ -202,9 +206,10 @@ class TensorNameMap:
|
|||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_GATE_INP: (
|
MODEL_TENSOR.FFN_GATE_INP: (
|
||||||
"layers.{bid}.feed_forward.gate", # mixtral
|
"layers.{bid}.feed_forward.gate", # mixtral
|
||||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||||
"transformer.decoder_layer.{bid}.router" # Grok
|
"transformer.decoder_layer.{bid}.router", # Grok
|
||||||
|
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
|
||||||
),
|
),
|
||||||
|
|
||||||
# Feed-forward up
|
# Feed-forward up
|
||||||
@ -233,6 +238,7 @@ class TensorNameMap:
|
|||||||
MODEL_TENSOR.FFN_UP_EXP: (
|
MODEL_TENSOR.FFN_UP_EXP: (
|
||||||
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
||||||
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
||||||
|
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
|
||||||
),
|
),
|
||||||
|
|
||||||
# AWQ-activation gate
|
# AWQ-activation gate
|
||||||
@ -251,8 +257,9 @@ class TensorNameMap:
|
|||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||||
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
||||||
"transformer.decoder_layer.{bid}.moe.linear" # Grok (merged)
|
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
|
||||||
|
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
|
||||||
),
|
),
|
||||||
|
|
||||||
# Feed-forward down
|
# Feed-forward down
|
||||||
@ -280,6 +287,7 @@ class TensorNameMap:
|
|||||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
||||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
||||||
|
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
|
||||||
),
|
),
|
||||||
|
|
||||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||||
|
377
llama.cpp
377
llama.cpp
@ -105,7 +105,7 @@
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define LLAMA_MAX_NODES 8192
|
#define LLAMA_MAX_NODES 8192
|
||||||
#define LLAMA_MAX_EXPERTS 8
|
#define LLAMA_MAX_EXPERTS 16
|
||||||
|
|
||||||
|
|
||||||
//
|
//
|
||||||
@ -220,6 +220,7 @@ enum llm_arch {
|
|||||||
LLM_ARCH_MAMBA,
|
LLM_ARCH_MAMBA,
|
||||||
LLM_ARCH_XVERSE,
|
LLM_ARCH_XVERSE,
|
||||||
LLM_ARCH_COMMAND_R,
|
LLM_ARCH_COMMAND_R,
|
||||||
|
LLM_ARCH_DBRX,
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -252,6 +253,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|||||||
{ LLM_ARCH_MAMBA, "mamba" },
|
{ LLM_ARCH_MAMBA, "mamba" },
|
||||||
{ LLM_ARCH_XVERSE, "xverse" },
|
{ LLM_ARCH_XVERSE, "xverse" },
|
||||||
{ LLM_ARCH_COMMAND_R, "command-r" },
|
{ LLM_ARCH_COMMAND_R, "command-r" },
|
||||||
|
{ LLM_ARCH_DBRX, "dbrx" },
|
||||||
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -934,6 +936,22 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|||||||
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
|
{
|
||||||
|
LLM_ARCH_DBRX,
|
||||||
|
{
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
|
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
|
{ LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||||
|
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||||
|
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||||
|
},
|
||||||
|
},
|
||||||
{
|
{
|
||||||
LLM_ARCH_UNKNOWN,
|
LLM_ARCH_UNKNOWN,
|
||||||
{
|
{
|
||||||
@ -1707,6 +1725,7 @@ enum e_model {
|
|||||||
MODEL_XL,
|
MODEL_XL,
|
||||||
MODEL_8x7B,
|
MODEL_8x7B,
|
||||||
MODEL_8x22B,
|
MODEL_8x22B,
|
||||||
|
MODEL_16x12B,
|
||||||
};
|
};
|
||||||
|
|
||||||
static const size_t kiB = 1024;
|
static const size_t kiB = 1024;
|
||||||
@ -3562,6 +3581,7 @@ static const char * llama_model_type_name(e_model type) {
|
|||||||
case MODEL_XL: return "1.5B";
|
case MODEL_XL: return "1.5B";
|
||||||
case MODEL_8x7B: return "8x7B";
|
case MODEL_8x7B: return "8x7B";
|
||||||
case MODEL_8x22B: return "8x22B";
|
case MODEL_8x22B: return "8x22B";
|
||||||
|
case MODEL_16x12B: return "16x12B";
|
||||||
default: return "?B";
|
default: return "?B";
