GGUF: C++ refactor, backend support, misc fixes (#11030)

* GGUF: C++ refactor, backend support, misc fixes

remove ggml_tensor.backend

update CODEOWNERS [no ci]

remove gguf_get_data from API

revise GGUF API data types
This commit is contained in:
Johannes Gäßler 2025-01-07 18:01:58 +01:00 committed by GitHub
parent 017cc5f446
commit 53ff6b9b9f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
21 changed files with 1795 additions and 1627 deletions

View File

@ -3,3 +3,9 @@
/ci/ @ggerganov /ci/ @ggerganov
/.devops/*.Dockerfile @ngxson /.devops/*.Dockerfile @ngxson
/examples/server/ @ngxson /examples/server/ @ngxson
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
/ggml/src/ggml-opt.cpp @JohannesGaessler
/ggml/src/gguf.cpp @JohannesGaessler

View File

@ -2,6 +2,9 @@
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING #define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
#endif #endif
#include "ggml.h"
#include "gguf.h"
#include "common.h" #include "common.h"
#include "log.h" #include "log.h"
// Change JSON_ASSERT from assert() to GGML_ASSERT: // Change JSON_ASSERT from assert() to GGML_ASSERT:

View File

@ -1,4 +1,6 @@
#include "ggml.h" #include "ggml.h"
#include "gguf.h"
#include "llama.h" #include "llama.h"
#include "common.h" #include "common.h"
#include "log.h" #include "log.h"

View File

@ -1,7 +1,9 @@
#include "ggml.h"
#include "gguf.h"
#include "arg.h" #include "arg.h"
#include "common.h" #include "common.h"
#include "llama.h" #include "llama.h"
#include "ggml.h"
#include "pca.hpp" #include "pca.hpp"
#include "mean.hpp" #include "mean.hpp"

View File

@ -1,7 +1,9 @@
#include "arg.h"
#include "common.h"
#include "ggml.h" #include "ggml.h"
#include "ggml-alloc.h" #include "ggml-alloc.h"
#include "gguf.h"
#include "arg.h"
#include "common.h"
#include <map> #include <map>
#include <vector> #include <vector>

View File

@ -1,4 +1,5 @@
#include "ggml.h" #include "ggml.h"
#include "gguf.h"
#include <cstdlib> /* abort() */ #include <cstdlib> /* abort() */
#include <cstddef> #include <cstddef>

View File

@ -1,16 +1,18 @@
#include "ggml.h"
#include "gguf.h"
#include "llama.h" #include "llama.h"
#include "common.h" #include "common.h"
#include <algorithm> #include <algorithm>
#include <cinttypes>
#include <climits>
#include <cstdio>
#include <cstdlib> #include <cstdlib>
#include <stdexcept>
#include <cstring>
#include <fstream> #include <fstream>
#include <string> #include <string>
#include <vector> #include <vector>
#include <climits>
#include <cstdio>
#include <cstring>
#include <stdexcept>
#if defined(_WIN32) #if defined(_WIN32)
#include <windows.h> #include <windows.h>
@ -296,7 +298,7 @@ struct split_strategy {
total_size += ggml_nbytes(t); total_size += ggml_nbytes(t);
} }
total_size = total_size / 1000 / 1000; // convert to megabytes total_size = total_size / 1000 / 1000; // convert to megabytes
printf("split %05d: n_tensors = %d, total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size); printf("split %05d: n_tensors = %" PRIi64 ", total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
i_split++; i_split++;
} }
} }

View File

@ -1,10 +1,9 @@
#include "ggml.h" #include "ggml.h"
#include "gguf.h"
#include <cstdio> #include <cstdio>
#include <cinttypes>
#include <string> #include <string>
#include <sstream> #include <sstream>
#include <fstream>
#include <vector> #include <vector>
#undef MIN #undef MIN
@ -135,9 +134,10 @@ static bool gguf_ex_read_0(const std::string & fname) {
for (int i = 0; i < n_tensors; ++i) { for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i); const char * name = gguf_get_tensor_name (ctx, i);
const size_t size = gguf_get_tensor_size (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i);
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset); printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset);
} }
} }
@ -182,9 +182,10 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
for (int i = 0; i < n_tensors; ++i) { for (int i = 0; i < n_tensors; ++i) {
const char * name = gguf_get_tensor_name (ctx, i); const char * name = gguf_get_tensor_name (ctx, i);
const size_t size = gguf_get_tensor_size (ctx, i);
const size_t offset = gguf_get_tensor_offset(ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i);
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset); printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset);
} }
} }
@ -199,7 +200,8 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, ggml_n_dims(cur), cur->name, cur->data); printf("%s: tensor[%d]: n_dims = %d, ne = (%d, %d, %d, %d), name = %s, data = %p\n",
__func__, i, ggml_n_dims(cur), int(cur->ne[0]), int(cur->ne[1]), int(cur->ne[2]), int(cur->ne[3]), cur->name, cur->data);
// print first 10 elements // print first 10 elements
const float * data = (const float *) cur->data; const float * data = (const float *) cur->data;
@ -215,7 +217,7 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
const float * data = (const float *) cur->data; const float * data = (const float *) cur->data;
for (int j = 0; j < ggml_nelements(cur); ++j) { for (int j = 0; j < ggml_nelements(cur); ++j) {
if (data[j] != 100 + i) { if (data[j] != 100 + i) {
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]); fprintf(stderr, "%s: tensor[%d], data[%d]: found %f, expected %f\n", __func__, i, j, data[j], float(100 + i));
gguf_free(ctx); gguf_free(ctx);
return false; return false;
} }
@ -245,6 +247,8 @@ int main(int argc, char ** argv) {
check_data = false; check_data = false;
} }
srand(123456);
const std::string fname(argv[1]); const std::string fname(argv[1]);
const std::string mode (argv[2]); const std::string mode (argv[2]);

