mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-13 13:52:22 +01:00
Faster Q3_K implementation on Metal (#2307)
* Faster Q3_K on Metal * Additional Q3_K speedup on Metal * Q3_K for QK_K = 64 * Better Q3_K for QK_K = 64 21.6 ms/t -> 21.1 ms/t --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
parent
0db14fef06
commit
4d76a5f49b
15
ggml-metal.m
15
ggml-metal.m
@ -685,8 +685,8 @@ void ggml_metal_graph_compute(
|
|||||||
GGML_ASSERT(ne02 == 1);
|
GGML_ASSERT(ne02 == 1);
|
||||||
GGML_ASSERT(ne12 == 1);
|
GGML_ASSERT(ne12 == 1);
|
||||||
|
|
||||||
nth0 = 4;
|
nth0 = 2;
|
||||||
nth1 = 16;
|
nth1 = 32;
|
||||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
|
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q3_K_f32];
|
||||||
} break;
|
} break;
|
||||||
case GGML_TYPE_Q4_K:
|
case GGML_TYPE_Q4_K:
|
||||||
@ -743,15 +743,18 @@ void ggml_metal_graph_compute(
|
|||||||
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
|
src0t == GGML_TYPE_Q2_K || src0t == GGML_TYPE_Q4_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7) / 8, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
|
else if (src0t == GGML_TYPE_Q3_K) {
|
||||||
|
#ifdef GGML_QKK_64
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
|
#else
|
||||||
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01+3)/4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
|
#endif
|
||||||
|
}
|
||||||
else if (src0t == GGML_TYPE_Q5_K) {
|
else if (src0t == GGML_TYPE_Q5_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3) / 4, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
}
|
||||||
else if (src0t == GGML_TYPE_Q6_K) {
|
else if (src0t == GGML_TYPE_Q6_K) {
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake((ne01+1)/2, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
}
|
|
||||||
else if (src0t == GGML_TYPE_Q3_K) {
|
|
||||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
|
||||||
} else {
|
} else {
|
||||||
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
||||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||||
|
192
ggml-metal.metal
192
ggml-metal.metal
@ -351,7 +351,7 @@ kernel void kernel_rms_norm(
|
|||||||
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||||
// broadcast, simd group number is ntg / 32
|
// broadcast, simd group number is ntg / 32
|
||||||
for (int i = ntg / 32 / 2; i > 0; i /= 2) {
|
for (uint i = ntg / 32 / 2; i > 0; i /= 2) {
|
||||||
if (tpitg < i) {
|
if (tpitg < i) {
|
||||||
sum[tpitg] += sum[tpitg + i];
|
sum[tpitg] += sum[tpitg + i];
|
||||||
}
|
}
|
||||||
@ -1339,6 +1339,7 @@ kernel void kernel_mul_mat_q2_K_f32(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#if QK_K == 256
|
||||||
kernel void kernel_mul_mat_q3_K_f32(
|
kernel void kernel_mul_mat_q3_K_f32(
|
||||||
device const void * src0,
|
device const void * src0,
|
||||||
device const float * src1,
|
device const float * src1,
|
||||||
@ -1347,40 +1348,41 @@ kernel void kernel_mul_mat_q3_K_f32(
|
|||||||
constant int64_t & ne10,
|
constant int64_t & ne10,
|
||||||
constant int64_t & ne0,
|
constant int64_t & ne0,
|
||||||
constant int64_t & ne1,
|
constant int64_t & ne1,
|
||||||
threadgroup float * sum [[threadgroup(0)]],
|
|
||||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
uint2 tpitg[[thread_position_in_threadgroup]],
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
uint2 tptg[[threads_per_threadgroup]]) {
