mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
lora : improve compat with mergekit-extract-lora
(#11131)
* (wip) support mergekit-extracted lora * support mergekit-extract-lora * use lora->get_scale * correct comment * correct norm name & condition * add some hints
This commit is contained in:
parent
c07d437bbd
commit
4d2b3d8804
@ -226,6 +226,9 @@ def get_base_tensor_name(lora_tensor_name: str) -> str:
|
||||
base_name = lora_tensor_name.replace("base_model.model.", "")
|
||||
base_name = base_name.replace(".lora_A.weight", ".weight")
|
||||
base_name = base_name.replace(".lora_B.weight", ".weight")
|
||||
# models produced by mergekit-extract-lora have token embeddings in the adapter
|
||||
base_name = base_name.replace(".lora_embedding_A", ".weight")
|
||||
base_name = base_name.replace(".lora_embedding_B", ".weight")
|
||||
return base_name
|
||||
|
||||
|
||||
@ -260,6 +263,10 @@ def parse_args() -> argparse.Namespace:
|
||||
"--base", type=Path,
|
||||
help="directory containing Hugging Face model config files (config.json, tokenizer.json) for the base model that the adapter is based on - only config is needed, actual model weights are not required. If base model is unspecified, it will be loaded from Hugging Face hub based on the adapter config",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--base-model-id", type=str,
|
||||
help="the model ID of the base model, if it is not available locally or in the adapter config. If specified, it will ignore --base and load the base model config from the Hugging Face hub (Example: 'meta-llama/Llama-3.2-1B-Instruct')",
|
||||
)
|
||||
parser.add_argument(
|
||||
"lora_path", type=Path,
|
||||
help="directory containing Hugging Face PEFT LoRA config (adapter_model.json) and weights (adapter_model.safetensors or adapter_model.bin)",
|
||||
@ -290,6 +297,7 @@ if __name__ == '__main__':
|
||||
|
||||
dir_base_model: Path | None = args.base
|
||||
dir_lora: Path = args.lora_path
|
||||
base_model_id: str | None = args.base_model_id
|
||||
lora_config = dir_lora / "adapter_config.json"
|
||||
input_model = dir_lora / "adapter_model.safetensors"
|
||||
|
||||
@ -313,7 +321,10 @@ if __name__ == '__main__':
|
||||
lparams: dict[str, Any] = json.load(f)
|
||||
|
||||
# load base model
|
||||
if dir_base_model is None:
|
||||
if base_model_id is not None:
|
||||
logger.info(f"Loading base model from Hugging Face: {base_model_id}")
|
||||
hparams = load_hparams_from_hf(base_model_id)
|
||||
elif dir_base_model is None:
|
||||
if "base_model_name_or_path" in lparams:
|
||||
model_id = lparams["base_model_name_or_path"]
|
||||
logger.info(f"Loading base model from Hugging Face: {model_id}")
|
||||
@ -371,11 +382,16 @@ if __name__ == '__main__':
|
||||
if self.lazy:
|
||||
tensor = LazyTorchTensor.from_eager(tensor)
|
||||
base_name = get_base_tensor_name(name)
|
||||
is_lora_a = ".lora_A.weight" in name
|
||||
is_lora_b = ".lora_B.weight" in name
|
||||
# note: mergekit-extract-lora also adds token embeddings to the adapter
|
||||
is_lora_a = ".lora_A.weight" in name or ".lora_embedding_A" in name
|
||||
is_lora_b = ".lora_B.weight" in name or ".lora_embedding_B" in name
|
||||
if not is_lora_a and not is_lora_b:
|
||||
if ".base_layer.weight" in name:
|
||||
continue
|
||||
# mergekit-extract-lora add these layernorm to the adapter, we need to keep them
|
||||
if "_layernorm" in name or ".norm" in name:
|
||||
yield (base_name, tensor)
|
||||
continue
|
||||
logger.error(f"Unexpected name '{name}': Not a lora_A or lora_B tensor")
|
||||
if ".embed_tokens.weight" in name or ".lm_head.weight" in name:
|
||||
logger.error("Embeddings is present in the adapter. This can be due to new tokens added during fine tuning")
|
||||
@ -407,9 +423,21 @@ if __name__ == '__main__':
|
||||
if name == "lm_head.weight" and len(dest) == 0:
|
||||
raise ValueError("lm_head is present in adapter, but is ignored in base model")
|
||||
for dest_name, dest_data in dest:
|
||||
# mergekit-extract-lora add these layernorm to the adapter
|
||||
if "_norm" in dest_name:
|
||||
assert dest_data.dim() == 1
|
||||
yield (dest_name, dest_data)
|
||||
continue
|
||||
|
||||
# otherwise, we must get the lora_A and lora_B tensors
|
||||
assert isinstance(dest_data, LoraTorchTensor)
|
||||
lora_a, lora_b = dest_data.get_lora_A_B()
|
||||
|
||||
# note: mergekit-extract-lora flip and transpose A and B
|
||||
# here we only need to transpose token_embd.lora_a, see llm_build_inp_embd()
|
||||