View File

@ -7,6 +7,7 @@
#include "ggml-cpu.h" #include "ggml-cpu.h"
#include "ggml-alloc.h" #include "ggml-alloc.h"
#include "ggml-backend.h" #include "ggml-backend.h"
#include "gguf.h"
//#ifdef GGML_USE_CUDA //#ifdef GGML_USE_CUDA
//#include "ggml-cuda.h" //#include "ggml-cuda.h"
@ -262,7 +263,7 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
{ {
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i); int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = gguf_get_arr_data(ctx_gguf, i); const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss; std::stringstream ss;
ss << "["; ss << "[";
for (int j = 0; j < arr_n; j++) { for (int j = 0; j < arr_n; j++) {
@ -2734,7 +2735,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
total_size_org += orig_size; total_size_org += orig_size;
total_size_new += new_size; total_size_new += new_size;
gguf_set_tensor_type(ctx_out, name.c_str(), new_type); gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size); GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
fout.write((const char *)new_data, new_size); fout.write((const char *)new_data, new_size);
size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size; size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
for (size_t j = 0; j < pad; ++j) { for (size_t j = 0; j < pad; ++j) {

View File

@ -243,7 +243,8 @@ set(GGML_PUBLIC_HEADERS
include/ggml-metal.h include/ggml-metal.h
include/ggml-rpc.h include/ggml-rpc.h
include/ggml-sycl.h include/ggml-sycl.h
include/ggml-vulkan.h) include/ggml-vulkan.h
include/gguf.h)
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}") set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
#if (GGML_METAL) #if (GGML_METAL)

View File

@ -7,6 +7,7 @@
#include "ggml.h" #include "ggml.h"
#include "ggml-alloc.h" #include "ggml-alloc.h"
#include "ggml-backend.h" #include "ggml-backend.h"
#include "gguf.h"
#include <memory> #include <memory>
// Smart pointers for ggml types // Smart pointers for ggml types

View File

@ -241,12 +241,6 @@
#define GGML_ROPE_TYPE_MROPE 8 #define GGML_ROPE_TYPE_MROPE 8
#define GGML_ROPE_TYPE_VISION 24 #define GGML_ROPE_TYPE_VISION 24
#define GGUF_MAGIC "GGUF"
#define GGUF_VERSION 3
#define GGUF_DEFAULT_ALIGNMENT 32
#define GGML_UNUSED(x) (void)(x) #define GGML_UNUSED(x) (void)(x)
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1)) #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
@ -403,12 +397,6 @@ extern "C" {
GGML_PREC_F32, GGML_PREC_F32,
}; };
enum ggml_backend_type {
GGML_BACKEND_TYPE_CPU = 0,
GGML_BACKEND_TYPE_GPU = 10,
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
};
// model file types // model file types
enum ggml_ftype { enum ggml_ftype {
GGML_FTYPE_UNKNOWN = -1, GGML_FTYPE_UNKNOWN = -1,
@ -587,8 +575,6 @@ extern "C" {
struct ggml_tensor { struct ggml_tensor {
enum ggml_type type; enum ggml_type type;
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
struct ggml_backend_buffer * buffer; struct ggml_backend_buffer * buffer;
int64_t ne[GGML_MAX_DIMS]; // number of elements int64_t ne[GGML_MAX_DIMS]; // number of elements
@ -2111,132 +2097,6 @@ extern "C" {
int64_t n_per_row, int64_t n_per_row,
const float * imatrix); const float * imatrix);
//
// gguf
//
enum gguf_type {
GGUF_TYPE_UINT8 = 0,
GGUF_TYPE_INT8 = 1,
GGUF_TYPE_UINT16 = 2,
GGUF_TYPE_INT16 = 3,
GGUF_TYPE_UINT32 = 4,
GGUF_TYPE_INT32 = 5,
GGUF_TYPE_FLOAT32 = 6,
GGUF_TYPE_BOOL = 7,
GGUF_TYPE_STRING = 8,
GGUF_TYPE_ARRAY = 9,
GGUF_TYPE_UINT64 = 10,
GGUF_TYPE_INT64 = 11,
GGUF_TYPE_FLOAT64 = 12,
GGUF_TYPE_COUNT, // marks the end of the enum
};
struct gguf_context;
struct gguf_init_params {
bool no_alloc;
// if not NULL, create a ggml_context and allocate the tensor data in it
struct ggml_context ** ctx;
};
GGML_API struct gguf_context * gguf_init_empty(void);
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
GGML_API void gguf_free(struct gguf_context * ctx);
GGML_API const char * gguf_type_name(enum gguf_type type);
GGML_API int gguf_get_version (const struct gguf_context * ctx);
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
GGML_API void * gguf_get_data (const struct gguf_context * ctx);
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
// will abort if the wrong type is used for the key
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
// removes key if it exists
GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
// overrides existing values or adds a new one
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
// set or add KV pairs from another context
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
// manage tensor info
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
// writing gguf files can be done in 2 ways:
//
// - write the entire gguf_context to a binary file in a single pass:
//
// gguf_write_to_file(ctx, fname);
//
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
//
// FILE * f = fopen(fname, "wb");
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
// fwrite(f, ...);
// void * data = gguf_meta_get_meta_data(ctx);
// fseek(f, 0, SEEK_SET);
// fwrite(f, data, gguf_get_meta_size(ctx));
// free(data);
// fclose(f);
//
// write the entire context to a binary file
GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
#ifdef __cplusplus #ifdef __cplusplus
// restrict not standard in C++ // restrict not standard in C++
# if defined(__GNUC__) # if defined(__GNUC__)

