mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-07 11:23:56 +01:00
Merge branch 'master' into build-metal-default
This commit is contained in:
commit
4de22829d9
147
Makefile
147
Makefile
@ -71,21 +71,21 @@ OPT = -Ofast
|
||||
else
|
||||
OPT = -O3
|
||||
endif
|
||||
CFLAGS = -I. $(OPT) -std=c11 -fPIC
|
||||
CXXFLAGS = -I. -I./common $(OPT) -std=c++11 -fPIC
|
||||
LDFLAGS =
|
||||
MK_CPPFLAGS = -I. -Icommon
|
||||
MK_CFLAGS = $(CPPFLAGS) $(OPT) -std=c11 -fPIC
|
||||
MK_CXXFLAGS = $(CPPFLAGS) $(OPT) -std=c++11 -fPIC
|
||||
MK_LDFLAGS =
|
||||
|
||||
ifdef LLAMA_DEBUG
|
||||
CFLAGS += -O0 -g
|
||||
CXXFLAGS += -O0 -g
|
||||
LDFLAGS += -g
|
||||
MK_CFLAGS += -O0 -g
|
||||
MK_CXXFLAGS += -O0 -g
|
||||
MK_LDFLAGS += -g
|
||||
else
|
||||
CFLAGS += -DNDEBUG
|
||||
CXXFLAGS += -DNDEBUG
|
||||
MK_CPPFLAGS += -DNDEBUG
|
||||
endif
|
||||
|
||||
ifdef LLAMA_SERVER_VERBOSE
|
||||
CXXFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
|
||||
MK_CPPFLAGS += -DSERVER_VERBOSE=$(LLAMA_SERVER_VERBOSE)
|
||||
endif
|
||||
|
||||
ifdef LLAMA_DISABLE_LOGS
|
||||
@ -94,9 +94,9 @@ ifdef LLAMA_DISABLE_LOGS
|
||||
endif # LLAMA_DISABLE_LOGS
|
||||
|
||||
# warnings
|
||||
CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \
|
||||
MK_CFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wdouble-promotion -Wshadow -Wstrict-prototypes -Wpointer-arith \
|
||||
-Wmissing-prototypes -Werror=implicit-int -Wno-unused-function
|
||||
CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
|
||||
MK_CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-multichar
|
||||
|
||||
ifeq '' '$(findstring clang++,$(CXX))'
|
||||
# g++ only
|
||||
@ -105,29 +105,9 @@ endif
|
||||
|
||||
# OS specific
|
||||
# TODO: support Windows
|
||||
ifeq ($(UNAME_S),Linux)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),FreeBSD)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),NetBSD)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),OpenBSD)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
endif
|
||||
ifeq ($(UNAME_S),Haiku)
|
||||
CFLAGS += -pthread
|
||||
CXXFLAGS += -pthread
|
||||
ifneq '' '$(filter $(UNAME_S),Linux Darwin FreeBSD NetBSD OpenBSD Haiku)'
|
||||
MK_CFLAGS += -pthread
|
||||
MK_CXXFLAGS += -pthread
|
||||
endif
|
||||
|
||||
# detect Windows
|
||||
@ -153,12 +133,11 @@ ifeq ($(_WIN32),1)
