llama/ex: remove --logdir argument (#10339)

This commit is contained in:
Johannes Gäßler 2024-11-16 23:00:41 +01:00 committed by GitHub
parent db4cfd5dbc
commit 4e54be0ec6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
10 changed files with 0 additions and 547 deletions

View File

@ -1939,17 +1939,6 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
params.simple_io = true;
}
).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_INFILL}));
add_opt(common_arg(
{"-ld", "--logdir"}, "LOGDIR",
"path under which to save YAML logs (no logging if unset)",
[](common_params & params, const std::string & value) {
params.logdir = value;
if (params.logdir.back() != DIRECTORY_SEPARATOR) {
params.logdir += DIRECTORY_SEPARATOR;
}
}
));
add_opt(common_arg(
{"--positive-file"}, "FNAME",
string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),

View File

@ -1890,213 +1890,3 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
return result;
}
//
// YAML utils
//
void yaml_dump_vector_float(FILE * stream, const char * prop_name, const std::vector<float> & data) {
if (data.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
fprintf(stream, "%s: [", prop_name);
for (size_t i = 0; i < data.size() - 1; ++i) {
fprintf(stream, "%e, ", data[i]);
}
fprintf(stream, "%e]\n", data.back());
}
void yaml_dump_vector_int(FILE * stream, const char * prop_name, const std::vector<int> & data) {
if (data.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
fprintf(stream, "%s: [", prop_name);
for (size_t i = 0; i < data.size() - 1; ++i) {
fprintf(stream, "%d, ", data[i]);
}
fprintf(stream, "%d]\n", data.back());
}
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data) {
std::string data_str(data == NULL ? "" : data);
if (data_str.empty()) {
fprintf(stream, "%s:\n", prop_name);
return;
}
size_t pos_start = 0;
size_t pos_found = 0;
if (std::isspace(data_str[0]) || std::isspace(data_str.back())) {
data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
data_str = std::regex_replace(data_str, std::regex(R"(\\[^n"])"), R"(\$&)");
data_str = "\"" + data_str + "\"";
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;
}
if (data_str.find('\n') == std::string::npos) {
fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
return;
}
fprintf(stream, "%s: |\n", prop_name);
while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
pos_start = pos_found + 1;
}
}
void yaml_dump_non_result_info(FILE * stream, const common_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
ggml_cpu_init(); // some ARM features are detected at runtime
const auto & sparams = params.sparams;
fprintf(stream, "build_commit: %s\n", LLAMA_COMMIT);
fprintf(stream, "build_number: %d\n", LLAMA_BUILD_NUMBER);
fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
fprintf(stream, "cpu_has_avx_vnni: %s\n", ggml_cpu_has_avx_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
fprintf(stream, "cpu_has_sve: %s\n", ggml_cpu_has_sve() ? "true" : "false");
fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
fprintf(stream, "cpu_has_riscv_v: %s\n", ggml_cpu_has_riscv_v() ? "true" : "false");
fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
fprintf(stream, "cpu_has_matmul_int8: %s\n", ggml_cpu_has_matmul_int8() ? "true" : "false");
#ifdef NDEBUG
fprintf(stream, "debug: false\n");
#else
fprintf(stream, "debug: true\n");
#endif // NDEBUG
fprintf(stream, "model_desc: %s\n", model_desc);
fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(llama_get_model(lctx)));
#ifdef __OPTIMIZE__
fprintf(stream, "optimize: true\n");
#else