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -3983,6 +4003,16 @@ static void llm_load_hparams(
|
|||||||
default: model.type = e_model::MODEL_UNKNOWN;
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_DBRX:
|
||||||
|
{
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
|
||||||
|
ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
|
||||||
|
|
||||||
|
switch (hparams.n_layer) {
|
||||||
|
case 40: model.type = e_model::MODEL_16x12B; break;
|
||||||
|
default: model.type = e_model::MODEL_UNKNOWN;
|
||||||
|
}
|
||||||
|
} break;
|
||||||
default: (void)0;
|
default: (void)0;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -4671,6 +4701,39 @@ static bool llm_load_tensors(
|
|||||||
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
|
layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_DBRX:
|
||||||
|
{
|
||||||
|
if (n_expert == 0) {
|
||||||
|
throw std::runtime_error("DBRX model cannot have zero experts");
|
||||||
|
}
|
||||||
|
|
||||||
|
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||||
|
|
||||||
|
// output
|
||||||
|
{
|
||||||
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||||
|
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < n_layer; ++i) {
|
||||||
|
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||||
|
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||||
|
|
||||||
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
|
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||||
|
|
||||||
|
layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||||||
|
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||||
|
|
||||||
|
layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
|
||||||
|
|
||||||
|
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||||||
|
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||||||
|
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
|
||||||
|
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case LLM_ARCH_BAICHUAN:
|
case LLM_ARCH_BAICHUAN:
|
||||||
{
|
{
|
||||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||||
@ -6433,62 +6496,7 @@ struct llm_build_context {
|
|||||||
LLM_NORM_RMS, cb, il);
|
LLM_NORM_RMS, cb, il);
|
||||||
cb(cur, "ffn_norm", il);
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il);
|
||||||
cb(logits, "ffn_moe_logits", il);
|
|
||||||
|
|
||||||
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
|
|
||||||
cb(probs, "ffn_moe_probs", il);
|
|
||||||
|
|
||||||
// select experts
|
|
||||||
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
|
|
||||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
|
||||||
|
|
||||||
ggml_tensor * weights = ggml_get_rows(ctx0,
|
|
||||||
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
|
|
||||||
cb(weights, "ffn_moe_weights", il);
|
|
||||||
|
|
||||||
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
|
||||||
|
|
||||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
|
||||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
|
||||||
|
|
||||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
|
||||||
cb(weights, "ffn_moe_weights_norm", il);
|
|
||||||
|
|
||||||
// compute expert outputs
|
|
||||||
ggml_tensor * moe_out = nullptr;
|
|
||||||
|
|
||||||
for (int i = 0; i < n_expert_used; ++i) {
|
|
||||||
ggml_tensor * cur_expert;
|
|
||||||
|
|
||||||
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
|
|
||||||
cb(cur_up, "ffn_moe_up", il);
|
|
||||||
|
|
||||||
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
|
|
||||||
cb(cur_gate, "ffn_moe_gate", il);
|
|
||||||
|
|
||||||
cur_gate = ggml_silu(ctx0, cur_gate);
|
|
||||||
cb(cur_gate, "ffn_moe_silu", il);
|
|
||||||
|
|
||||||
cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
|
|
||||||
cb(cur_expert, "ffn_moe_gate_par", il);
|
|
||||||
|
|
||||||
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
|
|
||||||
cb(cur_expert, "ffn_moe_down", il);
|
|
