finish bitnet i2 e2e

This commit is contained in:
Eddie-Wang 2024-06-08 12:44:13 +00:00
parent 2a01a7ce0d
commit 4e1ab50628
6 changed files with 16 additions and 637 deletions

View File

@ -1431,7 +1431,7 @@ class BitnetModel(Model):
if x[i] != 0: if x[i] != 0:
scale = x[i] scale = x[i]
break break
x = np.divide(x, scale) x = np.where(x * scale > 0, 1, np.where(x * scale < 0, -1, x))
x = x.astype(np.uint8) x = x.astype(np.uint8)
x = np.reshape(x, [x.shape[0] // 4, 4]) x = np.reshape(x, [x.shape[0] // 4, 4])
keep_bit = {0:192, 1:48, 2:12, 3:3} keep_bit = {0:192, 1:48, 2:12, 3:3}

View File

@ -3741,7 +3741,7 @@ void ggml_vec_dot_i2_q8_0(int n, float * restrict s, size_t bs, const void * res
sumi += (int)y[i*4+2] * weight[2]; sumi += (int)y[i*4+2] * weight[2];
sumi += (int)y[i*4+3] * weight[3]; sumi += (int)y[i*4+3] * weight[3];
} }
*s = (float)(sumi); *s = (float)sumi;
} }