|
||||
endif
|
||||
|
||||
ifdef LLAMA_GPROF
|
||||
CFLAGS += -pg
|
||||
CXXFLAGS += -pg
|
||||
MK_CFLAGS += -pg
|
||||
MK_CXXFLAGS += -pg
|
||||
endif
|
||||
ifdef LLAMA_PERF
|
||||
CFLAGS += -DGGML_PERF
|
||||
CXXFLAGS += -DGGML_PERF
|
||||
MK_CPPFLAGS += -DGGML_PERF
|
||||
endif
|
||||
|
||||
# Architecture specific
|
||||
@ -169,16 +148,16 @@ ifndef RISCV
|
||||
|
||||
ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||
# Use all CPU extensions that are available:
|
||||
CFLAGS += -march=native -mtune=native
|
||||
CXXFLAGS += -march=native -mtune=native
|
||||
MK_CFLAGS += -march=native -mtune=native
|
||||
MK_CXXFLAGS += -march=native -mtune=native
|
||||
|
||||
# Usage AVX-only
|
||||
#CFLAGS += -mfma -mf16c -mavx
|
||||
#CXXFLAGS += -mfma -mf16c -mavx
|
||||
#MK_CFLAGS += -mfma -mf16c -mavx
|
||||
#MK_CXXFLAGS += -mfma -mf16c -mavx
|
||||
|
||||
# Usage SSSE3-only (Not is SSE3!)
|
||||
#CFLAGS += -mssse3
|
||||
#CXXFLAGS += -mssse3
|
||||
#MK_CFLAGS += -mssse3
|
||||
#MK_CXXFLAGS += -mssse3
|
||||
endif
|
||||
|
||||
# The stack is only 16-byte aligned on Windows, so don't let gcc emit aligned moves.
|
||||
@ -192,34 +171,33 @@ endif
|
||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||
# Apple M1, M2, etc.
|
||||
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
||||
CFLAGS += -mcpu=native
|
||||
CXXFLAGS += -mcpu=native
|
||||
MK_CFLAGS += -mcpu=native
|
||||
MK_CXXFLAGS += -mcpu=native
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||
# Raspberry Pi 1, Zero
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv7%,$(UNAME_M)),)
|
||||
# Raspberry Pi 2
|
||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
MK_CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
MK_CXXFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||
endif
|
||||
|
||||
ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
MK_CXXFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||
endif
|
||||
|
||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||
CFLAGS += -mcpu=power9
|
||||
CXXFLAGS += -mcpu=power9
|
||||
endif
|
||||
# Require c++23's std::byteswap for big-endian support.
|
||||
ifeq ($(UNAME_M),ppc64)