||||||
|
|
||||||
cur_expert = ggml_mul(ctx0, cur_expert,
|
|
||||||
ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
|
||||||
cb(cur_expert, "ffn_moe_weighted", il);
|
|
||||||
|
|
||||||
if (i == 0) {
|
|
||||||
moe_out = cur_expert;
|
|
||||||
} else {
|
|
||||||
moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
|
||||||
cb(moe_out, "ffn_moe_out", il);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
cur = moe_out;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||||
@ -6520,6 +6528,78 @@ struct llm_build_context {
|
|||||||
return gf;
|
return gf;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// REVIEW: will be replaced by https://github.com/ggerganov/llama.cpp/pull/6505
|
||||||
|
ggml_tensor * build_moe_ffn(ggml_tensor * cur, int32_t n_tokens, llm_ffn_op_type type_op, int il) {
|
||||||
|
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
||||||
|
cb(logits, "ffn_moe_logits", il);
|
||||||
|
|
||||||
|
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
|
||||||
|
cb(probs, "ffn_moe_probs", il);
|
||||||
|
|
||||||
|
// select experts
|
||||||
|
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
|
||||||
|
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
||||||
|
|
||||||
|
ggml_tensor * weights = ggml_get_rows(ctx0,
|
||||||
|
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
|
||||||
|
cb(weights, "ffn_moe_weights", il);
|
||||||
|
|
||||||
|
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
||||||
|
|
||||||
|
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
||||||
|
cb(weights_sum, "ffn_moe_weights_sum", il);
|
||||||
|
|
||||||
|
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
||||||
|
cb(weights, "ffn_moe_weights_norm", il);
|
||||||
|
|
||||||
|
// compute expert outputs
|
||||||
|
ggml_tensor * moe_out = nullptr;
|
||||||
|
|
||||||
|
for (int i = 0; i < n_expert_used; ++i) {
|
||||||
|
ggml_tensor * cur_expert;
|
||||||
|
|
||||||
|
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
|
||||||
|
cb(cur_up, "ffn_moe_up", il);
|
||||||
|
|
||||||
|
ggml_tensor * gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
|
||||||
|
cb(gate, "ffn_moe_gate", il);
|
||||||
|
|
||||||
|
switch (type_op) {
|
||||||
|
case LLM_FFN_SILU:
|
||||||
|
{
|
||||||
|
gate = ggml_silu(ctx0, gate);
|
||||||
|
cb(gate, "ffn_moe_silu", il);
|
||||||
|
} break;
|
||||||
|
case LLM_FFN_GELU:
|
||||||
|
{
|
||||||
|
gate = ggml_gelu(ctx0, gate);
|
||||||
|
cb(gate, "ffn_moe_gelu", il);
|
||||||
|
} break;
|
||||||
|
default:
|
||||||
|
GGML_ASSERT(false);
|
||||||
|
}
|
||||||
|
|
||||||
|
cur_expert = ggml_mul(ctx0, cur_up, gate);
|
||||||
|
cb(cur_expert, "ffn_moe_gate_par", il);
|
||||||
|
|
||||||
|
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
|
||||||
|
cb(cur_expert, "ffn_moe_down", il);
|
||||||
|
|
||||||
|
cur_expert = ggml_mul(ctx0, cur_expert,
|
||||||
|
ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
||||||
|
cb(cur_expert, "ffn_moe_weighted", il);
|
||||||
|
|
||||||
|
if (i == 0) {
|
||||||
|
moe_out = cur_expert;
|
||||||
|
} else {
|
||||||
|
moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
||||||
|
cb(moe_out, "ffn_moe_out", il);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
return moe_out;
|
||||||
|
}
|
||||||
|
|
||||||
struct ggml_cgraph * build_baichuan() {
|
struct ggml_cgraph * build_baichuan() {
|
||||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||||
|
|
||||||
@ -6967,63 +7047,7 @@ struct llm_build_context {
|
|||||||
LLM_NORM_RMS, cb, il);
|
LLM_NORM_RMS, cb, il);
|
||||||
cb(cur, "ffn_norm", il);
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
|
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_GELU, il);
|
||||||
cb(logits, "ffn_moe_logits", il);
|
|
||||||
|
|
||||||
ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
|
|
||||||
cb(probs, "ffn_moe_probs", il);
|
|
||||||
|
|
||||||