202
ggml/include/gguf.h Normal file
View File

@ -0,0 +1,202 @@
// This file contains functionality related to "GGUF" files, the binary file format used by ggml.
// GGUF files have the following structure:
//
// 1. File magic "GGUF" (4 bytes).
// 2. File version (uint32_t).
// 3. Number of ggml tensors in file (int64_t).
// 4. Number of key-value-pairs in file (int64_t).
// 5. For each KV pair:
// 1. The key (string).
// 2. The value type (gguf_type).
// 3a. If the value type is GGUF_TYPE_ARRAY:
// 1. The type of the array (gguf_type).
// 2. The number of elements in the array (uint64_t).
// 3. The binary representation of each element in the array.
// 3b. Otherwise:
// 1. The binary representation of the value.
// 6. For each ggml tensor:
// 1. The tensor name (string).
// 2. The number of dimensions of the tensor (uint32_t).
// 3. For each dimension:
// 1. The size of the tensor in the dimension (int64_t).
// 4. The tensor data type (ggml_type).
// 5. The tensor data offset in the tensor data binary blob (uint64_t).
// 7. The tensor data binary blob (optional, aligned).
//
// Strings are serialized as the string length (uint64_t) followed by the C string without the null terminator.
// All enums are stored as int32_t.
// All bool values are stored as int8_t.
// If the special key "general.alignment" (uint32_t) is defined it is used for alignment,
// otherwise GGUF_DEFAULT_ALIGNMENT is used.
//
// Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de)
#pragma once
#include "ggml.h"
#include <stdbool.h>
#include <stdint.h>
#define GGUF_MAGIC "GGUF"
#define GGUF_VERSION 3
#define GGUF_KEY_GENERAL_ALIGNMENT "general.alignment"
#define GGUF_DEFAULT_ALIGNMENT 32
#ifdef __cplusplus
extern "C" {
#endif
// types that can be stored as GGUF KV data
enum gguf_type {
GGUF_TYPE_UINT8 = 0,
GGUF_TYPE_INT8 = 1,
GGUF_TYPE_UINT16 = 2,
GGUF_TYPE_INT16 = 3,
GGUF_TYPE_UINT32 = 4,
GGUF_TYPE_INT32 = 5,
GGUF_TYPE_FLOAT32 = 6,
GGUF_TYPE_BOOL = 7,
GGUF_TYPE_STRING = 8,
GGUF_TYPE_ARRAY = 9,
GGUF_TYPE_UINT64 = 10,
GGUF_TYPE_INT64 = 11,
GGUF_TYPE_FLOAT64 = 12,
GGUF_TYPE_COUNT, // marks the end of the enum
};
struct gguf_context;
struct gguf_init_params {
bool no_alloc;
// if not NULL, create a ggml_context and allocate the tensor data in it
struct ggml_context ** ctx;
};
GGML_API struct gguf_context * gguf_init_empty(void);
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
GGML_API void gguf_free(struct gguf_context * ctx);
GGML_API const char * gguf_type_name(enum gguf_type type);
GGML_API uint32_t gguf_get_version (const struct gguf_context * ctx);
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
GGML_API int64_t gguf_get_n_kv(const struct gguf_context * ctx);
GGML_API int64_t gguf_find_key(const struct gguf_context * ctx, const char * key); // returns -1 if key is not found
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int64_t key_id);
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int64_t key_id);
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id);
// will abort if the wrong type is used for the key
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int64_t key_id);
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int64_t key_id);
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int64_t key_id);
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int64_t key_id);
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int64_t key_id);
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int64_t key_id);
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int64_t key_id);
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int64_t key_id);
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int64_t key_id);
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int64_t key_id);
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id);
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int64_t key_id);
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id);
GGML_API size_t gguf_get_arr_n (const struct gguf_context * ctx, int64_t key_id);
// get raw pointer to the first element of the array with the given key_id
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
// get ith C string from array with given key_id
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
GGML_API int64_t gguf_get_n_tensors (const struct gguf_context * ctx);
GGML_API int64_t gguf_find_tensor (const struct gguf_context * ctx, const char * name); // returns -1 if the tensor is not found
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id);
GGML_API const char * gguf_get_tensor_name (const struct gguf_context * ctx, int64_t tensor_id);
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int64_t tensor_id);
GGML_API size_t gguf_get_tensor_size (const struct gguf_context * ctx, int64_t tensor_id);
// removes key if it exists, returns id that the key had prior to removal (-1 if it didn't exist)
GGML_API int64_t gguf_remove_key(struct gguf_context * ctx, const char * key);
// overrides an existing KV pair or adds a new one, the new KV pair is always at the back
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
// creates a new array with n elements of the given type and copies the corresponding number of bytes from data
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n);
// creates a new array with n strings and copies the corresponding strings from data
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, size_t n);
// set or add KV pairs from another context
GGML_API void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src);
// add tensor to GGUF context, tensor name must be unique
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
// after changing a tensor's type, the offsets of all tensors with higher indices are immediately recalculated
// in such a way that the tensor data remains as one contiguous block (except for padding)
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
// assumes that at least gguf_get_tensor_size bytes can be read from data
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data);
// writing gguf files can be done in 3 ways:
//
// - write the entire gguf_context to a binary file in a single pass:
//
// gguf_write_to_file(ctx, fname, /*only_meta =*/ false);
//
// - write only the meta data to a file, then re-open the file and append the tensor data:
//
// gguf_write_to_file(ctx, fname, /*only_meta =*/ true);
// FILE * f = fopen(fname, "ab");
// fwrite(f, ...); // write tensor data
// fclose(f);
//
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
//
// FILE * f = fopen(fname, "wb");
// const size_t size_meta = gguf_get_meta_size(ctx);
// fseek(f, size_meta, SEEK_SET);
// fwrite(f, ...); // write tensor data
// void * data = malloc(size_meta);
// gguf_get_meta_data(ctx, data);
// rewind(f);
// fwrite(data, 1, data, f);
// free(data);
// fclose(f);
//
// write the entire context to a binary file
GGML_API bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
// writes the meta data to pointer "data"
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
#ifdef __cplusplus
}
#endif

View File

@ -208,6 +208,7 @@ add_library(ggml-base
../include/ggml-backend.h ../include/ggml-backend.h
../include/ggml-cpp.h ../include/ggml-cpp.h
../include/ggml-opt.h ../include/ggml-opt.h
../include/gguf.h
ggml.c ggml.c
ggml-alloc.c ggml-alloc.c
ggml-backend.cpp ggml-backend.cpp
@ -215,7 +216,8 @@ add_library(ggml-base
ggml-threading.cpp ggml-threading.cpp
ggml-threading.h ggml-threading.h
ggml-quants.c ggml-quants.c
ggml-quants.h) ggml-quants.h
gguf.cpp)
target_include_directories(ggml-base PRIVATE .) target_include_directories(ggml-base PRIVATE .)