|
||||
CXXFLAGS += -std=c++23 -DGGML_BIG_ENDIAN
|
||||
MK_CFLAGS += -mcpu=power9
|
||||
MK_CXXFLAGS += -mcpu=power9
|
||||
endif
|
||||
endif
|
||||
|
||||
@ -229,12 +207,10 @@ else
|
||||
endif
|
||||
|
||||
ifndef LLAMA_NO_K_QUANTS
|
||||
CFLAGS += -DGGML_USE_K_QUANTS
|
||||
CXXFLAGS += -DGGML_USE_K_QUANTS
|
||||
MK_CPPFLAGS += -DGGML_USE_K_QUANTS
|
||||
OBJS += k_quants.o
|
||||
ifdef LLAMA_QKK_64
|
||||
CFLAGS += -DGGML_QKK_64
|
||||
CXXFLAGS += -DGGML_QKK_64
|
||||
MK_CPPFLAGS += -DGGML_QKK_64
|
||||
endif
|
||||
endif
|
||||
|
||||
@ -242,8 +218,8 @@ ifndef LLAMA_NO_ACCELERATE
|
||||
# Mac OS - include Accelerate framework.
|
||||
# `-framework Accelerate` works both with Apple Silicon and Mac Intel
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
CFLAGS += -DGGML_USE_ACCELERATE
|
||||
LDFLAGS += -framework Accelerate
|
||||
MK_CPPFLAGS += -DGGML_USE_ACCELERATE
|
||||
MK_LDFLAGS += -framework Accelerate
|
||||
endif
|
||||
endif # LLAMA_NO_ACCELERATE
|
||||
|
||||
@ -258,25 +234,26 @@ ifndef LLAMA_NO_METAL
|
||||
endif # LLAMA_NO_METAL
|
||||
|
||||
ifdef LLAMA_MPI
|
||||
CFLAGS += -DGGML_USE_MPI -Wno-cast-qual
|
||||
CXXFLAGS += -DGGML_USE_MPI -Wno-cast-qual
|
||||
MK_CPPFLAGS += -DGGML_USE_MPI
|
||||
MK_CFLAGS += -Wno-cast-qual
|
||||
MK_CXXFLAGS += -Wno-cast-qual
|
||||
OBJS += ggml-mpi.o
|
||||
endif # LLAMA_MPI
|
||||
|
||||
ifdef LLAMA_OPENBLAS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags openblas)
|
||||
LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS $(shell pkg-config --cflags-only-I openblas)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other openblas)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs openblas)
|
||||
endif # LLAMA_OPENBLAS
|
||||
|
||||
ifdef LLAMA_BLIS
|
||||
CFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
LDFLAGS += -lblis -L/usr/local/lib
|
||||
MK_CPPFLAGS += -DGGML_USE_OPENBLAS -I/usr/local/include/blis -I/usr/include/blis
|
||||
MK_LDFLAGS += -lblis -L/usr/local/lib
|
||||
endif # LLAMA_BLIS
|
||||
|
||||
ifdef LLAMA_CUBLAS
|
||||
CFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
CXXFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
MK_CPPFLAGS += -DGGML_USE_CUBLAS -I/usr/local/cuda/include -I/opt/cuda/include -I$(CUDA_PATH)/targets/x86_64-linux/include
|
||||
MK_LDFLAGS += -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L/usr/local/cuda/lib64 -L/opt/cuda/lib64 -L$(CUDA_PATH)/targets/x86_64-linux/lib
|
||||
OBJS += ggml-cuda.o
|
||||
NVCCFLAGS = --forward-unknown-to-host-compiler -use_fast_math
|
||||
ifdef LLAMA_CUDA_NVCC
|
||||
@ -327,14 +304,15 @@ endif # LLAMA_CUBLAS
|
||||
|
||||
ifdef LLAMA_CLBLAST
|
||||
|
||||
CFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags clblast OpenCL)
|
||||
CXXFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags clblast OpenCL)
|
||||
MK_CPPFLAGS += -DGGML_USE_CLBLAST $(shell pkg-config --cflags-only-I clblast OpenCL)
|
||||
MK_CFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
|
||||
MK_CXXFLAGS += $(shell pkg-config --cflags-only-other clblast OpenCL)
|
||||
|
||||
# Mac provides OpenCL as a framework
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
LDFLAGS += -lclblast -framework OpenCL
|
||||
MK_LDFLAGS += -lclblast -framework OpenCL
|
||||
else
|
||||
LDFLAGS += $(shell pkg-config --libs clblast OpenCL)
|
||||
MK_LDFLAGS += $(shell pkg-config --libs clblast OpenCL)
|
||||
endif
|
||||
OBJS += ggml-opencl.o
|
||||
|
||||
@ -349,10 +327,9 @@ ifdef LLAMA_HIPBLAS
|
||||
LLAMA_CUDA_DMMV_X ?= 32
|
||||
LLAMA_CUDA_MMV_Y ?= 1
|
||||
LLAMA_CUDA_KQUANTS_ITER ?= 2
|
||||
CFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
CXXFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
MK_CPPFLAGS += -DGGML_USE_HIPBLAS -DGGML_USE_CUBLAS
|
||||
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
|
||||
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
|
||||
HIPFLAGS += $(addprefix --offload-arch=,$(GPU_TARGETS))
|
||||
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||