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
|
|
||||||
const int nb = ne00/QK_K;
|
const int nb = ne00/QK_K;
|
||||||
|
|
||||||
const int64_t r0 = tgpig.x;
|
const int64_t r0 = tgpig.x;
|
||||||
const int64_t r1 = tgpig.y;
|
const int64_t r1 = tgpig.y;
|
||||||
|
|
||||||
device const block_q3_K * x = (device const block_q3_K *) src0 + r0*nb;
|
const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
|
||||||
|
|
||||||
|
device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb;
|
||||||
device const float * yy = (device const float *) src1 + r1*ne10;
|
device const float * yy = (device const float *) src1 + r1*ne10;
|
||||||
|
|
||||||
const int nth = tptg.x*tptg.y;
|
float yl[16];
|
||||||
const int ith = tptg.y*tpitg.x + tpitg.y;
|
|
||||||
|
|
||||||
#if QK_K == 256
|
|
||||||
|
|
||||||
const uint8_t m3 = 3;
|
|
||||||
const int8_t m4 = 4;
|
|
||||||
|
|
||||||
const uint16_t kmask1 = 0x0303;
|
const uint16_t kmask1 = 0x0303;
|
||||||
const uint16_t kmask2 = 0x0f0f;
|
const uint16_t kmask2 = 0x0f0f;
|
||||||
|
|
||||||
const int tid = tpitg.y; // expecting 16
|
const int tid = tiisg/2;
|
||||||
|
const int ix = tiisg%2;
|
||||||
const int ip = tid/8; // 0 or 1
|
const int ip = tid/8; // 0 or 1
|
||||||
const int il = tid/2 - 4*ip; // 0...3
|
const int il = tid/2 - 4*ip; // 0...3
|
||||||
const int ir = tid%2;
|
const int ir = tid%2;
|
||||||
const int n = 8;
|
const int n = 8;
|
||||||
const int l0 = n*ir;
|
const int l0 = n*ir;
|
||||||
|
|
||||||
const uint8_t m = 1 << (4*ip + il);
|
const uint16_t m1 = 1 << (4*ip + il);
|
||||||
|
const uint16_t m2 = m1 << 8;
|
||||||
|
|
||||||
const int shift = 2*il;
|
const int shift = 2*il;
|
||||||
|
const uint16_t qm1 = 0x0003 << shift;
|
||||||
|
const uint16_t qm2 = 0x0300 << shift;
|
||||||
|
const int32_t v1 = 4 << shift;
|
||||||
|
const int32_t v2 = 1024 << shift;
|
||||||
|
|
||||||
const uint16_t s_shift1 = 4*ip;
|
const uint16_t s_shift1 = 4*ip;
|
||||||
const uint16_t s_shift2 = s_shift1 + 2*(il/2);
|
const uint16_t s_shift2 = s_shift1 + 2*(il/2);
|
||||||
@ -1389,93 +1391,132 @@ kernel void kernel_mul_mat_q3_K_f32(
|
|||||||
const int q_offset = 32*ip + l0;
|
const int q_offset = 32*ip + l0;
|
||||||
const int y_offset = 128*ip + 32*il + l0;
|
const int y_offset = 128*ip + 32*il + l0;
|
||||||
|
|
||||||
//float sumf = 0;
|
const int step = sizeof(block_q3_K) * nb / 2;
|
||||||
float sumf1 = 0, sumf2 = 0;
|
|
||||||
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
|
||||||
|
|
||||||
const float d_all = (float)(x[i].d);
|
device const float * y1 = yy + ix*QK_K + y_offset;
|
||||||
|
|
||||||
device const uint8_t * q = x[i].qs + q_offset;
|
float sumf1[2] = {0.f}, sumf2[2] = {0.f};
|
||||||
device const uint8_t * h = x[i].hmask + l0;
|
for (int i = ix; i < nb; i += 2) {
|
||||||
device const float * y = yy + i * QK_K + y_offset;
|
|
||||||
|
|
||||||
device const uint16_t * a = (device const uint16_t *)x[i].scales;
|
for (int l = 0; l < 8; ++l) {
|
||||||
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
|
yl[l+0] = y1[l+ 0];
|
||||||
|
yl[l+8] = y1[l+16];
|
||||||
float s = 0;
|
|
||||||
for (int l = 0; l < n; ++l) {
|
|
||||||
s += y[l+ 0] * ((int8_t)((q[l+ 0] >> shift) & m3) - ((h[l+ 0] & m) ? 0 : m4));
|
|
||||||
}
|
}
|
||||||
float d = d_all * s;
|
|
||||||
sumf1 += d * scales[0];
|
|
||||||
sumf2 += d;
|
|
||||||
//sumf += d_all * s * (scales[0] - 32);
|
|