View File

@ -3,6 +3,8 @@
// GGML internal header // GGML internal header
#include "ggml.h" #include "ggml.h"
#include "gguf.h"
#include <assert.h> #include <assert.h>
#include <math.h> #include <math.h>
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/ #include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
@ -551,22 +553,15 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x) #define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x) #define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
// expose GGUF internals for test code
GGML_API size_t gguf_type_size(enum gguf_type type);
GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
struct gguf_buf {
void * data;
size_t size;
size_t offset;
};
GGML_API struct gguf_buf gguf_buf_init(size_t size);
GGML_API void gguf_buf_free(struct gguf_buf buf);
GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif
#ifdef __cplusplus
#include <vector>
// expose GGUF internals for test code
GGML_API size_t gguf_type_size(enum gguf_type type);
GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta);
#endif // __cplusplus

File diff suppressed because it is too large Load Diff

1325
ggml/src/gguf.cpp Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,6 @@
#include "llama-impl.h" #include "llama-impl.h"
#include "gguf.h"
#include "llama.h" #include "llama.h"
#include <cinttypes> #include <cinttypes>
@ -138,7 +139,7 @@ std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
{ {
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
int arr_n = gguf_get_arr_n(ctx_gguf, i); int arr_n = gguf_get_arr_n(ctx_gguf, i);
const void * data = gguf_get_arr_data(ctx_gguf, i); const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
std::stringstream ss; std::stringstream ss;
ss << "["; ss << "[";
for (int j = 0; j < arr_n; j++) { for (int j = 0; j < arr_n; j++) {

View File

@ -18,7 +18,7 @@ const char * llama_file_version_name(llama_fver version) {
} }
namespace GGUFMeta { namespace GGUFMeta {
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)> template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int64_t)>
struct GKV_Base_Type { struct GKV_Base_Type {
static constexpr gguf_type gt = gt_; static constexpr gguf_type gt = gt_;
@ -60,10 +60,11 @@ namespace GGUFMeta {
public: public:
static constexpr gguf_type gt = GGUF_TYPE_ARRAY; static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
static ArrayInfo getter(const gguf_context *ctx, const int k) { static ArrayInfo getter(const gguf_context *ctx, const int k) {
const enum gguf_type arr_type = gguf_get_arr_type(ctx, k);
return ArrayInfo { return ArrayInfo {
gguf_get_arr_type(ctx, k), arr_type,
size_t(gguf_get_arr_n(ctx, k)), size_t(gguf_get_arr_n(ctx, k)),
gguf_get_arr_data(ctx, k), arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx, k),
}; };
} }
}; };
@ -553,7 +554,7 @@ llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap,
const enum gguf_type type = gguf_get_kv_type(meta.get(), i); const enum gguf_type type = gguf_get_kv_type(meta.get(), i);
const std::string type_name = const std::string type_name =
type == GGUF_TYPE_ARRAY type == GGUF_TYPE_ARRAY
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i)) ? format("%s[%s,%zu]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
: gguf_type_name(type); : gguf_type_name(type);
std::string value = gguf_kv_to_str(meta.get(), i); std::string value = gguf_kv_to_str(meta.get(), i);

View File

@ -875,7 +875,8 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
// update the gguf meta data as we go // update the gguf meta data as we go
gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type); gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type);
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data, new_size); GGML_ASSERT(gguf_get_tensor_size(ctx_outs[cur_split].get(), gguf_find_tensor(ctx_outs[cur_split].get(), name.c_str())) == new_size);
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data);
// write tensor data + padding // write tensor data + padding
fout.write((const char *) new_data, new_size); fout.write((const char *) new_data, new_size);