fprintf(stream, "optimize: false\n");
#endif // __OPTIMIZE__
fprintf(stream, "time: %s\n", timestamp.c_str());
fprintf(stream, "\n");
fprintf(stream, "###############\n");
fprintf(stream, "# User Inputs #\n");
fprintf(stream, "###############\n");
fprintf(stream, "\n");
fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
fprintf(stream, "dry_allowed_length: %d # default: 2\n", sparams.dry_allowed_length);
fprintf(stream, "dry_base: %.2f # default: 1.75\n", sparams.dry_base);
fprintf(stream, "dry_multiplier: %.1f # default: 0.0\n", sparams.dry_multiplier);
fprintf(stream, "dry_penalty_last_n: %d # default: -1 (0 = disable, -1 = context size)\n", sparams.dry_penalty_last_n);
fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", sparams.penalty_freq);
yaml_dump_string_multiline(stream, "grammar", sparams.grammar.c_str());
fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
fprintf(stream, "ignore_eos: %s # default: false\n", sparams.ignore_eos ? "true" : "false");
yaml_dump_string_multiline(stream, "in_prefix", params.input_prefix.c_str());
fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
yaml_dump_string_multiline(stream, "in_suffix", params.input_prefix.c_str());
fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
fprintf(stream, "logit_bias:\n");
for (const auto & logit_bias : sparams.logit_bias) {
fprintf(stream, " %d: %f", logit_bias.token, logit_bias.bias);
}
fprintf(stream, "lora:\n");
for (auto & la : params.lora_adapters) {
if (la.scale == 1.0f) {
fprintf(stream, " - %s\n", la.path.c_str());
}
}
fprintf(stream, "lora_scaled:\n");
for (auto & la : params.lora_adapters) {
if (la.scale != 1.0f) {
fprintf(stream, " - %s: %f\n", la.path.c_str(), la.scale);
}
}
fprintf(stream, "lora_init_without_apply: %s # default: false\n", params.lora_init_without_apply ? "true" : "false");
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
fprintf(stream, "model: %s # default: %s\n", params.model.c_str(), DEFAULT_MODEL_PATH);
fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
fprintf(stream, "presence_penalty: %f # default: 0.0\n", sparams.penalty_present);
yaml_dump_string_multiline(stream, "prompt", params.prompt.c_str());
fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
yaml_dump_vector_int(stream, "prompt_tokens", prompt_tokens);
fprintf(stream, "repeat_penalty: %f # default: 1.1\n", sparams.penalty_repeat);
fprintf(stream, "reverse_prompt:\n");
for (std::string ap : params.antiprompt) {
size_t pos = 0;
while ((pos = ap.find('\n', pos)) != std::string::npos) {
ap.replace(pos, 1, "\\n");
pos += 1;
}
fprintf(stream, " - %s\n", ap.c_str());
}
fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
fprintf(stream, "flash_attn: %s # default: false\n", params.flash_attn ? "true" : "false");
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
yaml_dump_vector_float(stream, "tensor_split", tensor_split_vector);
fprintf(stream, "threads: %d # default: %u\n", params.cpuparams.n_threads, std::thread::hardware_concurrency());
fprintf(stream, "top_k: %d # default: 40\n", sparams.top_k);
fprintf(stream, "top_p: %f # default: 0.95\n", sparams.top_p);
fprintf(stream, "min_p: %f # default: 0.0\n", sparams.min_p);
fprintf(stream, "xtc_probability: %f # default: 0.0\n", sparams.xtc_probability);
fprintf(stream, "xtc_threshold: %f # default: 0.1\n", sparams.xtc_threshold);
fprintf(stream, "typ_p: %f # default: 1.0\n", sparams.typ_p);
fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
fprintf(stream, "display_prompt: %s # default: true\n", params.display_prompt ? "true" : "false");
}

