mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-12 13:27:21 +01:00
parent
46e3556e01
commit
5047dd3546
@ -22,7 +22,7 @@ static void zeros(std::ofstream & file, size_t n) {
|
||||
}
|
||||
}
|
||||
|
||||
struct quantize_state_internal {
|
||||
struct quantize_state_impl {
|
||||
const llama_model & model;
|
||||
const llama_model_quantize_params * params;
|
||||
|
||||
@ -43,13 +43,13 @@ struct quantize_state_internal {
|
||||
// used to figure out if a model shares tok_embd with the output weight
|
||||
bool has_output = false;
|
||||
|
||||
quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
|
||||
quantize_state_impl(const llama_model & model, const llama_model_quantize_params * params)
|
||||
: model(model)
|
||||
, params(params)
|
||||
{}
|
||||
};
|
||||
|
||||
static void llama_tensor_dequantize_internal(
|
||||
static void llama_tensor_dequantize_impl(
|
||||
struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
|
||||
const size_t nelements, const int nthread
|
||||
) {
|
||||
@ -121,7 +121,7 @@ static void llama_tensor_dequantize_internal(
|
||||
workers.clear();
|
||||
}
|
||||
|
||||
static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
||||
static ggml_type llama_tensor_get_type(quantize_state_impl & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
||||
const std::string name = ggml_get_name(tensor);
|
||||
|
||||
// TODO: avoid hardcoded tensor names - use the TN_* constants
|
||||
@ -410,7 +410,7 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||
return new_type;
|
||||
}
|
||||
|
||||
static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
||||
static size_t llama_tensor_quantize_impl(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
||||
if (nthread < 2) {
|
||||
// single-thread
|
||||
size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
|
||||
@ -464,7 +464,7 @@ static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const floa
|
||||
return new_size;
|
||||
}
|
||||
|
||||
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
||||
static void llama_model_quantize_impl(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
|
||||
ggml_type default_type;
|
||||
llama_ftype ftype = params->ftype;
|
||||
|
||||
@ -534,7 +534,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
llm_load_hparams(ml, model);
|
||||
llm_load_stats (ml, model);
|
||||
|
||||
struct quantize_state_internal qs(model, params);
|
||||
struct quantize_state_impl qs(model, params);
|
||||
|
||||
if (params->only_copy) {
|
||||
ftype = model.ftype;
|
||||
@ -837,7 +837,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
} else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
|
||||
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
|
||||
} else {
|
||||
llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
|
||||
llama_tensor_dequantize_impl(tensor, f32_conv_buf, workers, nelements, nthread);
|
||||
f32_data = (float *) f32_conv_buf.data();
|
||||
}
|
||||
|
||||
@ -866,7 +866,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
|
||||
const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
|
||||
|
||||
new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
|
||||
new_size += llama_tensor_quantize_impl(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
|
||||
}
|
||||
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||
}
|
||||
@ -919,7 +919,7 @@ uint32_t llama_model_quantize(
|
||||
const char * fname_out,
|
||||
const llama_model_quantize_params * params) {
|
||||
try {
|
||||
llama_model_quantize_internal(fname_inp, fname_out, params);
|
||||
llama_model_quantize_impl(fname_inp, fname_out, params);
|
||||
} catch (const std::exception & err) {
|
||||
LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
|
||||
return 1;
|
||||
|
@ -10717,7 +10717,7 @@ static enum ggml_status llama_graph_compute(
|
||||
// return positive int on warning
|
||||
// return negative int on error
|
||||
//
|
||||
static int llama_decode_internal(
|
||||
static int llama_decode_impl(
|
||||
llama_context & lctx,
|
||||
llama_batch inp_batch) {
|
||||
|
||||
@ -11052,7 +11052,7 @@ static int llama_decode_internal(
|
||||
// return positive int on warning
|
||||
// return negative int on error
|
||||
//
|
||||
static int llama_encode_internal(
|
||||
static int llama_encode_impl(
|
||||
llama_context & lctx,
|
||||
llama_batch inp_batch) {
|
||||
|
||||
@ -11234,7 +11234,7 @@ static int llama_encode_internal(
|
||||
}
|
||||
|
||||
// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
|
||||
static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
||||
static void llama_kv_cache_defrag_impl(struct llama_context & lctx) {
|
||||
auto & kv_self = lctx.kv_self;
|
||||
|
||||
const auto & hparams = lctx.model.hparams;
|
||||
@ -11454,7 +11454,7 @@ static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
|
||||
//LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
|
||||
}
|
||||
|
||||
static void llama_kv_cache_update_internal(struct llama_context & lctx) {
|
||||
static void llama_kv_cache_update_impl(struct llama_context & lctx) {
|
||||
bool need_reserve = false;
|
||||
|
||||
if (lctx.kv_self.has_shift) {
|
||||
@ -11490,7 +11490,7 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) {
|
||||
|
||||
// defragment the KV cache if needed
|
||||
if (lctx.kv_self.do_defrag) {
|
||||
llama_kv_cache_defrag_internal(lctx);
|
||||
llama_kv_cache_defrag_impl(lctx);
|
||||
|
||||
need_reserve = true;
|
||||
|
||||
@ -12191,7 +12191,7 @@ void llama_kv_cache_defrag(struct llama_context * ctx) {
|
||||
}
|
||||
|
||||
void llama_kv_cache_update(struct llama_context * ctx) {
|
||||
llama_kv_cache_update_internal(*ctx);
|
||||
llama_kv_cache_update_impl(*ctx);
|
||||
}
|
||||
|
||||
bool llama_kv_cache_can_shift(struct llama_context * ctx) {
|
||||
@ -12203,7 +12203,7 @@ bool llama_kv_cache_can_shift(struct llama_context * ctx) {
|
||||
int32_t llama_encode(
|
||||
struct llama_context * ctx,
|
||||
struct llama_batch batch) {
|
||||
const int ret = llama_encode_internal(*ctx, batch);
|
||||
const int ret = llama_encode_impl(*ctx, batch);
|
||||
if (ret != 0) {
|
||||
LLAMA_LOG_ERROR("%s: failed to encode, ret = %d\n", __func__, ret);
|
||||
}
|
||||
@ -12214,7 +12214,7 @@ int32_t llama_encode(
|
||||
int32_t llama_decode(
|
||||
struct llama_context * ctx,
|
||||
struct llama_batch batch) {
|
||||
const int ret = llama_decode_internal(*ctx, batch);
|
||||
const int ret = llama_decode_impl(*ctx, batch);
|
||||
if (ret != 0) {
|
||||
LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user