||||||
|
|
||||||
s = 0;
|
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
|
||||||
for (int l = 0; l < n; ++l) {
|
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
|
||||||
s += y[l+16] * ((int8_t)((q[l+16] >> shift) & m3) - ((h[l+16] & m) ? 0 : m4));
|
device const uint16_t * a = (device const uint16_t *)(x[i].scales);
|
||||||
|
device const half * dh = &x[i].d;
|
||||||
|
|
||||||
|
for (int row = 0; row < 2; ++row) {
|
||||||
|
|
||||||
|
const float d_all = (float)dh[0];
|
||||||
|
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
|
||||||
|
|
||||||
|
float s1 = 0, s2 = 0;
|
||||||
|
for (int l = 0; l < n; l += 2) {
|
||||||
|
const uint16_t qs = q[l/2];
|
||||||
|
s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1));
|
||||||
|
s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2));
|
||||||
|
}
|
||||||
|
float d = d_all * (s1 + 1.f/256.f * s2);
|
||||||
|
sumf1[row] += d * scales[0];
|
||||||
|
sumf2[row] += d;
|
||||||
|
|
||||||
|
s1 = s2 = 0;
|
||||||
|
for (int l = 0; l < n; l += 2) {
|
||||||
|
const uint16_t qs = q[l/2+8];
|
||||||
|
s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1));
|
||||||
|
s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2));
|
||||||
|
}
|
||||||
|
d = d_all * (s1 + 1.f/256.f * s2);
|
||||||
|
sumf1[row] += d * scales[1];
|
||||||
|
sumf2[row] += d;
|
||||||
|
|
||||||
|
q += step;
|
||||||
|
h += step;
|
||||||
|
a += step;
|
||||||
|
dh += step;
|
||||||
|
|
||||||
}
|
}
|
||||||
d = d_all * s;
|
|
||||||
sumf1 += d * scales[1];
|
y1 += 2 * QK_K;
|
||||||
sumf2 += d;
|
|
||||||
//sumf += d_all * s * (scales[1] - 32);
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
//sum[ith] = sumf;
|
for (int row = 0; row < 2; ++row) {
|
||||||
sum[ith] = sumf1 - 32.f*sumf2;
|
const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift);
|
||||||
|
const float tot = simd_sum(sumf);
|
||||||
|
if (tiisg == 0) {
|
||||||
|
dst[r1*ne0 + first_row + row] = tot;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
#else
|
#else
|
||||||
const int il = 4 * tpitg.x; // 0, 4, 8, 12
|
kernel void kernel_mul_mat_q3_K_f32(
|
||||||
|
device const void * src0,
|
||||||
|
device const float * src1,
|
||||||
|
device float * dst,
|
||||||
|
constant int64_t & ne00,
|
||||||
|
constant int64_t & ne10,
|
||||||
|
constant int64_t & ne0,
|
||||||
|
constant int64_t & ne1,
|
||||||
|
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||||
|
uint tiisg[[thread_index_in_simdgroup]],
|
||||||
|
uint sgitg[[simdgroup_index_in_threadgroup]]) {
|
||||||
|
|
||||||
|
const int nb = ne00/QK_K;
|
||||||
|
|
||||||
|
const int64_t r0 = tgpig.x;
|
||||||
|
const int64_t r1 = tgpig.y;
|
||||||
|
|
||||||
|
const int row = 2 * r0 + sgitg;
|
||||||
|
|
||||||
|
device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb;
|
||||||
|
device const float * yy = (device const float *) src1 + r1*ne10;
|
||||||
|
const int ix = tiisg/4;
|
||||||
|
const int il = 4 * (tiisg%4);// 0, 4, 8, 12
|
||||||
const int im = il/8; // 0, 0, 1, 1
|
const int im = il/8; // 0, 0, 1, 1
|
||||||
const int in = il%8; // 0, 4, 0, 4
|
const int in = il%8; // 0, 4, 0, 4
|
||||||
|
|
||||||
float sumf = 0;
|
float2 sum = {0.f, 0.f};
|
||||||
|
|
||||||
for (int i = tpitg.y; i < nb; i += tptg.y) {
|
for (int i = ix; i < nb; i += 8) {
|
||||||
|
|
||||||
const float d_all = (float)(x[i].d);
|
const float d_all = (float)(x[i].d);
|
