mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-02-05 08:00:42 +01:00
parent
9c8dcefe17
commit
4dbc8b9cb7
@ -2882,6 +2882,66 @@ class InternLM2Model(Model):
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("InternLM3ForCausalLM")
|
||||
class InternLM3Model(Model):
|
||||
model_arch = gguf.MODEL_ARCH.LLAMA
|
||||
|
||||
def set_vocab(self):
|
||||
tokens, scores, toktypes = self._create_vocab_sentencepiece()
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_tokenizer_pre("default")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
|
||||
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
|
||||
if tokenizer_config_file.is_file():
|
||||
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
|
||||
tokenizer_config_json = json.load(f)
|
||||
if "add_prefix_space" in tokenizer_config_json:
|
||||
self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
|
||||
|
||||
if "added_tokens_decoder" in tokenizer_config_json:
|
||||
for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
|
||||
if token_data.get("special"):
|
||||
token_id = int(token_id)
|
||||
token = token_data["content"]
|
||||
special_vocab._set_special_token(token, token_id)
|
||||
# update eos token
|
||||
if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
|
||||
special_vocab.special_token_ids["eos"] = token_id
|
||||
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
|
||||
|
||||
if "head_dim" in hparams:
|
||||
rope_dim = hparams["head_dim"]
|
||||
else:
|
||||
rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
|
||||
self.gguf_writer.add_rope_dimension_count(rope_dim)
|
||||
|
||||
if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
|
||||
if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
|
||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
if name.endswith(("q_proj.weight", "q_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight", "k_proj.bias")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
||||
|
||||
@Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
|
||||
class BertModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BERT
|
||||
|
Loading…
Reference in New Issue
Block a user