View File

@ -15,66 +15,71 @@ constexpr int offset_has_tensors = 2000;
constexpr int offset_has_data = 3000; constexpr int offset_has_data = 3000;
enum handcrafted_file_type { enum handcrafted_file_type {
HANDCRAFTED_HEADER_BAD_MAGIC = 10, HANDCRAFTED_HEADER_BAD_MAGIC = 10,
HANDCRAFTED_HEADER_BAD_VERSION_1 = 20, HANDCRAFTED_HEADER_BAD_VERSION_1 = 20,
HANDCRAFTED_HEADER_BAD_VERSION_FUTURE = 30, HANDCRAFTED_HEADER_BAD_VERSION_FUTURE = 30,
HANDCRAFTED_HEADER_BAD_N_TENSORS = 40, HANDCRAFTED_HEADER_BAD_N_TENSORS = 40,
HANDCRAFTED_HEADER_BAD_N_KV = 50, HANDCRAFTED_HEADER_BAD_N_KV = 50,
HANDCRAFTED_HEADER_EMPTY = 800, HANDCRAFTED_HEADER_EMPTY = 800,
HANDCRAFTED_KV_BAD_KEY_SIZE = 10 + offset_has_kv, HANDCRAFTED_KV_BAD_KEY_SIZE = 10 + offset_has_kv,
HANDCRAFTED_KV_BAD_TYPE = 20 + offset_has_kv, HANDCRAFTED_KV_BAD_TYPE = 20 + offset_has_kv,
HANDCRAFTED_KV_BAD_VALUE_SIZE = 30 + offset_has_kv, // HANDCRAFTED_KV_BAD_VALUE_SIZE = 30 + offset_has_kv, // removed because it can result in allocations > 1 TB (default sanitizer limit)
HANDCRAFTED_KV_DUPLICATE_KEY = 40 + offset_has_kv, HANDCRAFTED_KV_DUPLICATE_KEY = 40 + offset_has_kv,
HANDCRAFTED_KV_SUCCESS = 800 + offset_has_kv, HANDCRAFTED_KV_BAD_ALIGN = 50 + offset_has_kv,
HANDCRAFTED_KV_SUCCESS = 800 + offset_has_kv,
HANDCRAFTED_TENSORS_BAD_NAME_SIZE = 10 + offset_has_tensors, HANDCRAFTED_TENSORS_BAD_NAME_SIZE = 10 + offset_has_tensors,
HANDCRAFTED_TENSORS_BAD_N_DIMS = 20 + offset_has_tensors, HANDCRAFTED_TENSORS_BAD_N_DIMS = 20 + offset_has_tensors,
HANDCRAFTED_TENSORS_BAD_SHAPE = 30 + offset_has_tensors, HANDCRAFTED_TENSORS_BAD_SHAPE = 30 + offset_has_tensors,
HANDCRAFTED_TENSORS_NE_TOO_BIG = 40 + offset_has_tensors, HANDCRAFTED_TENSORS_NE_TOO_BIG = 40 + offset_has_tensors,
HANDCRAFTED_TENSORS_BAD_TYPE = 50 + offset_has_tensors, HANDCRAFTED_TENSORS_BAD_TYPE = 50 + offset_has_tensors,
HANDCRAFTED_TENSORS_BAD_OFFSET = 60 + offset_has_tensors, HANDCRAFTED_TENSORS_BAD_OFFSET = 60 + offset_has_tensors,
HANDCRAFTED_TENSORS_DUPLICATE_NAME = 70 + offset_has_tensors, HANDCRAFTED_TENSORS_DUPLICATE_NAME = 70 + offset_has_tensors,
HANDCRAFTED_TENSORS_BAD_ALIGNMENT = 80 + offset_has_tensors, HANDCRAFTED_TENSORS_BAD_ALIGN = 75 + offset_has_tensors,
HANDCRAFTED_TENSORS_SUCCESS = 800 + offset_has_tensors, HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN = 80 + offset_has_tensors,
HANDCRAFTED_TENSORS_CUSTOM_ALIGN = 810 + offset_has_tensors, HANDCRAFTED_TENSORS_SUCCESS = 800 + offset_has_tensors,
HANDCRAFTED_TENSORS_CUSTOM_ALIGN = 810 + offset_has_tensors,
HANDCRAFTED_DATA_NOT_ENOUGH_DATA = 10 + offset_has_data, HANDCRAFTED_DATA_NOT_ENOUGH_DATA = 10 + offset_has_data,
HANDCRAFTED_DATA_BAD_ALIGNMENT = 20 + offset_has_data, HANDCRAFTED_DATA_BAD_ALIGN = 15 + offset_has_data,
HANDCRAFTED_DATA_SUCCESS = 800 + offset_has_data, HANDCRAFTED_DATA_INCONSISTENT_ALIGN = 20 + offset_has_data,
HANDCRAFTED_DATA_CUSTOM_ALIGN = 810 + offset_has_data, HANDCRAFTED_DATA_SUCCESS = 800 + offset_has_data,
HANDCRAFTED_DATA_CUSTOM_ALIGN = 810 + offset_has_data,
}; };
std::string handcrafted_file_type_name(const enum handcrafted_file_type hft) { std::string handcrafted_file_type_name(const enum handcrafted_file_type hft) {
switch (hft) { switch (hft) {
case HANDCRAFTED_HEADER_BAD_MAGIC: return "HEADER_BAD_MAGIC"; case HANDCRAFTED_HEADER_BAD_MAGIC: return "HEADER_BAD_MAGIC";
case HANDCRAFTED_HEADER_BAD_VERSION_1: return "HEADER_BAD_VERSION_1"; case HANDCRAFTED_HEADER_BAD_VERSION_1: return "HEADER_BAD_VERSION_1";
case HANDCRAFTED_HEADER_BAD_VERSION_FUTURE: return "HEADER_BAD_VERSION_FUTURE"; case HANDCRAFTED_HEADER_BAD_VERSION_FUTURE: return "HEADER_BAD_VERSION_FUTURE";
case HANDCRAFTED_HEADER_BAD_N_KV: return "HEADER_BAD_N_KV"; case HANDCRAFTED_HEADER_BAD_N_KV: return "HEADER_BAD_N_KV";
case HANDCRAFTED_HEADER_BAD_N_TENSORS: return "HEADER_BAD_N_TENSORS"; case HANDCRAFTED_HEADER_BAD_N_TENSORS: return "HEADER_BAD_N_TENSORS";
case HANDCRAFTED_HEADER_EMPTY: return "HEADER_EMPTY"; case HANDCRAFTED_HEADER_EMPTY: return "HEADER_EMPTY";
case HANDCRAFTED_KV_BAD_KEY_SIZE: return "KV_BAD_KEY_SIZE"; case HANDCRAFTED_KV_BAD_KEY_SIZE: return "KV_BAD_KEY_SIZE";
case HANDCRAFTED_KV_BAD_TYPE: return "KV_BAD_TYPE"; case HANDCRAFTED_KV_BAD_TYPE: return "KV_BAD_TYPE";
case HANDCRAFTED_KV_BAD_VALUE_SIZE: return "KV_BAD_VALUE_SIZE"; case HANDCRAFTED_KV_DUPLICATE_KEY: return "KV_DUPLICATE_KEY";
case HANDCRAFTED_KV_DUPLICATE_KEY: return "KV_DUPLICATE_KEY"; case HANDCRAFTED_KV_BAD_ALIGN: return "KV_BAD_ALIGN";
case HANDCRAFTED_KV_SUCCESS: return "KV_RANDOM_KV"; case HANDCRAFTED_KV_SUCCESS: return "KV_RANDOM_KV";
case HANDCRAFTED_TENSORS_BAD_NAME_SIZE: return "TENSORS_BAD_NAME_SIZE"; case HANDCRAFTED_TENSORS_BAD_NAME_SIZE: return "TENSORS_BAD_NAME_SIZE";