133
ggml.c
View File

@ -2630,7 +2630,7 @@ inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
*s = idx; *s = idx;
} }
inline static void ggml_vec_absmaxclamp_f32(const int n, float * s, const float * x, float min) { inline static void ggml_vec_absmaxclamp_f32(const int n, float * s, float * x, float min) {
float max = min; float max = min;
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
max = MAX(max, fabs(x[i])); max = MAX(max, fabs(x[i]));
@ -2646,12 +2646,12 @@ inline static void ggml_vec_scaleroundclamp_f32(const int n, float * s, const fl
} }
} }
inline static void ggml_vec_scaleroundclamp_f32_v2(const int n, float * s, int8_t* inp, float scale, float min, float max) { inline static void ggml_vec_scaleroundclamp_f32_v2(const int n, float * s, int8_t* inp, float scale, float min, float max) {
float temp;
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
s[i] = round(s[i] * scale); temp = round(s[i] * scale);
if (s[i] > max) s[i] = max; if (temp > max) temp = max;
if (s[i] < min) s[i] = min; if (temp < min) temp = min;
inp[i] = (int8_t)(s[i]); inp[i] = (int8_t)(temp);
} }
} }
@ -2745,10 +2745,9 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS", "CROSS_ENTROPY_LOSS",
"CROSS_ENTROPY_LOSS_BACK", "CROSS_ENTROPY_LOSS_BACK",
"BITLINEAR_QUANT"
}; };
static_assert(GGML_OP_COUNT == 75, "GGML_OP_COUNT != 75"); static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none", "none",
@ -2835,10 +2834,9 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss(x,y)", "cross_entropy_loss(x,y)",
"cross_entropy_loss_back(x,y)", "cross_entropy_loss_back(x,y)",
"bitlinear(x)",
}; };
static_assert(GGML_OP_COUNT == 75, "GGML_OP_COUNT != 75"); static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -4873,28 +4871,6 @@ struct ggml_tensor * ggml_mean(
return result; return result;
} }
// ggml_bitlinear_quant for bitnet
struct ggml_tensor * ggml_bitlinear_quant(
struct ggml_context * ctx,
struct ggml_tensor * a) {
bool is_node = false;
if (a->grad) {
GGML_ASSERT(false); // TODO: implement
is_node = true;
}
int64_t ne[GGML_MAX_DIMS] = { a->ne[0], a->ne[1], a->ne[2], a->ne[3] };
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, ggml_n_dims(a), ne);
result->op = GGML_OP_BITLINEAR_QUANT;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
return result;
}
// ggml_argmax // ggml_argmax
struct ggml_tensor * ggml_argmax( struct ggml_tensor * ggml_argmax(
@ -10805,62 +10781,6 @@ static void ggml_compute_forward_mean(
} }
} }
static void ggml_compute_forward_bitlinear_quant_f32(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
assert(params->ith == 0);
if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
assert(src0->nb[0] == sizeof(float));
GGML_TENSOR_UNARY_OP_LOCALS
assert(ne0 == ne00);
assert(ne1 == ne01);
assert(ne2 == ne02);
assert(ne3 == ne03);
UNUSED(ne0);
UNUSED(ne1);
UNUSED(ne2);
UNUSED(ne3);
for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) {
for (int64_t i01 = 0; i01 < ne01; i01++) {
float rowmax = 0.00001;
ggml_vec_absmaxclamp_f32(ne00, &rowmax, (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), 0.00001);
float s = 127 / rowmax;
ggml_vec_scaleroundclamp_f32(ne00,
(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
(float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
s, -128, 127);
}
}
}
}
static void ggml_compute_forward_bitlinear_quant(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_F32:
{
ggml_compute_forward_bitlinear_quant_f32(params, src0, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_argmax // ggml_compute_forward_argmax
static void ggml_compute_forward_argmax_f32( static void ggml_compute_forward_argmax_f32(
@ -12453,17 +12373,7 @@ static void ggml_compute_forward_mul_mat_one_chunk(
float tmp[32]; float tmp[32];
uint8_t *i_weight = (uint8_t*) (src0->data); uint8_t *i_weight = (uint8_t*) (src0->data);
float * scale = (float * )((i_weight) + (ne00 * ne01 / 4)); float * scale = (float * )((i_weight) + (ne00 * ne01 / 4));
float * act_scales = (float*) ((char *) wdata + ((ne11*nb11) / 4)); float * act_scales = (float*) ((char *) wdata + (ne11 * ne10));
// printf("src0->name:%s\n", src0->name);
// printf("src1->name:%s\n", src1->name);
// printf("ne03:%ld\n", ne03);
