Faster Q3_K implementation on Metal (#2307)

* Faster Q3_K on Metal

* Additional Q3_K speedup on Metal

* Q3_K for QK_K = 64

* Better Q3_K for QK_K = 64

21.6 ms/t -> 21.1 ms/t

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow 2023-07-21 17:05:30 +03:00 committed by GitHub
parent 0db14fef06
commit 4d76a5f49b
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 125 additions and 82 deletions

View File

@ -685,8 +685,8 @@ void ggml_metal_graph_compute(
GGML_ASSERT(ne02 == 1); GGML_ASSERT(ne02 == 1);
GGML_ASSERT(ne12 == 1); GGML_ASSERT(ne12 == 1);
nth0 = 4; nth0 = 2;
nth1 = 16; nth1 = 32;
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32]; [encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
} break; } break;
case GGML_TYPE_Q4_K: case GGML_TYPE_Q4_K:
@ -743,15 +743,18 @@ void ggml_metal_graph_compute(
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) { src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else
[encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif
}
else if (src0t == GGML_TYPE_Q5_K) { else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} }
else if (src0t == GGML_TYPE_Q6_K) { else if (src0t == GGML_TYPE_Q6_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q3_K) {
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
} else { } else {
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0]; [encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];

View File

@ -351,7 +351,7 @@ kernel void kernel_rms_norm(
threadgroup_barrier(mem_flags::mem_threadgroup); threadgroup_barrier(mem_flags::mem_threadgroup);
// broadcast, simd group number is ntg / 32 // broadcast, simd group number is ntg / 32
for (int i = ntg / 32 / 2; i > 0; i /= 2) { for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
if (tpitg < i) { if (tpitg < i) {
sum[tpitg] += sum[tpitg + i]; sum[tpitg] += sum[tpitg + i];
} }
@ -1339,6 +1339,7 @@ kernel void kernel_mul_mat_q2_K_f32(
} }
} }
#if QK_K == 256
kernel void kernel_mul_mat_q3_K_f32( kernel void kernel_mul_mat_q3_K_f32(
device const void * src0, device const void * src0,
device const float * src1, device const float * src1,
@ -1347,40 +1348,41 @@ kernel void kernel_mul_mat_q3_K_f32(
constant int64_t & ne10, constant int64_t & ne10,
constant int64_t & ne0, constant int64_t & ne0,
constant int64_t & ne1, constant int64_t & ne1,
threadgroup float * sum [[threadgroup(0)]],
uint2 tgpig[[threadgroup_position_in_grid]], uint2 tgpig[[threadgroup_position_in_grid]],
uint2 tpitg[[thread_position_in_threadgroup]], uint tiisg[[thread_index_in_simdgroup]],
uint2 tptg[[threads_per_threadgroup]]) { uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K; const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x; const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y; const int64_t r1 = tgpig.y;
device const block_q3_K * x = (device const block_q3_K *) src0 + r0*nb; const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb;
device const float * yy = (device const float *) src1 + r1*ne10; device const float * yy = (device const float *) src1 + r1*ne10;
const int nth = tptg.x*tptg.y; float yl[16];
const int ith = tptg.y*tpitg.x + tpitg.y;
#if QK_K == 256
const uint8_t m3 = 3;
const int8_t m4 = 4;
const uint16_t kmask1 = 0x0303; const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f; const uint16_t kmask2 = 0x0f0f;
const int tid = tpitg.y; // expecting 16 const int tid = tiisg/2;
const int ix = tiisg%2;
const int ip = tid/8; // 0 or 1 const int ip = tid/8; // 0 or 1
const int il = tid/2 - 4*ip; // 0...3 const int il = tid/2 - 4*ip; // 0...3
const int ir = tid%2; const int ir = tid%2;
const int n = 8; const int n = 8;
const int l0 = n*ir; const int l0 = n*ir;
const uint8_t m = 1 << (4*ip + il); const uint16_t m1 = 1 << (4*ip + il);
const uint16_t m2 = m1 << 8;
const int shift = 2*il; const int shift = 2*il;
const uint16_t qm1 = 0x0003 << shift;
const uint16_t qm2 = 0x0300 << shift;
const int32_t v1 = 4 << shift;
const int32_t v2 = 1024 << shift;
const uint16_t s_shift1 = 4*ip; const uint16_t s_shift1 = 4*ip;
const uint16_t s_shift2 = s_shift1 + 2*(il/2); const uint16_t s_shift2 = s_shift1 + 2*(il/2);
@ -1389,93 +1391,132 @@ kernel void kernel_mul_mat_q3_K_f32(
const int q_offset = 32*ip + l0; const int q_offset = 32*ip + l0;
const int y_offset = 128*ip + 32*il + l0; const int y_offset = 128*ip + 32*il + l0;
//float sumf = 0; const int step = sizeof(block_q3_K) * nb / 2;
float sumf1 = 0, sumf2 = 0;
for (int i = tpitg.x; i < nb; i += tptg.x) {
const float d_all = (float)(x[i].d); device const float * y1 = yy + ix*QK_K + y_offset;
device const uint8_t * q = x[i].qs + q_offset; float sumf1[2] = {0.f}, sumf2[2] = {0.f};
device const uint8_t * h = x[i].hmask + l0; for (int i = ix; i < nb; i += 2) {
device const float * y = yy + i * QK_K + y_offset;
device const uint16_t * a = (device const uint16_t *)x[i].scales; for (int l = 0; l < 8; ++l) {
yl[l+0] = y1[l+ 0];
yl[l+8] = y1[l+16];
}
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