@ -366,6 +343,12 @@ ggml-cuda.o: ggml-cuda.cu ggml-cuda.h
|
||||
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
|
||||
endif # LLAMA_HIPBLAS
|
||||
|
||||
ifndef LLAMA_NO_METAL
|
||||
MK_CPPFLAGS += -DGGML_USE_METAL #-DGGML_METAL_NDEBUG
|
||||
MK_LDFLAGS += -framework Foundation -framework Metal -framework MetalKit
|
||||
OBJS += ggml-metal.o
|
||||
endif # LLAMA_METAL
|
||||
|
||||
ifndef LLAMA_NO_METAL
|
||||
ggml-metal.o: ggml-metal.m ggml-metal.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
@ -376,11 +359,17 @@ ggml-mpi.o: ggml-mpi.c ggml-mpi.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_MPI
|
||||
|
||||
ifdef LLAMA_NO_K_QUANTS
|
||||
ifndef LLAMA_NO_K_QUANTS
|
||||
k_quants.o: k_quants.c k_quants.h
|
||||
$(CC) $(CFLAGS) -c $< -o $@
|
||||
endif # LLAMA_NO_K_QUANTS
|
||||
|
||||
# combine build flags with cmdline overrides
|
||||
override CPPFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS)
|
||||
override CFLAGS := $(MK_CFLAGS) $(CFLAGS)
|
||||
override CXXFLAGS := $(MK_CXXFLAGS) $(CXXFLAGS)
|
||||
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
|
||||
|
||||
#
|
||||
# Print build information
|
||||
#
|
||||
|
@ -12,9 +12,18 @@ let package = Package(
|
||||
name: "llama",
|
||||
path: ".",
|
||||
exclude: ["ggml-metal.metal"],
|
||||
sources: ["ggml.c", "llama.cpp"],
|
||||
sources: [
|
||||
"ggml.c",
|
||||
"llama.cpp",
|
||||
"ggml-alloc.c",
|
||||
"k_quants.c"
|
||||
],
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [.unsafeFlags(["-Wno-shorten-64-to-32"]), .define("GGML_USE_ACCELERATE")],
|
||||
cSettings: [
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32"]),
|
||||
.define("GGML_USE_K_QUANTS"),
|
||||
.define("GGML_USE_ACCELERATE")
|
||||
],
|
||||
linkerSettings: [
|
||||
.linkedFramework("Accelerate")
|
||||
]
|
||||
|
41
README.md
41
README.md
@ -120,6 +120,7 @@ as the main playground for developing new features for the [ggml](https://github
|
||||
|
||||
- [nat/openplayground](https://github.com/nat/openplayground)
|
||||
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||
|
||||
---
|
||||
|
||||
@ -464,6 +465,8 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
You will need the [OpenCL SDK](https://github.com/KhronosGroup/OpenCL-SDK).
|
||||
- For Ubuntu or Debian, the packages `opencl-headers`, `ocl-icd` may be needed.
|
||||
|
||||
- For Windows, a pre-built SDK is available on the [OpenCL Releases](https://github.com/KhronosGroup/OpenCL-SDK/releases) page.
|
||||
|
||||
- <details>
|
||||
<summary>Installing the OpenCL SDK from source</summary>
|
||||
|
||||
@ -481,10 +484,27 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
```
|
||||
</details>
|
||||
|
||||
Installing CLBlast: it may be found in your operating system's packages.
|
||||
##### Installing CLBlast
|
||||
|
||||
Pre-built CLBlast binaries may be found on the [CLBlast Releases](https://github.com/CNugteren/CLBlast/releases) page. For Unix variants, it may also be found in your operating system's packages.
|
||||
|
||||
Alternatively, they may be built from source.
|
||||
|
||||
- <details>
|
||||
<summary>If not, then installing from source:</summary>
|
||||
<summary>Windows:</summary>
|
||||
|
||||
```cmd
|
||||
set OPENCL_SDK_ROOT="C:/OpenCL-SDK-v2023.04.17-Win-x64"
|
||||
git clone https://github.com/CNugteren/CLBlast.git
|
||||
mkdir CLBlast\build
|
||||
cd CLBlast\build
|
||||
cmake .. -DBUILD_SHARED_LIBS=OFF -DOVERRIDE_MSVC_FLAGS_TO_MT=OFF -DTUNERS=OFF -DOPENCL_ROOT=%OPENCL_SDK_ROOT% -G "Visual Studio 17 2022" -A x64
|
||||
cmake --build . --config Release
|
||||
cmake --install . --prefix C:/CLBlast
|
||||
```
|
||||
|
||||
- <details>
|
||||
<summary>Unix:</summary>
|
||||
|
||||
```sh
|
||||
git clone https://github.com/CNugteren/CLBlast.git
|
||||
@ -498,21 +518,32 @@ Building the program with BLAS support may lead to some performance improvements
|
||||
Where `/some/path` is where the built library will be installed (default is `/usr/local`).