case HANDCRAFTED_TENSORS_BAD_N_DIMS: return "TENSORS_BAD_N_DIMS"; case HANDCRAFTED_TENSORS_BAD_N_DIMS: return "TENSORS_BAD_N_DIMS";
case HANDCRAFTED_TENSORS_BAD_SHAPE: return "TENSORS_BAD_SHAPE"; case HANDCRAFTED_TENSORS_BAD_SHAPE: return "TENSORS_BAD_SHAPE";
case HANDCRAFTED_TENSORS_NE_TOO_BIG: return "TENSORS_NE_TOO_BIG"; case HANDCRAFTED_TENSORS_NE_TOO_BIG: return "TENSORS_NE_TOO_BIG";
case HANDCRAFTED_TENSORS_BAD_TYPE: return "TENSORS_BAD_TYPE"; case HANDCRAFTED_TENSORS_BAD_TYPE: return "TENSORS_BAD_TYPE";
case HANDCRAFTED_TENSORS_BAD_OFFSET: return "TENSORS_BAD_OFFSET"; case HANDCRAFTED_TENSORS_BAD_OFFSET: return "TENSORS_BAD_OFFSET";
case HANDCRAFTED_TENSORS_DUPLICATE_NAME: return "TENSORS_DUPLICATE_NAME"; case HANDCRAFTED_TENSORS_DUPLICATE_NAME: return "TENSORS_DUPLICATE_NAME";
case HANDCRAFTED_TENSORS_BAD_ALIGNMENT: return "TENSORS_BAD_ALIGNMENT"; case HANDCRAFTED_TENSORS_BAD_ALIGN: return "TENSORS_BAD_ALIGN";
case HANDCRAFTED_TENSORS_SUCCESS: return "TENSORS_SUCCESS"; case HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN: return "TENSORS_INCONSISTENT_ALIGN";
case HANDCRAFTED_TENSORS_CUSTOM_ALIGN: return "TENSORS_CUSTOM_ALIGN"; case HANDCRAFTED_TENSORS_SUCCESS: return "TENSORS_SUCCESS";
case HANDCRAFTED_TENSORS_CUSTOM_ALIGN: return "TENSORS_CUSTOM_ALIGN";
case HANDCRAFTED_DATA_NOT_ENOUGH_DATA: return "DATA_NOT_ENOUGH_DATA"; case HANDCRAFTED_DATA_NOT_ENOUGH_DATA: return "DATA_NOT_ENOUGH_DATA";
case HANDCRAFTED_DATA_BAD_ALIGNMENT: return "DATA_BAD_ALIGNMENT"; case HANDCRAFTED_DATA_BAD_ALIGN: return "DATA_BAD_ALIGN";
case HANDCRAFTED_DATA_SUCCESS: return "DATA_SUCCESS"; case HANDCRAFTED_DATA_INCONSISTENT_ALIGN: return "DATA_INCONSISTENT_ALIGN";
case HANDCRAFTED_DATA_CUSTOM_ALIGN: return "DATA_CUSTOM_ALIGN"; case HANDCRAFTED_DATA_SUCCESS: return "DATA_SUCCESS";
case HANDCRAFTED_DATA_CUSTOM_ALIGN: return "DATA_CUSTOM_ALIGN";
} }
GGML_ABORT("fatal error"); GGML_ABORT("fatal error");
} }
@ -140,31 +145,41 @@ std::vector<std::pair<enum gguf_type, enum gguf_type>> get_kv_types(std::mt19937
return kv_types; return kv_types;
} }
static void helper_write(const void * data, const size_t nbytes, FILE * file) { template <typename T>
static void helper_write(FILE * file, const T & val) {
GGML_ASSERT(fwrite(&val, 1, sizeof(val), file) == sizeof(val));
}
static void helper_write(FILE * file, const void * data, const size_t nbytes) {
GGML_ASSERT(fwrite(data, 1, nbytes, file) == nbytes); GGML_ASSERT(fwrite(data, 1, nbytes, file) == nbytes);
} }
static FILE * get_handcrafted_file(const unsigned int seed, const enum handcrafted_file_type hft, const int extra_bytes = 0) { static FILE * get_handcrafted_file(const unsigned int seed, const enum handcrafted_file_type hft, const int extra_bytes = 0) {
FILE * file = tmpfile(); FILE * file = tmpfile();
if (!file) {
return file;
}
std::mt19937 rng(seed); std::mt19937 rng(seed);
uint32_t alignment = GGUF_DEFAULT_ALIGNMENT;
if (hft == HANDCRAFTED_HEADER_BAD_MAGIC) { if (hft == HANDCRAFTED_HEADER_BAD_MAGIC) {
const char bad_magic[4] = {'F', 'U', 'G', 'G'}; const char bad_magic[4] = {'F', 'U', 'G', 'G'};
helper_write(bad_magic, sizeof(bad_magic), file); helper_write(file, bad_magic, sizeof(bad_magic));
} else { } else {
helper_write(GGUF_MAGIC, 4, file); helper_write(file, GGUF_MAGIC, 4);
} }
if (hft == HANDCRAFTED_HEADER_BAD_VERSION_1) { if (hft == HANDCRAFTED_HEADER_BAD_VERSION_1) {
const uint32_t version = 1; const uint32_t version = 1;
helper_write(&version, sizeof(version), file); helper_write(file, version);
} else if (hft == HANDCRAFTED_HEADER_BAD_VERSION_FUTURE) { } else if (hft == HANDCRAFTED_HEADER_BAD_VERSION_FUTURE) {
const uint32_t version = GGUF_VERSION + 1; const uint32_t version = GGUF_VERSION + 1;
helper_write(&version, sizeof(version), file); helper_write(file, version);
} else { } else {
const uint32_t version = GGUF_VERSION; const uint32_t version = GGUF_VERSION;
helper_write(&version, sizeof(version), file); helper_write(file, version);
} }
std::vector<tensor_config_t> tensor_configs; std::vector<tensor_config_t> tensor_configs;
@ -174,10 +189,10 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
if (hft == HANDCRAFTED_HEADER_BAD_N_TENSORS) { if (hft == HANDCRAFTED_HEADER_BAD_N_TENSORS) {
const uint64_t n_tensors = -1; const uint64_t n_tensors = -1;
helper_write(&n_tensors, sizeof(n_tensors), file); helper_write(file, n_tensors);
} else { } else {
const uint64_t n_tensors = tensor_configs.size(); const uint64_t n_tensors = tensor_configs.size();
helper_write(&n_tensors, sizeof(n_tensors), file); helper_write(file, n_tensors);
} }
std::vector<std::pair<enum gguf_type, enum gguf_type>> kv_types; std::vector<std::pair<enum gguf_type, enum gguf_type>> kv_types;