device const uint16_t * a = (device const uint16_t *)(x[i].scales);
device const half * dh = &x[i].d;
for (int row = 0; row < 2; ++row) {
const float d_all = (float)dh[0];
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4))); const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
float s = 0; float s1 = 0, s2 = 0;
for (int l = 0; l < n; ++l) { for (int l = 0; l < n; l += 2) {
s += y[l+ 0] * ((int8_t)((q[l+ 0] >> shift) & m3) - ((h[l+ 0] & m) ? 0 : m4)); const uint16_t qs = q[l/2];
s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1));
s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2));
} }
float d = d_all * s; float d = d_all * (s1 + 1.f/256.f * s2);
sumf1 += d * scales[0]; sumf1[row] += d * scales[0];
sumf2 += d; sumf2[row] += d;
//sumf += d_all * s * (scales[0] - 32);
s = 0; s1 = s2 = 0;
for (int l = 0; l < n; ++l) { for (int l = 0; l < n; l += 2) {
s += y[l+16] * ((int8_t)((q[l+16] >> shift) & m3) - ((h[l+16] & m) ? 0 : m4)); const uint16_t qs = q[l/2+8];
s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1));
s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2));
} }
d = d_all * s; d = d_all * (s1 + 1.f/256.f * s2);
sumf1 += d * scales[1]; sumf1[row] += d * scales[1];
sumf2 += d; sumf2[row] += d;
//sumf += d_all * s * (scales[1] - 32);
q += step;
h += step;
a += step;
dh += step;
} }
//sum[ith] = sumf; y1 += 2 * QK_K;
sum[ith] = sumf1 - 32.f*sumf2;
}
for (int row = 0; row < 2; ++row) {
const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift);
const float tot = simd_sum(sumf);
if (tiisg == 0) {
dst[r1*ne0 + first_row + row] = tot;
}
}
}
#else #else
const int il = 4 * tpitg.x; // 0, 4, 8, 12 kernel void kernel_mul_mat_q3_K_f32(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne10,
constant int64_t & ne0,
constant int64_t & ne1,
uint2 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int row = 2 * r0 + sgitg;
device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb;
device const float * yy = (device const float *) src1 + r1*ne10;
const int ix = tiisg/4;
const int il = 4 * (tiisg%4);// 0, 4, 8, 12
const int im = il/8; // 0, 0, 1, 1 const int im = il/8; // 0, 0, 1, 1
const int in = il%8; // 0, 4, 0, 4 const int in = il%8; // 0, 4, 0, 4
float sumf = 0; float2 sum = {0.f, 0.f};
for (int i = tpitg.y; i < nb; i += tptg.y) { for (int i = ix; i < nb; i += 8) {
const float d_all = (float)(x[i].d); const float d_all = (float)(x[i].d);
device const uint8_t * q = x[i].qs + il; device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
device const uint8_t * h = x[i].hmask + in; device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
device const uint16_t * s = (device const uint16_t *)(x[i].scales);
device const float * y = yy + i * QK_K + il; device const float * y = yy + i * QK_K + il;
const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8); const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
const float d2 = d_all * ((x[i].scales[0] >> 4) - 8); const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8); const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
const float d4 = d_all * ((x[i].scales[1] >> 4) - 8); const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
for (int l = 0; l < 4; ++l) { for (int l = 0; l < 4; l += 2) {
const uint8_t hm = h[l] >> im; const uint16_t hm = h[l/2] >> im;
sumf += y[l+ 0] * d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((hm & 0x01) ? 0 : 4)) sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
+ y[l+16] * d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((hm & 0x04) ? 0 : 4)) + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
+ y[l+32] * d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((hm & 0x10) ? 0 : 4)) + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
+ y[l+48] * d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((hm & 0x40) ? 0 : 4)); + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
+ y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
+ y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
+ y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
} }
} }
const float sumf = sum[0] + sum[1] * 1.f/256.f;
sum[ith] = sumf; const float tot = simd_sum(sumf);
if (tiisg == 0) {
#endif dst[r1*ne0 + row] = tot;
//
// Accumulate the sum from all threads in the threadgroup
//
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%4 == 0) {
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith%16 == 0) {
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (ith == 0) {
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
dst[r1*ne0 + r0] = sum[0];
} }
} }
#endif
#if QK_K == 256 #if QK_K == 256
kernel void kernel_mul_mat_q4_K_f32( kernel void kernel_mul_mat_q4_K_f32(
@ -1773,7 +1814,6 @@ kernel void kernel_mul_mat_q5_K_f32(
for (int i = ix; i < nb; i += 8) { for (int i = ix; i < nb; i += 8) {
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < 4; ++l) { for (int l = 0; l < 4; ++l) {
yl[l+0] = y[l+ 0]; yl[l+0] = y[l+ 0];
yl[l+4] = y[l+16]; yl[l+4] = y[l+16];