llama.cpp: print input/output buffers size

This commit is contained in:
slaren 2023-07-22 13:31:06 +02:00
parent e2b9575951
commit 5141472e2b

View File

@ -705,7 +705,7 @@ static bool kv_cache_init(
size_t size = 2u*n_elements*ggml_type_size(wtype);
fprintf(stderr, "%s: allocating %.2f MB for kv cache\n", __func__, size / 1024.0 / 1024.0);
// fprintf(stderr, "%s: allocating %.2f MB for kv cache\n", __func__, size / 1024.0 / 1024.0);
cache.buf = ggml_buffer_alloc(backend, size, 2);
cache.n = 0;
@ -993,14 +993,16 @@ static void llama_model_load_internal(
}
// print the context sizes
fprintf(stderr, "%s: ggml ctx sizes:\n", __func__);
fprintf(stderr, "%s: model buffer size:\n", __func__);
for (const auto & it : ctx_sizes) {
if (it.second > 0 || (it.first == model.backend_cpu && ml->use_mmap && mmap_size > 0)) {
fprintf(stderr, "%8s = %7.2f MB", ggml_backend_name(it.first), it.second / 1024.0 / 1024.0);
if (it.first == model.backend_cpu && ml->use_mmap) {
fprintf(stderr, " + %7.2f MB (mmap)", mmap_size / 1024.0 / 1024.0);
}
fprintf(stderr, "\n");
}
}
// create the buffers and contexts for each backend
for (auto & backend_data : model.backends) {
@ -2613,8 +2615,9 @@ struct llama_context * llama_new_context_with_model(
}
{
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
const size_t kv_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
fprintf(stderr, "%s: kv cache size:\n", __func__);
fprintf(stderr, "%8s = %7.2f MB\n", ggml_backend_name(ctx->kv_self.buf->backend_buffer->backend), kv_size / 1024.0 / 1024.0);
}
const auto & hparams = ctx->model.hparams;
@ -2642,6 +2645,9 @@ struct llama_context * llama_new_context_with_model(
ggml_set_name(ctx->graph_embeddings_in, "embeddings_in");
ggml_free(ctx0);
fprintf(stderr, "%s: input buffer size:\n", __func__);
fprintf(stderr, "%8s = %7.2f MB\n", ggml_backend_name(ctx->buf_input->backend_buffer->backend), buf_input_size / 1024.0 / 1024.0);
}
// output buffer
{
@ -2668,6 +2674,9 @@ struct llama_context * llama_new_context_with_model(
}
ggml_free(ctx0);
fprintf(stderr, "%s: output buffer size:\n", __func__);
fprintf(stderr, "%8s = %7.2f MB\n", ggml_backend_name(ctx->buf_output->backend_buffer->backend), buf_output_size / 1024.0 / 1024.0);
}
// initialize compute buffers
@ -2683,15 +2692,18 @@ struct llama_context * llama_new_context_with_model(
int n_past = hparams.n_ctx - n_tokens;
/*ggml_graph_splits splits =*/ llama_build_graph(*ctx, n_tokens, n_past);
fprintf(stderr, "%s: compute buffer sizes:\n", __func__);
fprintf(stderr, "%s: compute buffer size:\n", __func__);
for (size_t i = 0; i < ctx->bufs_compute.size(); ++i) {
ggml_buffer * buf = ctx->bufs_compute[i];
ggml_backend * backend = buf->backend_buffer->backend;
size_t size = buf->backend_buffer->max_size;
fprintf(stderr, "%8s = %7.2f MB\n", ggml_backend_name(backend), size / 1024.0 / 1024.0);
// reallocate with the correct size
if (size > 0) {
fprintf(stderr, "%8s = %7.2f MB\n", ggml_backend_name(backend), size / 1024.0 / 1024.0);
}
ggml_buffer_free(buf);
// reallocate with the correct size
ctx->bufs_compute[i] = ggml_buffer_alloc(buf->backend_buffer->backend, size, 2048);
}
@ -2730,6 +2742,8 @@ struct llama_context * llama_new_context_with_model(
fprintf(stderr, "output: %s, ", ggml_backend_name(ctx->model.backend_out));
fprintf(stderr, "kv: %s\n", ggml_backend_name(ctx->backend_kv));
// TODO: print total memory usage per backend
#ifdef GGML_USE_MPI
ctx->ctx_mpi = ggml_mpi_init();