@ -186,41 +201,49 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
} }
{ {
uint64_t n_kv = kv_types.size(); uint64_t n_kv = kv_types.size();
if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) { if (hft == HANDCRAFTED_KV_BAD_ALIGN ||
hft == HANDCRAFTED_TENSORS_BAD_ALIGN || hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN ||
hft == HANDCRAFTED_DATA_BAD_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
n_kv += 1; n_kv += 1;
} else if (hft == HANDCRAFTED_HEADER_BAD_N_KV) { } else if (hft == HANDCRAFTED_HEADER_BAD_N_KV) {
n_kv = -1; n_kv = -1;
} }
helper_write(&n_kv, sizeof(n_kv), file); helper_write(file, n_kv);
} }
if (hft < offset_has_kv) { if (hft < offset_has_kv) {
while (ftell(file) % alignment != 0) {
const char pad = 0;
helper_write(file, pad);
}
for (int i = 0; i < extra_bytes; ++i) { for (int i = 0; i < extra_bytes; ++i) {
const char tmp = 0; const char tmp = 0;
helper_write(&tmp, sizeof(tmp), file); helper_write(file, tmp);
} }
rewind(file); rewind(file);
return file; return file;
} }
for (int i = 0; i < int(kv_types.size()); ++i) { for (int i = 0; i < int(kv_types.size()); ++i) {
const enum gguf_type type = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? -1 : kv_types[i].first); const enum gguf_type type = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? GGUF_TYPE_COUNT : kv_types[i].first);
const enum gguf_type type_arr = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? -1 : kv_types[i].second); const enum gguf_type type_arr = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? GGUF_TYPE_COUNT : kv_types[i].second);
const std::string key = "my_key_" + std::to_string((hft == HANDCRAFTED_KV_DUPLICATE_KEY ? i/2 : i)); const std::string key = "my_key_" + std::to_string((hft == HANDCRAFTED_KV_DUPLICATE_KEY ? i/2 : i));
if (hft == HANDCRAFTED_KV_BAD_KEY_SIZE) { if (hft == HANDCRAFTED_KV_BAD_KEY_SIZE) {
const uint64_t n = -1; const uint64_t n = -1;
helper_write(&n, sizeof(n), file); helper_write(file, n);
} else { } else {
const uint64_t n = key.length(); const uint64_t n = key.length();
helper_write(&n, sizeof(n), file); helper_write(file, n);
} }
helper_write(key.data(), key.length(), file); helper_write(file, key.data(), key.length());
{ {
const int32_t type32 = int32_t(type); const int32_t type32 = int32_t(type);
helper_write(&type32, sizeof(type32), file); helper_write(file, type32);
} }
uint32_t data[16]; uint32_t data[16];
@ -233,69 +256,67 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
if (type == GGUF_TYPE_STRING) { if (type == GGUF_TYPE_STRING) {
const uint64_t n = rng() % sizeof(data); const uint64_t n = rng() % sizeof(data);
helper_write(&n, sizeof(n), file); helper_write(file, n);
helper_write(data, n, file); helper_write(file, data, n);
continue; continue;
} }
if (type == GGUF_TYPE_ARRAY) { if (type == GGUF_TYPE_ARRAY) {
{ {
const int32_t type32 = int32_t(type_arr); const int32_t type32 = int32_t(type_arr);
helper_write(&type32, sizeof(type32), file); helper_write(file, type32);
} }
if (type_arr == GGUF_TYPE_STRING) { if (type_arr == GGUF_TYPE_STRING) {
const uint64_t nstr = rng() % (16 + 1); const uint64_t nstr = rng() % (16 + 1);
helper_write(&nstr, sizeof(nstr), file); helper_write(file, nstr);
for (uint64_t istr = 0; istr < nstr; ++istr) { for (uint64_t istr = 0; istr < nstr; ++istr) {
const uint64_t n = rng() % (sizeof(uint32_t) + 1); const uint64_t n = rng() % (sizeof(uint32_t) + 1);
helper_write(&n, sizeof(n), file); helper_write(file, n);
helper_write(&data[istr], n, file); helper_write(file, &data[istr], n);
} }
continue; continue;
} }
const size_t type_size = gguf_type_size(type_arr); const size_t type_size = gguf_type_size(type_arr);
const uint64_t n = (rng() % sizeof(data)) / type_size; const uint64_t n = (rng() % sizeof(data)) / type_size;
helper_write(&n, sizeof(n), file); helper_write(file, n);
helper_write(&data, n*type_size, file); helper_write(file, &data, n*type_size);
continue; continue;
} }
size_t type_size = hft == HANDCRAFTED_KV_BAD_TYPE ? 1 : gguf_type_size(type); helper_write(file, data, hft == HANDCRAFTED_KV_BAD_TYPE ? 1 : gguf_type_size(type));
if (hft == HANDCRAFTED_KV_BAD_VALUE_SIZE) {
type_size += rng() % 3;
}
helper_write(data, type_size, file);
} }
if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) { if (hft == HANDCRAFTED_KV_BAD_ALIGN ||
const std::string key = "general.alignment"; hft == HANDCRAFTED_TENSORS_BAD_ALIGN || hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN ||
{ hft == HANDCRAFTED_DATA_BAD_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
const uint64_t n = key.length();
helper_write(&n, sizeof(n), file); const uint64_t n = strlen(GGUF_KEY_GENERAL_ALIGNMENT);