View File

@ -209,7 +209,6 @@ struct common_params {
std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
std::string logdir = ""; // directory in which to save YAML log files // NOLINT
std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
std::string logits_file = ""; // file for saving *all* logits // NOLINT
@ -584,15 +583,3 @@ common_control_vector_data common_control_vector_load(const std::vector<common_c
static const char * const LLM_KV_SPLIT_NO = "split.no";
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
//
// YAML utils
//
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
void yaml_dump_non_result_info(
FILE * stream, const common_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);

View File

@ -43,50 +43,6 @@ static std::vector<llama_token> * g_output_tokens;
static bool is_interacting = false;
static void write_logfile(
const llama_context * ctx, const common_params & params, const llama_model * model,
const std::vector<llama_token> & input_tokens, const std::string & output,
const std::vector<llama_token> & output_tokens
) {
if (params.logdir.empty()) {
return;
}
const std::string timestamp = string_get_sortable_timestamp();
const bool success = fs_create_directory_with_parents(params.logdir);
if (!success) {
LOG_ERR("%s: warning: failed to create logdir %s, cannot write logfile\n",
__func__, params.logdir.c_str());
return;
}
const std::string logfile_path = params.logdir + timestamp + ".yml";
FILE * logfile = fopen(logfile_path.c_str(), "w");
if (logfile == NULL) {
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
return;
}
fprintf(logfile, "binary: infill\n");
char model_desc[128];
llama_model_desc(model, model_desc, sizeof(model_desc));
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
fprintf(logfile, "\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "# Generation Results #\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "\n");
yaml_dump_string_multiline(logfile, "output", output.c_str());
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
@ -96,7 +52,6 @@ static void sigint_handler(int signo) {
console::cleanup();
LOG("\n");
common_perf_print(*g_ctx, *g_smpl);
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
// make sure all logs are flushed
LOG("Interrupted by user\n");
@ -625,7 +580,6 @@ int main(int argc, char ** argv) {
LOG("\n");
common_perf_print(ctx, smpl);
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
llama_free(ctx);
llama_free_model(model);

View File

@ -62,49 +62,6 @@ static bool file_is_empty(const std::string & path) {
return f.tellg() == 0;
}
static void write_logfile(
const llama_context * ctx, const common_params & params, const llama_model * model,
const std::vector<llama_token> & input_tokens, const std::string & output,
const std::vector<llama_token> & output_tokens
) {
if (params.logdir.empty()) {
return;
}
const std::string timestamp = string_get_sortable_timestamp();
const bool success = fs_create_directory_with_parents(params.logdir);
if (!success) {
LOG_ERR("%s: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str());
return;
}
const std::string logfile_path = params.logdir + timestamp + ".yml";
FILE * logfile = fopen(logfile_path.c_str(), "w");
if (logfile == NULL) {
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
return;
}
fprintf(logfile, "binary: main\n");
char model_desc[128];
llama_model_desc(model, model_desc, sizeof(model_desc));
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
fprintf(logfile, "\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "# Generation Results #\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "\n");
yaml_dump_string_multiline(logfile, "output", output.c_str());
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
static void sigint_handler(int signo) {
if (signo == SIGINT) {
@ -115,7 +72,6 @@ static void sigint_handler(int signo) {
console::cleanup();
LOG("\n");
common_perf_print(*g_ctx, *g_smpl);
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
// make sure all logs are flushed
LOG("Interrupted by user\n");
@ -926,7 +882,6 @@ int main(int argc, char ** argv) {
LOG("\n\n");
common_perf_print(ctx, smpl);
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
common_sampler_free(smpl);

View File

@ -34,55 +34,6 @@ struct results_log_softmax {
float prob;
};
static void write_logfile(
const llama_context * ctx, const common_params & params, const llama_model * model,
const struct results_perplexity & results
) {
if (params.logdir.empty()) {
return;
}
if (params.hellaswag) {
LOG_WRN("%s: logging results is not implemented for HellaSwag. No files will be written.\n", __func__);
return;
}
const std::string timestamp = string_get_sortable_timestamp();
const bool success = fs_create_directory_with_parents(params.logdir);
if (!success) {
LOG_WRN("%s: failed to create logdir %s, cannot write logfile\n",
__func__, params.logdir.c_str());
return;
}
const std::string logfile_path = params.logdir + timestamp + ".yml";
FILE * logfile = fopen(logfile_path.c_str(), "w");
if (logfile == NULL) {
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
return;
}
fprintf(logfile, "binary: main\n");
char model_desc[128];
llama_model_desc(model, model_desc, sizeof(model_desc));
yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc);
fprintf(logfile, "\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "# Perplexity Results #\n");
fprintf(logfile, "######################\n");
fprintf(logfile, "\n");
yaml_dump_vector_float(logfile, "logits", results.logits);
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
yaml_dump_vector_float(logfile, "probs", results.probs);
llama_perf_dump_yaml(logfile, ctx);
fclose(logfile);
}
static std::vector<float> softmax(const std::vector<float>& logits) {
std::vector<float> probs(logits.size());
float max_logit = logits[0];
@ -2072,8 +2023,6 @@ int main(int argc, char ** argv) {
LOG("\n");
llama_perf_context_print(ctx);
write_logfile(ctx, params, model, results);
llama_free(ctx);
llama_free_model(model);