|
||||
</details>
|
||||
|
||||
Building:
|
||||
##### Building Llama with CLBlast
|
||||
|
||||
- Build with make:
|
||||
```sh
|
||||
make LLAMA_CLBLAST=1
|
||||
```
|
||||
- CMake:
|
||||
- CMake (Unix):
|
||||
```sh
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DLLAMA_CLBLAST=ON -DCLBlast_dir=/some/path
|
||||
cmake --build . --config Release
|
||||
```
|
||||
- CMake (Windows):
|
||||
```cmd
|
||||
set CL_BLAST_CMAKE_PKG="C:/CLBlast/lib/cmake/CLBlast"
|
||||
git clone https://github.com/ggerganov/llama.cpp
|
||||
cd llama.cpp
|
||||
mkdir build
|
||||
cd build
|
||||
cmake .. -DBUILD_SHARED_LIBS=OFF -DLLAMA_CLBLAST=ON -DCMAKE_PREFIX_PATH=%CL_BLAST_CMAKE_PKG% -G "Visual Studio 17 2022" -A x64
|
||||
cmake --build . --config Release
|
||||
cmake --install . --prefix C:/LlamaCPP
|
||||
```
|
||||
|
||||
Running:
|
||||
##### Running Llama with CLBlast
|
||||
|
||||
The CLBlast build supports `--gpu-layers|-ngl` like the CUDA version does.
|
||||
|
||||
|
@ -341,14 +341,14 @@ inline FILE *log_handler1_impl(bool change = false, LogTriState disable = LogTri
|
||||
}
|
||||
}
|
||||
|
||||
if (_initialized)
|
||||
{
|
||||
if (_disabled)
|
||||
{
|
||||
// Log is disabled
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
if (_initialized)
|
||||
{
|
||||
// with fallback in case something went wrong
|
||||
return logfile ? logfile : stderr;
|
||||
}
|
||||
|
30
convert.py
30
convert.py
@ -323,15 +323,27 @@ class BpeVocab:
|
||||
self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
|
||||
added_tokens: dict[str, int]
|
||||
if fname_added_tokens is not None:
|
||||
# FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
|
||||
added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
|
||||
else:
|
||||
# Fall back to trying to find the added tokens in tokenizer.json
|
||||
tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json'
|
||||
if not tokenizer_json_file.is_file():
|
||||
added_tokens = {}
|
||||
else:
|
||||
tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8"))
|
||||
added_tokens = dict(
|
||||
(item['content'], item['id'])
|
||||
for item in tokenizer_json.get('added_tokens', [])
|
||||
# Added tokens here can be duplicates of the main vocabulary.
|
||||
if item['content'] not in self.bpe_tokenizer )
|
||||
|
||||
vocab_size: int = len(self.bpe_tokenizer)
|
||||
expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
|
||||
actual_ids = sorted(added_tokens.values())
|
||||
if expected_ids != actual_ids:
|
||||
raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
|
||||
expected_end_id = vocab_size + len(actual_ids) - 1
|
||||
raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}")
|
||||
|
||||
items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
|
||||
self.added_tokens_list = [text for (text, idx) in items]
|
||||
@ -345,10 +357,22 @@ class BpeVocab:
|
||||
from transformers.models.gpt2 import tokenization_gpt2 # type: ignore[import]
|
||||
byte_encoder = tokenization_gpt2.bytes_to_unicode()
|
||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
||||
score = 0.0
|
||||
for i, item in enumerate(tokenizer):
|
||||
text: bytes = item.encode("utf-8")
