musa: workaround for Guilty Lockup in cleaning src0 (#10042)

Signed-off-by: Xiaodong Ye <xiaodong.ye@mthreads.com>
This commit is contained in:
R0CKSTAR 2024-10-28 17:02:48 +08:00 committed by GitHub
parent 8125e6cbfc
commit 524afeec9d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1484,14 +1484,19 @@ static void ggml_cuda_op_mul_mat(
const size_t nbytes_data = ggml_nbytes(src0); const size_t nbytes_data = ggml_nbytes(src0);
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING); const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), nbytes_data + nbytes_padding); dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), nbytes_data + nbytes_padding);
// TODO: remove this for MUSA once the Guilty Lockup issue is resolved
#ifndef GGML_USE_MUSA
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd, 0, nbytes_data + nbytes_padding, stream)); CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd, 0, nbytes_data + nbytes_padding, stream));
#else // GGML_USE_MUSA
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
#endif // !GGML_USE_MUSA
} }
// If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared: // If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) { if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00); const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING); const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data , 0, nbytes_padding, stream)); CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
} }
if (src1_on_device && src1_is_contiguous) { if (src1_on_device && src1_is_contiguous) {