View File

@ -85,7 +85,6 @@ The project is under active development, and we are [looking for feedback and co
| `-hfr, --hf-repo REPO` | Hugging Face model repository (default: unused)<br/>(env: LLAMA_ARG_HF_REPO) |
| `-hff, --hf-file FILE` | Hugging Face model file (default: unused)<br/>(env: LLAMA_ARG_HF_FILE) |
| `-hft, --hf-token TOKEN` | Hugging Face access token (default: value from HF_TOKEN environment variable)<br/>(env: HF_TOKEN) |
| `-ld, --logdir LOGDIR` | path under which to save YAML logs (no logging if unset) |
| `--log-disable` | Log disable |
| `--log-file FNAME` | Log to file |
| `--log-colors` | Enable colored logging<br/>(env: LLAMA_LOG_COLORS) |

View File

@ -1244,8 +1244,6 @@ extern "C" {
LLAMA_API void llama_perf_sampler_print(const struct llama_sampler * chain);
LLAMA_API void llama_perf_sampler_reset( struct llama_sampler * chain);
LLAMA_API void llama_perf_dump_yaml(FILE * stream, const struct llama_context * ctx);
#ifdef __cplusplus
}
#endif

View File

@ -1,146 +0,0 @@
#!/usr/bin/env python3
import logging
import argparse
import os
import subprocess
import sys
import yaml
logger = logging.getLogger("run-with-preset")
CLI_ARGS_LLAMA_CLI_PERPLEXITY = [
"batch-size", "cfg-negative-prompt", "cfg-scale", "chunks", "color", "ctx-size", "escape",
"export", "file", "frequency-penalty", "grammar", "grammar-file", "hellaswag",
"hellaswag-tasks", "ignore-eos", "in-prefix", "in-prefix-bos", "in-suffix",
"interactive", "interactive-first", "keep", "logdir", "logit-bias", "lora", "lora-base",
"low-vram", "main-gpu", "mirostat", "mirostat-ent", "mirostat-lr", "mlock",
"model", "multiline-input", "n-gpu-layers", "n-predict", "no-mmap", "no-mul-mat-q",
"np-penalize-nl", "numa", "ppl-output-type", "ppl-stride", "presence-penalty", "prompt",
"prompt-cache", "prompt-cache-all", "prompt-cache-ro", "repeat-last-n",
"repeat-penalty", "reverse-prompt", "rope-freq-base", "rope-freq-scale", "rope-scale", "seed",
"simple-io", "tensor-split", "threads", "temp", "top-k", "top-p", "typical",
"verbose-prompt"
]
CLI_ARGS_LLAMA_BENCH = [
"batch-size", "low-vram", "model", "mul-mat-q", "n-gen", "n-gpu-layers",
"n-prompt", "output", "repetitions", "tensor-split", "threads", "verbose"
]
CLI_ARGS_LLAMA_SERVER = [
"alias", "batch-size", "ctx-size", "embedding", "host", "lora", "lora-base",
"low-vram", "main-gpu", "mlock", "model", "n-gpu-layers", "n-probs", "no-mmap", "no-mul-mat-q",
"numa", "path", "port", "rope-freq-base", "timeout", "rope-freq-scale", "tensor-split",
"threads", "verbose"
]
description = """Run llama.cpp binaries with presets from YAML file(s).
To specify which binary should be run, specify the "binary" property (llama-cli, llama-perplexity, llama-bench, and llama-server are supported).
To get a preset file template, run a llama.cpp binary with the "--logdir" CLI argument.
Formatting considerations:
- The YAML property names are the same as the CLI argument names of the corresponding binary.
- Properties must use the long name of their corresponding llama.cpp CLI arguments.
- Like the llama.cpp binaries the property names do not differentiate between hyphens and underscores.
- Flags must be defined as "<PROPERTY_NAME>: true" to be effective.
- To define the logit_bias property, the expected format is "<TOKEN_ID>: <BIAS>" in the "logit_bias" namespace.
- To define multiple "reverse_prompt" properties simultaneously the expected format is a list of strings.