|
||||
score: float = -i
|
||||
yield text, score, gguf.TokenType.USER_DEFINED
|
||||
# FIXME: These shouldn't be hardcoded, but it's probably better than the current behavior?
|
||||
if i <= 258 and text.startswith(b'<') and text.endswith(b'>'):
|
||||
if i == 0 and text == b'<unk>':
|
||||
toktype = gguf.TokenType.UNKNOWN
|
||||
elif i == 1 or i == 2:
|
||||
toktype = gguf.TokenType.CONTROL
|
||||
elif i >= 3 and text.startswith(b'<0x'):
|
||||
toktype = gguf.TokenType.BYTE
|
||||
else:
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
else:
|
||||
toktype = gguf.TokenType.NORMAL
|
||||
yield text, score, toktype
|
||||
|
||||
def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||
for text in self.added_tokens_list:
|
||||
|
@ -660,9 +660,10 @@ bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2
|
||||
ggml_tensor * gpt_neox_ff(
|
||||
const gpt_neox_block &block,
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * inp) {
|
||||
ggml_tensor * inp,
|
||||
const gpt_neox_hparams &hparams) {
|
||||
|
||||
ggml_tensor * cur = ggml_norm(ctx0, inp);
|
||||
ggml_tensor * cur = ggml_norm(ctx0, inp, hparams.norm_eps);
|
||||
|
||||
cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, block.ln_2_g, cur), cur), ggml_repeat(ctx0, block.ln_2_b, cur));
|
||||
cur = ggml_mul_mat(ctx0, block.c_mlp_fc_w, cur);
|
||||
@ -753,7 +754,7 @@ bool gpt_neox_eval(
|
||||
// self-attention
|
||||
{
|
||||
{
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
cur = ggml_norm(ctx0, inpL, hparams.norm_eps);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0, ggml_repeat(ctx0, model.blocks[il].ln_1_g, cur), cur),
|
||||
@ -844,7 +845,7 @@ bool gpt_neox_eval(
|
||||
if (hparams.par_res == 0) {
|
||||
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
cur = gpt_neox_ff(model.blocks[il], ctx0, inpFF);
|
||||
cur = gpt_neox_ff(model.blocks[il], ctx0, inpFF, hparams);
|
||||
|
||||
// input for next layer
|
||||
inpL = ggml_add(ctx0, cur, inpFF);
|
||||
@ -853,7 +854,7 @@ bool gpt_neox_eval(
|
||||
|
||||
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
|
||||
// note here we pass inpL instead of cur
|
||||
cur = gpt_neox_ff(model.blocks[il], ctx0, inpL);
|
||||
cur = gpt_neox_ff(model.blocks[il], ctx0, inpL, hparams);
|
||||
|
||||
// layer input + FF
|
||||
cur = ggml_add(ctx0, cur, inpFF);
|
||||
@ -867,7 +868,7 @@ bool gpt_neox_eval(
|
||||
|
||||
// norm
|
||||
{
|
||||
inpL = ggml_norm(ctx0, inpL);
|
||||
inpL = ggml_norm(ctx0, inpL, hparams.norm_eps);
|
||||
|
||||
// inpL = ln_f_g*inpL + ln_f_b
|
||||
inpL = ggml_add(ctx0,
|
||||
|
@ -1379,7 +1379,13 @@ int main(int argc, char **argv)
|
||||
}
|
||||
}
|
||||
|
||||
const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
|
||||
auto probs = llama.generated_token_probs;
|
||||
if (llama.params.n_probs > 0 && llama.stopped_word) {
|
||||
const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false);
|
||||
probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size());
|
||||
}
|
||||
|
||||
const json data = format_final_response(llama, llama.generated_text, probs);
|
||||
|
||||
llama_print_timings(llama.ctx);
|
||||
|
||||
@ -1456,7 +1462,11 @@ int main(int argc, char **argv)
|
||||
|
||||
if (!llama.has_next_token) {
|
||||
// Generation is done, send extra information.