||||||
|
|
||||||
device const uint8_t * q = x[i].qs + il;
|
device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
|
||||||
device const uint8_t * h = x[i].hmask + in;
|
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
|
||||||
device const float * y = yy + i * QK_K + il;
|
device const uint16_t * s = (device const uint16_t *)(x[i].scales);
|
||||||
|
device const float * y = yy + i * QK_K + il;
|
||||||
|
|
||||||
const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8);
|
const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
|
||||||
const float d2 = d_all * ((x[i].scales[0] >> 4) - 8);
|
const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
|
||||||
const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8);
|
const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
|
||||||
const float d4 = d_all * ((x[i].scales[1] >> 4) - 8);
|
const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
|
||||||
|
|
||||||
for (int l = 0; l < 4; ++l) {
|
for (int l = 0; l < 4; l += 2) {
|
||||||
const uint8_t hm = h[l] >> im;
|
const uint16_t hm = h[l/2] >> im;
|
||||||
sumf += y[l+ 0] * d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((hm & 0x01) ? 0 : 4))
|
sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
|
||||||
+ y[l+16] * d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((hm & 0x04) ? 0 : 4))
|
+ y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
|
||||||
+ y[l+32] * d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((hm & 0x10) ? 0 : 4))
|
+ y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
|
||||||
+ y[l+48] * d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((hm & 0x40) ? 0 : 4));
|
+ y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
|
||||||
|
sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
|
||||||
|
+ y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
|
||||||
|
+ y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
|
||||||
|
+ y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
const float sumf = sum[0] + sum[1] * 1.f/256.f;
|
||||||
|
|
||||||
sum[ith] = sumf;
|
const float tot = simd_sum(sumf);
|
||||||
|
if (tiisg == 0) {
|
||||||
#endif
|
dst[r1*ne0 + row] = tot;
|
||||||
|
|
||||||
//
|
|
||||||
// Accumulate the sum from all threads in the threadgroup
|
|
||||||
//
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
if (ith%4 == 0) {
|
|
||||||
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
|
||||||
}
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
if (ith%16 == 0) {
|
|
||||||
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
|
||||||
}
|
|
||||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
|
||||||
if (ith == 0) {
|
|
||||||
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
|
||||||
dst[r1*ne0 + r0] = sum[0];
|
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
#if QK_K == 256
|
#if QK_K == 256
|
||||||
kernel void kernel_mul_mat_q4_K_f32(
|
kernel void kernel_mul_mat_q4_K_f32(
|
||||||
@ -1773,7 +1814,6 @@ kernel void kernel_mul_mat_q5_K_f32(
|
|||||||
|
|
||||||
for (int i = ix; i < nb; i += 8) {
|
for (int i = ix; i < nb; i += 8) {
|
||||||
|
|
||||||
float4 sumy = {0.f, 0.f, 0.f, 0.f};
|
|
||||||
for (int l = 0; l < 4; ++l) {
|
for (int l = 0; l < 4; ++l) {
|
||||||
yl[l+0] = y[l+ 0];
|
yl[l+0] = y[l+ 0];
|
||||||
yl[l+4] = y[l+16];
|
yl[l+4] = y[l+16];
|
||||||
|
Loading…
x
Reference in New Issue
Block a user