mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-24 18:39:19 +01:00
CUDA: fix LoRAs (#3130)
This commit is contained in:
parent
89e89599fd
commit
4f7cd6ba9c
26
ggml-cuda.cu
26
ggml-cuda.cu
@ -5247,7 +5247,8 @@ static cudaError_t ggml_cuda_cpy_tensor_2d(
|
||||
if (src->backend == GGML_BACKEND_CPU) {
|
||||
kind = cudaMemcpyHostToDevice;
|
||||
src_ptr = (char *) src->data;
|
||||
} else if (src->backend == GGML_BACKEND_GPU) {
|
||||
} else if (src->backend == GGML_BACKEND_GPU || src->backend == GGML_BACKEND_GPU_SPLIT) {
|
||||
GGML_ASSERT(src->backend != GGML_BACKEND_GPU_SPLIT || (i1_low == 0 && i1_high == src->ne[1]));
|
||||
kind = cudaMemcpyDeviceToDevice;
|
||||
struct ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src->extra;
|
||||
int id;
|
||||
@ -5289,9 +5290,7 @@ inline void ggml_cuda_op_add(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, const cudaStream_t & main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int64_t ne10 = src1->ne[0];
|
||||
const int64_t ne11 = src1->ne[1];
|
||||
@ -5631,10 +5630,15 @@ inline void ggml_cuda_op_mul_mat_cublas(
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
const int64_t row_diff = row_high - row_low;
|
||||
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
|
||||
size_t src0_as;
|
||||
float * src0_ddf_i = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as);
|
||||
to_fp32_cuda(src0_dd_i, src0_ddf_i, row_diff*ne00, stream);
|
||||
float * src0_ddq_as_f32;
|
||||
size_t src0_as = 0;
|
||||
|
||||
if (src0->type != GGML_TYPE_F32) {
|
||||
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
|
||||
src0_ddq_as_f32 = (float *) ggml_cuda_pool_malloc(row_diff*ne00 * sizeof(float), &src0_as); // NOLINT
|
||||
to_fp32_cuda(src0_dd_i, src0_ddq_as_f32, row_diff*ne00, stream);
|
||||
}
|
||||
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32;
|
||||
|
||||
int id;
|
||||
CUDA_CHECK(cudaGetDevice(&id));
|
||||
@ -5651,10 +5655,11 @@ inline void ggml_cuda_op_mul_mat_cublas(
|
||||
src1_ddf_i, ne10,
|
||||
&beta, dst_dd_i, ldc));
|
||||
|
||||
ggml_cuda_pool_free(src0_ddf_i, src0_as);
|
||||
if (src0_as > 0) {
|
||||
ggml_cuda_pool_free(src0_ddq_as_f32, src0_as);
|
||||
}
|
||||
|
||||
(void) dst;
|
||||
(void) src0_dd_i;
|
||||
(void) src1_ddq_i;
|
||||
(void) src1_padded_row_size;
|
||||
}
|
||||
@ -5793,7 +5798,6 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
|
||||
const bool use_src1 = src1 != nullptr;
|
||||
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
|
||||
|
||||
GGML_ASSERT( src0->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
GGML_ASSERT( dst->backend != GGML_BACKEND_GPU_SPLIT);
|
||||
|
||||
@ -5801,7 +5805,7 @@ static void ggml_cuda_op_flatten(const ggml_tensor * src0, const ggml_tensor * s
|
||||
struct ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
|
||||
struct ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
|
||||
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU;
|
||||
const bool src0_on_device = src0->backend == GGML_BACKEND_GPU || src0->backend == GGML_BACKEND_GPU_SPLIT;
|
||||
const bool src1_on_device = use_src1 && src1->backend == GGML_BACKEND_GPU;
|
||||
const bool dst_on_device = dst->backend == GGML_BACKEND_GPU;
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user