mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
llava : add explicit instructions for llava-1.6 (#5611)
This commit contains a suggestion for the README.md in the llava example. The suggestion adds explicit instructions for how to convert a llava-1.6 model and run it using llava-cli. The motivation for this is that having explicit instructions similar to the 1.5 instructions will make it easier for users to try this out. Signed-off-by: Daniel Bevenius <daniel.bevenius@gmail.com>
This commit is contained in:
parent
9c405c9f9a
commit
4ed8e4fbef
@ -59,14 +59,40 @@ python ./convert.py ../llava-v1.5-7b --skip-unknown
|
||||
Now both the LLaMA part and the image encoder is in the `llava-v1.5-7b` directory.
|
||||
|
||||
## LLaVA 1.6 gguf conversion
|
||||
|
||||
1) Backup your pth/safetensor model files as llava-surgery modifies them
|
||||
2) Use `python llava-surgery-v2.py -C -m /path/to/hf-model` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||
1) First clone a LLaVA 1.6 model:
|
||||
```console
|
||||
git clone https://huggingface.co/liuhaotian/llava-v1.6-vicuna-7b
|
||||
```
|
||||
2) Backup your pth/safetensor model files as llava-surgery modifies them
|
||||
3) Use `llava-surgery-v2.py` which also supports llava-1.5 variants pytorch as well as safetensor models:
|
||||
```console
|
||||
python examples/llava/llava-surgery-v2.py -C -m ../llava-v1.6-vicuna-7b/
|
||||
```
|
||||
- you will find a llava.projector and a llava.clip file in your model directory
|
||||
3) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory (https://huggingface.co/cmp-nct/llava-1.6-gguf/blob/main/config_vit.json) and rename it to config.json.
|
||||
4) Create the visual gguf model: `python ./examples/llava/convert-image-encoder-to-gguf.py -m ../path/to/vit --llava-projector ../path/to/llava.projector --output-dir ../path/to/output --clip-model-is-vision`
|
||||
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
|
||||
```console
|
||||
mkdir vit
|
||||
cp ../llava-v1.6-vicuna-7b/llava.clip vit/pytorch_model.bin
|
||||
cp ../llava-v1.6-vicuna-7b/llava.projector vit/
|
||||
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
|
||||
```
|
||||
|
||||
5) Create the visual gguf model:
|
||||
```console
|
||||
python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projector vit/llava.projector --output-dir vit --clip-model-is-vision
|
||||
```
|
||||
- This is similar to llava-1.5, the difference is that we tell the encoder that we are working with the pure vision model part of CLIP
|
||||
5) Everything else as usual: convert.py the hf model, quantize as needed
|
||||
|
||||
6) Then convert the model to gguf format:
|
||||
```console
|
||||
python ./convert.py ../llava-v1.6-vicuna-7b/
|
||||
```
|
||||
|
||||
7) And finally we can run the llava-cli using the 1.6 model version:
|
||||
```console
|
||||
./llava-cli -m ../llava-v1.6-vicuna-7b/ggml-model-f16.gguf --mmproj vit/mmproj-model-f16.gguf --image some-image.jpg -c 4096
|
||||
```
|
||||
|
||||
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
|
||||
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user