|
||||
const json data = format_final_response(llama, "", llama.generated_token_probs);
|
||||
const json data = format_final_response(
|
||||
llama,
|
||||
"",
|
||||
std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index)
|
||||
);
|
||||
|
||||
const std::string str =
|
||||
"data: " +
|
||||
|
@ -284,7 +284,14 @@ struct ggml_allocr * ggml_allocr_new(void * data, size_t size, size_t alignment)
|
||||
// address and size of the buffer when measuring
|
||||
// it needs to be large enough to fit all the tensors, but it cannot overlap with other existing buffers
|
||||
static void * const MEASURE_BASE_ADDR = (void *) 0x1000;
|
||||
#if defined(__ARM_NEON) && !defined(__aarch64__)
|
||||
// 32-bit
|
||||
// TODO: Use for 32-bit x86 as well
|
||||
static const size_t MEASURE_MAX_SIZE = (1ULL<<32) - 1; // 4 GB
|
||||
#else
|
||||
// 64-bit
|
||||
static const size_t MEASURE_MAX_SIZE = 1ULL<<40; // 1 TB
|
||||
#endif
|
||||
|
||||
struct ggml_allocr * ggml_allocr_new_measure(size_t alignment) {
|
||||
struct ggml_allocr * alloc = (struct ggml_allocr *)malloc(sizeof(struct ggml_allocr) /* + n_free_blocks * sizeof(struct free_block) */);
|
||||
|
17
ggml-cuda.cu
17
ggml-cuda.cu
@ -81,12 +81,29 @@
|
||||
#if defined(GGML_USE_HIPBLAS)
|
||||
#define __CUDA_ARCH__ 1300
|
||||
|
||||
#ifndef __has_builtin
|
||||
#define __has_builtin(x) 0
|
||||
#endif
|
||||
|
||||
typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
|
||||
static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
|
||||
const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
|
||||
const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
|
||||
#if __has_builtin(__builtin_elementwise_sub_sat)
|
||||
const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
|
||||
return reinterpret_cast<const int&>(c);
|
||||
#else
|
||||
int8x4_t c;
|
||||
int16_t tmp;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < 4; i++) {
|
||||
tmp = va[i] - vb[i];
|
||||
if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
|
||||
if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
|
||||
c[i] = tmp;
|
||||
}
|
||||
return reinterpret_cast<int&>(c);
|
||||
#endif // __has_builtin(__builtin_elementwise_sub_sat)
|
||||
}
|
||||
|
||||
static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
|
||||
|
18
ggml-metal.m
18
ggml-metal.m
@ -116,10 +116,24 @@ static NSString * const msl_library_source = @"see metal.metal";
|
||||
struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
metal_printf("%s: allocating\n", __func__);
|
||||
|
||||
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
|
||||
// Show all the Metal device instances in the system
|
||||
NSArray * devices = MTLCopyAllDevices();
|
||||
id <MTLDevice> device;
|
||||
NSString * s;
|
||||
for (device in devices) {
|
||||
s = [device name];
|
||||
metal_printf("%s: found device: %s\n", __func__, [s UTF8String]);
|
||||
}
|
||||
|
||||
// Pick and show default Metal device
|
||||
device = MTLCreateSystemDefaultDevice();
|
||||
s = [device name];
|
||||
metal_printf("%s: picking default device: %s\n", __func__, [s UTF8String]);
|
||||
|
||||
// Configure context
|
||||
struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context));
|
||||
ctx->device = device;
|
||||
ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS);
|
||||
ctx->device = MTLCreateSystemDefaultDevice();
|
||||
ctx->queue = [ctx->device newCommandQueue];
|
||||
ctx->n_buffers = 0;
|
||||
ctx->concur_list_len = 0;
|
||||
|
46
ggml.c
46
ggml.c
@ -817,46 +817,6 @@ static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
|
||||
inline static uint16_t vaddvq_u8(uint8x16_t v) {
|
||||
return
|
||||
(uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
|
||||
(uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
|
||||
(uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
|
||||
(uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
|
||||
(uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
|
||||
(uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
|
||||
(uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
|
||||
(uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
|
||||
}
|
||||
|
||||
inline static int16_t vaddvq_s8(int8x16_t v) {
|
||||
return
|
||||
(int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
|
||||
(int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
|
||||
(int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
|
||||
(int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
|
||||
(int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
|
||||
(int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
|
||||
(int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
|
||||
(int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s16(int16x8_t v) {
|
||||
return
|
||||
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
|
||||
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