if "token_embd.weight" in dest_name:
|
||||
lora_a = lora_a.T
|
||||
|
||||
yield (dest_name + ".lora_a", lora_a)
|
||||
yield (dest_name + ".lora_b", lora_b)
|
||||
|
||||
|
@ -242,6 +242,10 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
} else {
|
||||
ab_map[name].b = cur;
|
||||
}
|
||||
} else if (str_endswith(name, "_norm.weight")) {
|
||||
// TODO: add support for norm vector
|
||||
// for now, we don't really care because most adapters still work fine without it
|
||||
continue;
|
||||
} else {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' has unexpected suffix");
|
||||
}
|
||||
@ -251,6 +255,7 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
for (auto & it : ab_map) {
|
||||
const std::string & name = it.first;
|
||||
llama_lora_weight & w = it.second;
|
||||
bool is_token_embd = str_endswith(name, "token_embd.weight");
|
||||
|
||||
if (!w.a || !w.b) {
|
||||
throw std::runtime_error("LoRA tensor pair for '" + name + "' is missing one component");
|
||||
@ -259,17 +264,24 @@ static void llama_lora_adapter_init_impl(struct llama_model & model, const char
|
||||
// device buft and device ctx
|
||||
auto * model_tensor = llama_model_get_tensor(model, name.c_str());
|
||||
if (!model_tensor) {
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model");
|
||||
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
|
||||
}
|
||||
|
||||
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
|
||||
// validate tensor shape
|
||||
if (is_token_embd) {
|
||||
// expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()
|
||||
if (model_tensor->ne[0] != w.b->ne[1] || model_tensor->ne[1] != w.a->ne[1]) {
|
||||
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
|
||||
}
|
||||
} else {
|
||||
if (model_tensor->ne[0] != w.a->ne[0] || model_tensor->ne[1] != w.b->ne[1]) {
|
||||
throw std::runtime_error("tensor '" + name + "' has incorrect shape");
|
||||
throw std::runtime_error("tensor '" + name + "' has incorrect shape (hint: maybe wrong base model?)");
|
||||
}
|
||||
if (w.a->ne[1] != w.b->ne[0]) {
|
||||
throw std::runtime_error("lora_a tensor is not transposed (hint: adapter from \"finetune\" example is no longer supported)");
|
||||
}
|
||||
}
|
||||
|
||||
// save tensor to adapter
|
||||
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
|
||||
|
@ -45,6 +45,13 @@ struct llama_lora_weight {
|
||||
struct ggml_tensor * a = nullptr;
|
||||
struct ggml_tensor * b = nullptr;
|
||||
|
||||
// get actual scale based on rank and alpha
|
||||
float get_scale(float alpha, float adapter_scale) {
|
||||
const float rank = (float) b->ne[0];
|
||||
const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale;
|
||||
return scale;
|
||||
}
|
||||
|
||||
llama_lora_weight() = default;
|
||||
llama_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
|
||||
};
|
||||
|
@ -2545,6 +2545,21 @@ static struct ggml_tensor * llm_build_inp_embd(
|
||||
ggml_set_input(lctx.inp_tokens);
|
||||
|
||||
inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
|
||||
|
||||
// apply lora for embedding tokens if needed
|
||||
for (auto & it : lctx.lora_adapters) {
|
||||
struct llama_lora_weight * lora = it.first->get_weight(tok_embd);
|
||||
if (lora == nullptr) {
|
||||
continue;
|
||||
}
|
||||
const float adapter_scale = it.second;
|
||||
const float scale = lora->get_scale(it.first->alpha, adapter_scale);
|
||||
struct ggml_tensor * inpL_delta = ggml_scale(ctx, ggml_mul_mat(
|
||||
ctx, lora->b, // non-transposed lora_b
|
||||
ggml_get_rows(ctx, lora->a, lctx.inp_tokens)
|
||||
), scale);
|
||||
inpL = ggml_add(ctx, inpL, inpL_delta);
|
||||
}
|
||||
} else {
|
||||
lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
|
||||
inpL = lctx.inp_embd;
|
||||
@ -2617,9 +2632,8 @@ static struct ggml_tensor * llm_build_lora_mm(
|
||||
if (lora == nullptr) {
|
||||
continue;
|
||||
}
|
||||
const float alpha = it.first->alpha;
|
||||
const float rank = (float) lora->b->ne[0];
|
||||
const float scale = alpha ? it.second * alpha / rank : it.second;
|
||||
const float adapter_scale = it.second;
|
||||
const float scale = lora->get_scale(it.first->alpha, adapter_scale);
|
||||
struct ggml_tensor * ab_cur = ggml_mul_mat(
|
||||
ctx0, lora->b,
|
||||
ggml_mul_mat(ctx0, lora->a, cur)
|
||||
@ -3967,6 +3981,7 @@ struct llm_build_context {
|
||||
|
||||
// feed-forward network
|
||||
if (model.layers[il].ffn_gate_inp == nullptr) {
|
||||
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
|
Loading…
Reference in New Issue
Block a user