// printf("ne02:%ld\n", ne02);
// printf("ne01:%ld\n", ne01);
// printf("ne00:%ld\n", ne00);
// printf("ne13:%ld\n", ne13);
// printf("ne12:%ld\n", ne12);
// printf("ne11:%ld\n", ne11);
// printf("ne10:%ld\n", ne10);
for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) { for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) { for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
@ -12481,9 +12391,7 @@ static void ggml_compute_forward_mul_mat_one_chunk(
const int64_t i3 = i13; const int64_t i3 = i13;
const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03); const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
// if (src0->type == 31) {
// printf("src0->%ld\n", (0 + i02 * nb02 + i03 * nb03));
// }
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
// the original src1 data pointer, so we should index using the indices directly // the original src1 data pointer, so we should index using the indices directly
@ -12492,17 +12400,13 @@ static void ggml_compute_forward_mul_mat_one_chunk(
(src1_cont || src1->type != vec_dot_type (src1_cont || src1->type != vec_dot_type
? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
: (i11 * nb11 + i12 * nb12 + i13 * nb13)); : (i11 * nb11 + i12 * nb12 + i13 * nb13));
// if (src0->type == 31) {
// printf("src1->%ld\n", (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size);
// }
float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3)); float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) { //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col); // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
//} //}
// if (src0->type == 31) {
// printf("dst->%ld\n", (i1 * nb1 + i2 * nb2 + i3 * nb3));
// }
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) { for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
if (src0->type == 31) { if (src0->type == 31) {
// printf("row->%ld\n", (ir0 * nb01 / 4)); // printf("row->%ld\n", (ir0 * nb01 / 4));
@ -12513,8 +12417,6 @@ static void ggml_compute_forward_mul_mat_one_chunk(
} }
} }
// printf("num_rows_per_vec_dot->%ld\n", num_rows_per_vec_dot);
// printf("iir0->%ld\n", iir0);
for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) { for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float)); memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
} }
@ -12572,7 +12474,7 @@ static void ggml_compute_forward_bitnet_mul_mat(
} }
atomic_store(&state->shared->current_chunk, nth); atomic_store(&state->shared->current_chunk, nth);
char * wdata = params->wdata; char * wdata = params->wdata;
float* act_scales = (float*) ((char *) wdata + ((ne11*nb11) / 4)); float* act_scales = (float*) ((char *) wdata + (ne11 * ne10));
for (int64_t i13 = 0; i13 < ne13; i13++) { for (int64_t i13 = 0; i13 < ne13; i13++) {
for (int64_t i12 = 0; i12 < ne12; i12++) { for (int64_t i12 = 0; i12 < ne12; i12++) {
for (int64_t i11 = 0; i11 < ne11; i11++) { for (int64_t i11 = 0; i11 < ne11; i11++) {
@ -17634,10 +17536,6 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{ {
ggml_compute_forward_mean(params, tensor); ggml_compute_forward_mean(params, tensor);
} break; } break;
case GGML_OP_BITLINEAR_QUANT:
{
ggml_compute_forward_bitlinear_quant(params, tensor->src[0], tensor);
} break;
case GGML_OP_ARGMAX: case GGML_OP_ARGMAX:
{ {
ggml_compute_forward_argmax(params, tensor); ggml_compute_forward_argmax(params, tensor);
@ -18804,10 +18702,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{ {
GGML_ASSERT(false); // TODO: not implemented GGML_ASSERT(false); // TODO: not implemented
} break; } break;
case GGML_OP_BITLINEAR_QUANT:
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_ARGSORT: case GGML_OP_ARGSORT:
{ {
GGML_ASSERT(false); // TODO: not implemented GGML_ASSERT(false); // TODO: not implemented
@ -19573,7 +19467,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
case GGML_OP_GET_REL_POS: case GGML_OP_GET_REL_POS:
case GGML_OP_MAP_UNARY: case GGML_OP_MAP_UNARY:
case GGML_OP_MAP_BINARY: case GGML_OP_MAP_BINARY:
case GGML_OP_BITLINEAR_QUANT:
case GGML_OP_MAP_CUSTOM1_F32: case GGML_OP_MAP_CUSTOM1_F32:
case GGML_OP_MAP_CUSTOM2_F32: case GGML_OP_MAP_CUSTOM2_F32:
case GGML_OP_MAP_CUSTOM3_F32: case GGML_OP_MAP_CUSTOM3_F32:

7
ggml.h
View File

@ -507,8 +507,6 @@ extern "C" {
GGML_OP_CROSS_ENTROPY_LOSS, GGML_OP_CROSS_ENTROPY_LOSS,
GGML_OP_CROSS_ENTROPY_LOSS_BACK, GGML_OP_CROSS_ENTROPY_LOSS_BACK,
GGML_OP_BITLINEAR_QUANT,
GGML_OP_COUNT, GGML_OP_COUNT,
}; };
@ -996,11 +994,6 @@ extern "C" {
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
// for bitnet
GGML_API struct ggml_tensor * ggml_bitlinear_quant(
struct ggml_context * ctx,
struct ggml_tensor * a);
// argmax along rows // argmax along rows
GGML_API struct ggml_tensor * ggml_argmax( GGML_API struct ggml_tensor * ggml_argmax(
struct ggml_context * ctx, struct ggml_context * ctx,

View File

@ -6827,13 +6827,6 @@ static struct ggml_tensor * llm_build_norm(
return cur; return cur;
} }
static struct ggml_tensor * llm_build_qbitlinear(
struct ggml_context * ctx,
struct ggml_tensor * cur)
{
return ggml_bitlinear_quant(ctx, cur);
}
static struct ggml_tensor * llm_build_ffn( static struct ggml_tensor * llm_build_ffn(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * cur, struct ggml_tensor * cur,
@ -7137,9 +7130,7 @@ static struct ggml_tensor * llm_build_kqv(
attn_sub_norm, NULL, attn_sub_norm, NULL,
LLM_NORM_RMS, cb, il); LLM_NORM_RMS, cb, il);
cb(cur, "attn_sub_norm", il); cb(cur, "attn_sub_norm", il);
// B2 for wo
// cur = llm_build_qbitlinear(ctx, cur);
} }
ggml_build_forward_expand(graph, cur); ggml_build_forward_expand(graph, cur);
@ -11561,8 +11552,6 @@ struct llm_build_context {
// self-attention // self-attention
{ {
// compute Q and K and RoPE them // compute Q and K and RoPE them
// B1.Q
// cur = llm_build_qbitlinear(ctx0, cur);
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il); cb(Qcur, "Qcur", il);
if (model.layers[il].bq) { if (model.layers[il].bq) {
@ -11625,17 +11614,6 @@ struct llm_build_context {
LLM_NORM_RMS, cb, il); LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il); cb(cur, "ffn_norm", il);
// cur = llm_build_ffn(ctx0, cur,
// model.layers[il].ffn_up, NULL,
// model.layers[il].ffn_gate, NULL,
// model.layers[il].ffn_down, NULL,
// NULL,
// LLM_FFN_SILU, LLM_FFN_PAR, cb, il, hparams, model.layers[il].ffn_sub_norm, isbitnet);
// cb(cur, "ffn_out", il);
// cur = llm_build_qbitlinear(ctx0, cur);
struct ggml_tensor *tmp = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur); struct ggml_tensor *tmp = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
cb(tmp, "ffn_up", il); cb(tmp, "ffn_up", il);
@ -11656,9 +11634,6 @@ struct llm_build_context {
LLM_NORM_RMS, cb, il); LLM_NORM_RMS, cb, il);
cb(cur, "ffn_sub_norm", il); cb(cur, "ffn_sub_norm", il);
// B4 for w2
// cur = llm_build_qbitlinear(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur); cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down, cur);
cb(cur, "ffn_down", il); cb(cur, "ffn_down", il);