- To define a tensor split, pass a list of floats.
"""
usage = "run-with-preset.py [-h] [yaml_files ...] [--<ARG_NAME> <ARG_VALUE> ...]"
epilog = (" --<ARG_NAME> specify additional CLI ars to be passed to the binary (override all preset files). "
"Unknown args will be ignored.")
parser = argparse.ArgumentParser(
description=description, usage=usage, epilog=epilog, formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("-bin", "--binary", help="The binary to run.")
parser.add_argument("yaml_files", nargs="*",
help="Arbitrary number of YAML files from which to read preset values. "
"If two files specify the same values the later one will be used.")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
known_args, unknown_args = parser.parse_known_args()
if not known_args.yaml_files and not unknown_args:
parser.print_help()
sys.exit(0)
logging.basicConfig(level=logging.DEBUG if known_args.verbose else logging.INFO)
props = dict()
for yaml_file in known_args.yaml_files:
with open(yaml_file, "r") as f:
props.update(yaml.load(f, yaml.SafeLoader))
props = {prop.replace("_", "-"): val for prop, val in props.items()}
binary = props.pop("binary", "llama-cli")
if known_args.binary:
binary = known_args.binary
if os.path.exists(f"./{binary}"):
binary = f"./{binary}"
if binary.lower().endswith("llama-cli") or binary.lower().endswith("llama-perplexity"):
cli_args = CLI_ARGS_LLAMA_CLI_PERPLEXITY
elif binary.lower().endswith("llama-bench"):
cli_args = CLI_ARGS_LLAMA_BENCH
elif binary.lower().endswith("llama-server"):
cli_args = CLI_ARGS_LLAMA_SERVER
else:
logger.error(f"Unknown binary: {binary}")
sys.exit(1)
command_list = [binary]
for cli_arg in cli_args:
value = props.pop(cli_arg, None)
if not value or value == -1:
continue
if cli_arg == "logit-bias":
for token, bias in value.items():
command_list.append("--logit-bias")
command_list.append(f"{token}{bias:+}")
continue
if cli_arg == "reverse-prompt" and not isinstance(value, str):
for rp in value:
command_list.append("--reverse-prompt")
command_list.append(str(rp))
continue
command_list.append(f"--{cli_arg}")
if cli_arg == "tensor-split":
command_list.append(",".join([str(v) for v in value]))
continue
value = str(value)
if value != "True":
command_list.append(str(value))
num_unused = len(props)
if num_unused > 10:
logger.info(f"The preset file contained a total of {num_unused} unused properties.")
elif num_unused > 0:
logger.info("The preset file contained the following unused properties:")
for prop, value in props.items():
logger.info(f" {prop}: {value}")
command_list += unknown_args
sp = subprocess.Popen(command_list)
while sp.returncode is None:
try:
sp.wait()
except KeyboardInterrupt:
pass
sys.exit(sp.returncode)

View File

@ -22075,28 +22075,6 @@ void llama_perf_context_reset(struct llama_context * ctx) {
ctx->t_p_eval_us = ctx->n_p_eval = 0;
}
void llama_perf_dump_yaml(FILE * stream, const llama_context * ctx) {
fprintf(stream, "\n");
fprintf(stream, "###########\n");
fprintf(stream, "# Timings #\n");
fprintf(stream, "###########\n");
fprintf(stream, "\n");
fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
1.0e-3 * ctx->t_eval_us / ctx->n_eval);
fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
1.0e6 * ctx->n_eval / ctx->t_eval_us);
fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
}
// For internal test use
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
struct llama_context * ctx