|
||||
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
|
||||
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
|
||||
}
|
||||
|
||||
inline static uint32_t vaddvq_u16(uint16x8_t v) {
|
||||
return
|
||||
(uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
|
||||
(uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
|
||||
(uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
|
||||
(uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
@ -865,12 +825,6 @@ inline static float vaddvq_f32(float32x4_t v) {
|
||||
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
||||
}
|
||||
|
||||
inline static float vminvq_f32(float32x4_t v) {
|
||||
return
|
||||
MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
||||
MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
||||
}
|
||||
|
||||
inline static float vmaxvq_f32(float32x4_t v) {
|
||||
return
|
||||
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
||||
|
40
k_quants.c
40
k_quants.c
@ -13,6 +13,26 @@
|
||||
//
|
||||
#include <arm_neon.h>
|
||||
|
||||
#if !defined(__aarch64__)
|
||||
inline static int32_t vaddvq_s16(int16x8_t v) {
|
||||
return
|
||||
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
|
||||
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
|
||||
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
|
||||
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
|
||||
}
|
||||
|
||||
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
||||
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
||||
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
||||
return vcombine_s16(a0, b0);
|
||||
}
|
||||
|
||||
inline static int32_t vaddvq_s32(int32x4_t v) {
|
||||
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
||||
}
|
||||
#endif
|
||||
|
||||
#else
|
||||
|
||||
#ifdef __wasm_simd128__
|
||||
@ -1302,7 +1322,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
|
||||
const uint8x16_t m3 = vdupq_n_u8(0x3);
|
||||
const uint8x16_t m4 = vdupq_n_u8(0xF);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x2_t q2bytes;
|
||||
uint8_t aux[16];
|
||||
@ -1608,7 +1630,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
#ifdef __ARM_NEON
|
||||
|
||||
const uint8x16_t m3 = vdupq_n_u8(0x3);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x4_t q2bytes;
|
||||
|
||||
@ -2592,8 +2616,6 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
const uint8_t * restrict q4 = x[i].qs;
|
||||
const int8_t * restrict q8 = y[i].qs;
|
||||
|
||||
//int32x4_t isum = mzero;
|
||||
|
||||
int32_t sumi1 = 0;
|
||||
int32_t sumi2 = 0;
|
||||
|
||||
@ -3092,9 +3114,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
#ifdef __ARM_NEON
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
const uint8x16_t mone = vdupq_n_u8(1);
|
||||
const uint8x16_t mtwo = vdupq_n_u8(2);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x4_t q5bytes;
|
||||
|
||||
@ -3437,8 +3461,10 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
#ifdef __ARM_NEON
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
const uint8x16_t mh = vdupq_n_u8(16);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t mzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
int8x16x4_t q5bytes;
|
||||
uint8x16x4_t q5h;
|
||||
@ -3656,7 +3682,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
float sum = 0;
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0xF);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
//const int8x16_t m32s = vdupq_n_s8(32);
|
||||
|
||||
const uint8x16_t mone = vdupq_n_u8(3);
|
||||
@ -4045,8 +4073,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||
float sum = 0;
|
||||
|
||||
const uint8x16_t m4b = vdupq_n_u8(0xF);
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
const int8x16_t m32s = vdupq_n_s8(32);
|
||||
#if defined(__ARM_FEATURE_DOTPROD)
|
||||
const int32x4_t vzero = vdupq_n_s32(0);
|
||||
#endif
|
||||
|
||||
const uint8x16_t mone = vdupq_n_u8(3);
|
||||
|
||||
|
42
llama.cpp
42
llama.cpp
@ -325,6 +325,44 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_GPT2,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_GPTJ,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_GPTNEOX,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_MPT,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
},
|
||||
},
|
||||
};
|
||||
|
||||
static llm_arch llm_arch_from_string(const std::string & name) {
|
||||
@ -1605,10 +1643,14 @@ static void llm_load_hparams(
|
||||
|
||||
GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
|
||||
|
||||
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
|
||||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
|
||||
}
|
||||
}
|
||||
// gpt-neox n_rot = rotary_pct * (n_embd / n_head)
|
||||
// gpt-j n_rot = rotary_dim
|
||||
}
|
||||
|
||||
// arch-specific KVs
|
||||
switch (model.arch) {
|
||||
|
Loading…
Reference in New Issue
Block a user