View File

@ -1,482 +0,0 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for LLaMA."""
import os
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from transformers.convert_slow_tokenizer import import_protobuf
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging
if TYPE_CHECKING:
from transformers.tokenization_utils_base import TextInput
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
},
"tokenizer_file": {
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"hf-internal-testing/llama-tokenizer": 2048,
}
SPIECE_UNDERLINE = ""
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
# fmt: off
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
correct. If you don't know the answer to a question, please don't share false information."""
# fmt: on
class BitnetTokenizer(PreTrainedTokenizer):
"""
Construct a Bitnet tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is
no padding token in the original model.
Args:
vocab_file (`str`):
Path to the vocabulary file.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"</s>"`):
The end of sequence token.
pad_token (`str` or `tokenizers.AddedToken`, *optional*):
A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by
attention mechanisms or loss computation.
sp_model_kwargs (`Dict[str, Any]`, `Optional`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for Bitnet should be used.
spaces_between_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not to add spaces between special tokens.
legacy (`bool`, *optional*):
Whether or not the `legacy` behavior of the tokenizer should be used. Legacy is before the merge of #24622
and #25224 which includes fixes to properly handle tokens that appear after special tokens. A simple
example:
- `legacy=True`:
```python
>>> from transformers import T5Tokenizer
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=True)
>>> tokenizer.encode("Hello <extra_id_0>.")
[8774, 32099, 3, 5, 1]
```
- `legacy=False`:
```python
>>> from transformers import T5Tokenizer
>>> tokenizer = T5Tokenizer.from_pretrained("google-t5/t5-base", legacy=False)
>>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
[8774, 32099, 5, 1]
```
Checkout the [pull request](https://github.com/huggingface/transformers/pull/24565) for more details.
add_prefix_space (`bool`, *optional*, defaults to `True`):
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
other word.
"""
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
use_default_system_prompt=False,
spaces_between_special_tokens=False,
legacy=None,
add_prefix_space=True,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
if legacy is None:
logger.warning_once(
f"You are using the default legacy behaviour of the {self.__class__}. This is"
" expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you."
" If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it"
" means, and thoroughly read the reason why this was added as explained in"
" https://github.com/huggingface/transformers/pull/24565"
)
legacy = True
self.legacy = legacy
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.use_default_system_prompt = use_default_system_prompt
self.sp_model = self.get_spm_processor(kwargs.pop("from_slow", False))
self.add_prefix_space = add_prefix_space
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
sp_model_kwargs=self.sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
use_default_system_prompt=use_default_system_prompt,
spaces_between_special_tokens=spaces_between_special_tokens,
legacy=legacy,
add_prefix_space=add_prefix_space,
**kwargs,
)
@property
def unk_token_length(self):
return len(self.sp_model.encode(str(self.unk_token)))
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.get_spm_processor
def get_spm_processor(self, from_slow=False):
tokenizer = spm.SentencePieceProcessor(**self.sp_model_kwargs)
if self.legacy or from_slow: # no dependency on protobuf
tokenizer.Load(self.vocab_file)
return tokenizer
with open(self.vocab_file, "rb") as f:
sp_model = f.read()
model_pb2 = import_protobuf(f"The new behaviour of {self.__class__.__name__} (with `self.legacy = False`)")
model = model_pb2.ModelProto.FromString(sp_model)
normalizer_spec = model_pb2.NormalizerSpec()
normalizer_spec.add_dummy_prefix = False
model.normalizer_spec.MergeFrom(normalizer_spec)
sp_model = model.SerializeToString()
tokenizer.LoadFromSerializedProto(sp_model)
return tokenizer
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
return state
def __setstate__(self, d):
self.__dict__ = d
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()
def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer.tokenize
def tokenize(self, text: "TextInput", **kwargs) -> List[str]:
"""
Converts a string to a list of tokens. If `self.legacy` is set to `False`, a prefix token is added unless the
first token is special.
"""
if self.legacy or len(text) == 0:
return super().tokenize(text, **kwargs)
text = text.replace(SPIECE_UNDERLINE, " ")
if self.add_prefix_space:
text = SPIECE_UNDERLINE + text
tokens = super().tokenize(text, **kwargs)
if len(tokens) > 1 and tokens[0] == SPIECE_UNDERLINE and tokens[1] in self.all_special_tokens:
tokens = tokens[1:]
return tokens
# Copied from transformers.models.t5.tokenization_t5.T5Tokenizer._tokenize
def _tokenize(self, text, **kwargs):
"""
Returns a tokenized string.
We de-activated the `add_dummy_prefix` option, thus the sentencepiece internals will always strip any
SPIECE_UNDERLINE. For example: `self.sp_model.encode(f"{SPIECE_UNDERLINE}Hey", out_type = str)` will give
`['H', 'e', 'y']` instead of `['▁He', 'y']`. Thus we always encode `f"{unk_token}text"` and strip the
`unk_token`. Here is an example with `unk_token = "<unk>"` and `unk_token_length = 4`.
`self.tokenizer.sp_model.encode("<unk> Hey", out_type = str)[4:]`.
"""
tokens = self.sp_model.encode(text, out_type=str)
if self.legacy or not text.startswith((SPIECE_UNDERLINE, " ")):
return tokens
# 1. Encode string + prefix ex: "<unk> Hey"
tokens = self.sp_model.encode(self.unk_token + text, out_type=str)
# 2. Remove self.unk_token from ['<','unk','>', '▁Hey']
return tokens[self.unk_token_length :] if len(tokens) >= self.unk_token_length else tokens
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
# since we manually add the prefix space, we have to remove it when decoding
if tokens[0].startswith(SPIECE_UNDERLINE) and self.add_prefix_space:
tokens[0] = tokens[0][1:]
current_sub_tokens = []
out_string = ""
prev_is_special = False
for i, token in enumerate(tokens):
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special and i != 0 and self.legacy:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.
Args:
save_directory (`str`):
The directory in which to save the vocabulary.
Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []
if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
if token_ids_1 is None, only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
return output
@property
def default_chat_template(self):
"""
LLaMA uses [INST] and [/INST] to indicate user messages, and <<SYS>> and <</SYS>> to indicate system messages.
Assistant messages do not have special tokens, because LLaMA chat models are generally trained with strict
user/assistant/user/assistant message ordering, and so assistant messages can be identified from the ordering
rather than needing special tokens. The system message is partly 'embedded' in the first user message, which
results in an unusual token ordering when it is present. This template should definitely be changed if you wish
to fine-tune a model with more flexible role ordering!
The output should look something like:
<bos>[INST] B_SYS SystemPrompt E_SYS Prompt [/INST] Answer <eos><bos>[INST] Prompt [/INST] Answer <eos>
<bos>[INST] Prompt [/INST]
The reference for this chat template is [this code
snippet](https://github.com/facebookresearch/llama/blob/556949fdfb72da27c2f4a40b7f0e4cf0b8153a28/llama/generation.py#L320-L362)
in the original repository.
"""
logger.warning_once(
"\nNo chat template is defined for this tokenizer - using the default template "
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
"your model, please set `tokenizer.chat_template` to an appropriate template. "
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
)
template = (
"{% if messages[0]['role'] == 'system' %}"
"{% set loop_messages = messages[1:] %}" # Extract system message if it's present
"{% set system_message = messages[0]['content'] %}"
"{% elif USE_DEFAULT_PROMPT == true and not '<<SYS>>' in messages[0]['content'] %}"
"{% set loop_messages = messages %}" # Or use the default system message if the flag is set
"{% set system_message = 'DEFAULT_SYSTEM_MESSAGE' %}"
"{% else %}"
"{% set loop_messages = messages %}"
"{% set system_message = false %}"
"{% endif %}"
"{% for message in loop_messages %}" # Loop over all non-system messages
"{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}"
"{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}"
"{% endif %}"
"{% if loop.index0 == 0 and system_message != false %}" # Embed system message in first message
"{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}"
"{% else %}"
"{% set content = message['content'] %}"
"{% endif %}"
"{% if message['role'] == 'user' %}" # After all of that, handle messages/roles in a fairly normal way
"{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}"
"{% elif message['role'] == 'system' %}"
"{{ '<<SYS>>\\n' + content.strip() + '\\n<</SYS>>\\n\\n' }}"
"{% elif message['role'] == 'assistant' %}"
"{{ ' ' + content.strip() + ' ' + eos_token }}"
"{% endif %}"
"{% endfor %}"
)
template = template.replace("USE_DEFAULT_PROMPT", "true" if self.use_default_system_prompt else "false")
default_message = DEFAULT_SYSTEM_PROMPT.replace("\n", "\\n").replace("'", "\\'")
template = template.replace("DEFAULT_SYSTEM_MESSAGE", default_message)
return template