mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 09:59:18 +01:00
convert-llama-h5-to-gguf.py : no need to convert tensors twice
This commit is contained in:
parent
8f09157ec9
commit
4cef57c81a
@ -32,7 +32,6 @@ if len(sys.argv) < 3:
|
|||||||
|
|
||||||
# output in the same directory as the model
|
# output in the same directory as the model
|
||||||
dir_model = sys.argv[1]
|
dir_model = sys.argv[1]
|
||||||
fname_out = sys.argv[1] + "/ggml-model.bin"
|
|
||||||
last_dir = os.path.basename(os.path.normpath(dir_model))
|
last_dir = os.path.basename(os.path.normpath(dir_model))
|
||||||
|
|
||||||
|
|
||||||
@ -49,6 +48,7 @@ if len(sys.argv) > 2:
|
|||||||
if ftype < 0 or ftype > 1:
|
if ftype < 0 or ftype > 1:
|
||||||
print("Invalid ftype: " + str(ftype))
|
print("Invalid ftype: " + str(ftype))
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
||||||
|
|
||||||
print("gguf: loading model "+last_dir)
|
print("gguf: loading model "+last_dir)
|
||||||
@ -72,8 +72,7 @@ llm_arch = "llama"
|
|||||||
head_count = hparams["num_attention_heads"]
|
head_count = hparams["num_attention_heads"]
|
||||||
block_count = hparams["num_hidden_layers"]
|
block_count = hparams["num_hidden_layers"]
|
||||||
|
|
||||||
gguf_writer.add_name("llama2-7b")
|
gguf_writer.add_name(last_dir)
|
||||||
gguf_writer.add_description("gguf test model")
|
|
||||||
gguf_writer.add_architecture(llm_arch)
|
gguf_writer.add_architecture(llm_arch)
|
||||||
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
gguf_writer.add_context_length(llm_arch, hparams["max_position_embeddings"])
|
||||||
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
gguf_writer.add_embedding_length(llm_arch, hparams["hidden_size"])
|
||||||
@ -186,22 +185,30 @@ for name in list_vars.keys():
|
|||||||
sys.exit()
|
sys.exit()
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
n_dims = len(data.shape)
|
||||||
|
data_dtype = data.dtype
|
||||||
|
|
||||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
# print( name + " dims " + str(n_dims) + " dtype " + str(data.dtype) )
|
||||||
ftype_cur = 0
|
|
||||||
if ftype != 0:
|
|
||||||
if name.endswith(".weight") and n_dims == 2:
|
|
||||||
data = data.astype(np.float16)
|
|
||||||
ftype_cur = 1
|
|
||||||
else:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
ftype_cur = 0
|
|
||||||
else:
|
|
||||||
if data.dtype != np.float32:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
ftype_cur = 0
|
|
||||||
|
|
||||||
gguf_writer.add_tensor_info(name, data)
|
if data.dtype != np.float16 and data.dtype != np.float32:
|
||||||
|
# convert any unsupported data types to float32
|
||||||
|
data_dtype = np.float32
|
||||||
|
elif ftype == 1 and data.dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||||
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||||
|
data_dtype = np.float16
|
||||||
|
|
||||||
|
nelements = 1
|
||||||
|
|
||||||
|
for i in range(n_dims):
|
||||||
|
nelements *= data.shape[n_dims - 1 - i]
|
||||||
|
|
||||||
|
data_nbytes = 0
|
||||||
|
if data_dtype == np.float16:
|
||||||
|
data_nbytes = nelements * 2
|
||||||
|
elif data_dtype == np.float32:
|
||||||
|
data_nbytes = nelements * 4
|
||||||
|
|
||||||
|
|
||||||
|
gguf_writer.add_tensor_info(name, data.shape, data_dtype, data_nbytes)
|
||||||
|
|
||||||
|
|
||||||
print("gguf: write header")
|
print("gguf: write header")
|
||||||
@ -212,7 +219,7 @@ print("gguf: write tensor metadata")
|
|||||||
gguf_writer.write_ti_data_to_file()
|
gguf_writer.write_ti_data_to_file()
|
||||||
|
|
||||||
# tensor data
|
# tensor data
|
||||||
print("gguf: write tensor data")
|
print("gguf: convert and write tensor data")
|
||||||
|
|
||||||
for name in list_vars.keys():
|
for name in list_vars.keys():
|
||||||
data = list_vars[name].squeeze().numpy()
|
data = list_vars[name].squeeze().numpy()
|
||||||
@ -226,20 +233,14 @@ for name in list_vars.keys():
|
|||||||
data = permute(data, head_count)
|
data = permute(data, head_count)
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
n_dims = len(data.shape)
|
||||||
|
data_dtype = data.dtype
|
||||||
|
|
||||||
# ftype == 0 -> float32, ftype == 1 -> float16
|
if data_dtype != np.float16 and data_dtype != np.float32:
|
||||||
ftype_cur = 0
|
# convert any unsupported data types to float32
|
||||||
if ftype != 0:
|
data = data.astype(np.float32)
|
||||||
if name.endswith(".weight") and n_dims == 2:
|
elif ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||||
|
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||||
data = data.astype(np.float16)
|
data = data.astype(np.float16)
|
||||||
ftype_cur = 1
|
|
||||||
else:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
ftype_cur = 0
|
|
||||||
else:
|
|
||||||
if data.dtype != np.float32:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
ftype_cur = 0
|
|
||||||
|
|
||||||
gguf_writer.write_tensor_to_file(data)
|
gguf_writer.write_tensor_to_file(data)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user