// select experts
|
|
||||||
ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
|
|
||||||
cb(selected_experts->src[0], "ffn_moe_argsort", il);
|
|
||||||
|
|
||||||
ggml_tensor * weights = ggml_get_rows(ctx0,
|
|
||||||
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
|
|
||||||
cb(weights, "ffn_moe_weights", il);
|
|
||||||
|
|
||||||
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
|
|
||||||
|
|
||||||
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
|
|
||||||
cb(weights_sum, "ffn_moe_weights_sum", il);
|
|
||||||
|
|
||||||
weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
|
|
||||||
cb(weights, "ffn_moe_weights_norm", il);
|
|
||||||
|
|
||||||
// compute expert outputs
|
|
||||||
ggml_tensor * moe_out = nullptr;
|
|
||||||
|
|
||||||
for (int i = 0; i < n_expert_used; ++i) {
|
|
||||||
ggml_tensor * cur_expert;
|
|
||||||
|
|
||||||
ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
|
|
||||||
cb(cur_up, "ffn_moe_up", il);
|
|
||||||
|
|
||||||
ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
|
|
||||||
cb(cur_gate, "ffn_moe_gate", il);
|
|
||||||
|
|
||||||
//GeLU
|
|
||||||
cur_gate = ggml_gelu(ctx0, cur_gate);
|
|
||||||
cb(cur_gate, "ffn_moe_gelu", il);
|
|
||||||
|
|
||||||
cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
|
|
||||||
cb(cur_expert, "ffn_moe_gate_par", il);
|
|
||||||
|
|
||||||
cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
|
|
||||||
cb(cur_expert, "ffn_moe_down", il);
|
|
||||||
|
|
||||||
cur_expert = ggml_mul(ctx0, cur_expert,
|
|
||||||
ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
|
|
||||||
cb(cur_expert, "ffn_moe_weighted", il);
|
|
||||||
|
|
||||||
if (i == 0) {
|
|
||||||
moe_out = cur_expert;
|
|
||||||
} else {
|
|
||||||
moe_out = ggml_add(ctx0, moe_out, cur_expert);
|
|
||||||
cb(moe_out, "ffn_moe_out", il);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
cur = moe_out;
|
|
||||||
|
|
||||||
// Grok
|
// Grok
|
||||||
// if layer_out_norm is present then apply it before adding the input
|
// if layer_out_norm is present then apply it before adding the input
|
||||||
@ -7071,6 +7095,126 @@ struct llm_build_context {
|
|||||||
return gf;
|
return gf;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct ggml_cgraph * build_dbrx() {
|
||||||
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||||
|
|
||||||
|
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||||
|
int32_t n_tokens = this->n_tokens;
|
||||||
|
|
||||||
|
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||||
|
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||||
|
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||||
|
|
||||||
|
struct ggml_tensor * cur;
|
||||||
|
struct ggml_tensor * inpL;
|
||||||
|
|
||||||
|
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||||
|
|
||||||
|
// inp_pos - contains the positions
|
||||||
|
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||||
|
|
||||||
|
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||||
|
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||||
|
|
||||||
|
for (int il = 0; il < n_layer; ++il) {
|
||||||
|
struct ggml_tensor * inpSA = inpL;
|
||||||
|
|
||||||
|
// norm
|
||||||
|
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||||
|
model.layers[il].attn_norm, NULL,
|
||||||
|
LLM_NORM, cb, il);
|
||||||
|
cb(cur, "attn_norm", il);
|
||||||
|
|
||||||
|
// self-attention
|
||||||
|
{
|
||||||
|
struct ggml_tensor * Qcur = nullptr;
|
||||||
|
struct ggml_tensor * Kcur = nullptr;
|
||||||
|
struct ggml_tensor * Vcur = nullptr;
|
||||||
|
|
||||||
|
cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
|
||||||
|
cb(cur, "wqkv", il);
|
||||||
|
|
||||||
|
cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
|
||||||
|
cb(cur, "wqkv_clamped", il);
|
||||||
|
|
||||||
|
Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
|
||||||
|
Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
|
||||||
|
Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
|
||||||
|
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
cb(Vcur, "Vcur", il);
|
||||||
|
|
||||||
|
Qcur = ggml_rope_custom(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
||||||
|
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
|
Kcur = ggml_rope_custom(
|
||||||
|
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
||||||
|
n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||||
|
ext_factor, attn_factor, beta_fast, beta_slow
|
||||||
|
);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||||
|
model.layers[il].wo, NULL,
|
||||||
|
Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (il == n_layer - 1) {
|
||||||
|
// skip computing output for unused tokens
|
||||||
|
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
|
n_tokens = n_outputs;
|
||||||
|
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||||
|
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||||
|
cb(ffn_inp, "ffn_inp", il);
|
||||||
|
|
||||||
|
// feed-forward network
|
||||||
|
// MoE branch
|
||||||
|
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||||
|
model.layers[il].attn_out_norm, NULL,
|
||||||
|
LLM_NORM, cb, il);
|
||||||
|
cb(cur, "attn_out_norm", il);
|
||||||
|
|
||||||
|
cur = build_moe_ffn(cur, n_tokens, LLM_FFN_SILU, il);
|
||||||
|
|
||||||
|
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||||
|
cb(cur, "ffn_out", il);
|
||||||
|
|
||||||
|
ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
|
||||||
|
if (layer_dir != nullptr) {
|
||||||
|
cur = ggml_add(ctx0, cur, layer_dir);
|
||||||
|
}
|
||||||
|
cb(cur, "l_out", il);
|
||||||
|
|
||||||
|
// input for next layer
|
||||||
|
inpL = cur;
|
||||||
|
}
|
||||||
|
|
||||||
|
cur = inpL;
|
||||||
|
|
||||||
|
cur = llm_build_norm(ctx0, cur, hparams,
|
||||||
|
model.output_norm, NULL,
|
||||||
|
LLM_NORM, cb, -1);
|
||||||
|
cb(cur, "result_norm", -1);
|
||||||
|
|
||||||
|
// lm_head
|
||||||
|
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||||
|
|
||||||
|
cb(cur, "result_output", -1);
|
||||||
|
|
||||||
|
ggml_build_forward_expand(gf, cur);
|
||||||
|
|
||||||
|
return gf;
|
||||||
|
}
|
||||||
|
|
||||||
struct ggml_cgraph * build_starcoder() {
|
struct ggml_cgraph * build_starcoder() {
|
||||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||||
|
|
||||||
@ -9785,6 +9929,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|||||||
{
|
{
|
||||||
result = llm.build_command_r();
|
result = llm.build_command_r();
|
||||||
} break;
|
} break;
|
||||||
|
case LLM_ARCH_DBRX:
|
||||||
|
{
|
||||||
|
result = llm.build_dbrx();
|
||||||
|
} break;
|
||||||
default:
|
default:
|
||||||
GGML_ASSERT(false);
|
GGML_ASSERT(false);
|
||||||
}
|
}
|
||||||
@ -14638,6 +14786,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|||||||
// the pairs of head values are offset by n_rot/2
|
// the pairs of head values are offset by n_rot/2
|
||||||
case LLM_ARCH_FALCON:
|
case LLM_ARCH_FALCON:
|
||||||
case LLM_ARCH_GROK:
|
case LLM_ARCH_GROK:
|
||||||
|
case LLM_ARCH_DBRX:
|
||||||
case LLM_ARCH_PERSIMMON:
|
case LLM_ARCH_PERSIMMON:
|
||||||
case LLM_ARCH_BERT:
|
case LLM_ARCH_BERT:
|
||||||
case LLM_ARCH_NOMIC_BERT:
|
case LLM_ARCH_NOMIC_BERT:
|
||||||
|
@ -1,10 +1,11 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
wget https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
wget https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
|
||||||
|
unzip wikitext-2-raw-v1.zip
|
||||||
|
|
||||||
echo "Usage:"
|
echo "Usage:"
|
||||||
echo ""
|
echo ""
|
||||||
echo " ./perplexity -m model.gguf -f wiki.test.raw [other params]"
|
echo " ./perplexity -m model.gguf -f wikitext-2-raw/wiki.test.raw [other params]"
|
||||||
echo ""
|
echo ""
|
||||||
|
|
||||||
exit 0
|
exit 0
|
||||||
|
Loading…
Reference in New Issue
Block a user