} helper_write(file, n);
helper_write(key.data(), key.length(), file); helper_write(file, GGUF_KEY_GENERAL_ALIGNMENT, n);
const int32_t type = gguf_type(GGUF_TYPE_UINT32); const int32_t type = gguf_type(GGUF_TYPE_UINT32);
helper_write(&type, sizeof(type), file); helper_write(file, type);
const uint32_t alignment = GGUF_DEFAULT_ALIGNMENT + 1; alignment = expect_context_not_null(hft) ? 1 : 13;
helper_write(&alignment, sizeof(alignment), file); helper_write(file, alignment);
} }
if (hft < offset_has_tensors) { if (hft < offset_has_tensors) {
while (ftell(file) % alignment != 0) {
const char pad = 0;
helper_write(file, pad);
}
for (int i = 0; i < extra_bytes; ++i) { for (int i = 0; i < extra_bytes; ++i) {
const char tmp = 0; const char tmp = 0;
helper_write(&tmp, sizeof(tmp), file); helper_write(file, tmp);
} }
rewind(file); rewind(file);
return file; return file;
} }
uint32_t alignment = GGUF_DEFAULT_ALIGNMENT; if (hft == HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN || hft == HANDCRAFTED_DATA_INCONSISTENT_ALIGN) {
if (hft == HANDCRAFTED_TENSORS_BAD_ALIGNMENT || hft == HANDCRAFTED_DATA_BAD_ALIGNMENT) { alignment = 1;
alignment -= 1;
} else if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
alignment += 1;
} }
uint64_t offset = 0; uint64_t offset = 0;
@ -313,9 +334,9 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
} }
{ {
const uint64_t n = name.length(); const uint64_t n = name.length();
helper_write(&n, sizeof(n), file); helper_write(file, n);
} }
helper_write(name.data(), name.length(), file); helper_write(file, name.data(), name.length());
uint32_t n_dims = hft == HANDCRAFTED_TENSORS_NE_TOO_BIG ? 2 : 1; uint32_t n_dims = hft == HANDCRAFTED_TENSORS_NE_TOO_BIG ? 2 : 1;
for (int i = GGML_MAX_DIMS-1; i >= 1; --i) { for (int i = GGML_MAX_DIMS-1; i >= 1; --i) {
@ -326,35 +347,35 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
} }
if (hft == HANDCRAFTED_TENSORS_BAD_N_DIMS) { if (hft == HANDCRAFTED_TENSORS_BAD_N_DIMS) {
const uint32_t n_dims_bad = GGML_MAX_DIMS + 1; const uint32_t n_dims_bad = GGML_MAX_DIMS + 1;
helper_write(&n_dims_bad, sizeof(n_dims_bad), file); helper_write(file, n_dims_bad);
} else { } else {
helper_write(&n_dims, sizeof(n_dims), file); helper_write(file, n_dims);
} }
if (hft == HANDCRAFTED_TENSORS_BAD_SHAPE) { if (hft == HANDCRAFTED_TENSORS_BAD_SHAPE) {
for (uint32_t j = 0; j < n_dims; ++j) { for (uint32_t j = 0; j < n_dims; ++j) {
const int64_t bad_dim = -1; const int64_t bad_dim = -1;
helper_write(&bad_dim, sizeof(bad_dim), file); helper_write(file, bad_dim);
} }
} else if (hft == HANDCRAFTED_TENSORS_NE_TOO_BIG){ } else if (hft == HANDCRAFTED_TENSORS_NE_TOO_BIG){
for (uint32_t j = 0; j < n_dims; ++j) { for (uint32_t j = 0; j < n_dims; ++j) {
const int64_t big_dim = 4*int64_t(INT32_MAX); const int64_t big_dim = 4*int64_t(INT32_MAX);
helper_write(&big_dim, sizeof(big_dim), file); helper_write(file, big_dim);
} }
} else { } else {
helper_write(shape.data(), n_dims*sizeof(int64_t), file); helper_write(file, shape.data(), n_dims*sizeof(int64_t));
} }
{ {
const int32_t type32 = hft == HANDCRAFTED_TENSORS_BAD_TYPE ? -1 : int32_t(type); const int32_t type32 = hft == HANDCRAFTED_TENSORS_BAD_TYPE ? GGML_TYPE_COUNT : int32_t(type);
helper_write(&type32, sizeof(type32), file); helper_write(file, type32);
} }
if (hft == HANDCRAFTED_TENSORS_BAD_OFFSET) { if (hft == HANDCRAFTED_TENSORS_BAD_OFFSET) {
const uint64_t bad_offset = -1; const uint64_t bad_offset = -1;
helper_write(&bad_offset, sizeof(bad_offset), file); helper_write(file, bad_offset);
} else { } else {
helper_write(&offset, sizeof(offset), file); helper_write(file, offset);
} }
int64_t ne = shape[0]; int64_t ne = shape[0];
@ -364,12 +385,9 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
offset += GGML_PAD(ggml_row_size(type, ne), alignment); offset += GGML_PAD(ggml_row_size(type, ne), alignment);
} }
const uint32_t alignment_overshoot = ftell(file) % alignment; while (ftell(file) % alignment != 0) {
if (alignment_overshoot != 0) { const char pad = 0;
for (size_t i = alignment_overshoot; i < alignment; ++i) { helper_write(file, pad);
const char pad = 0;
helper_write(&pad, sizeof(pad), file);
}
} }
if (hft >= offset_has_data) { if (hft >= offset_has_data) {
@ -380,13 +398,13 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
} }
for (uint64_t i = 0; i < nbytes; ++i) { for (uint64_t i = 0; i < nbytes; ++i) {
const uint8_t random_byte = i % 256; const uint8_t random_byte = i % 256;
helper_write(&random_byte, sizeof(random_byte), file); helper_write(file, random_byte);
} }
} }
for (int i = 0; i < extra_bytes; ++i) { for (int i = 0; i < extra_bytes; ++i) {
const char tmp = 0; const char tmp = 0;
helper_write(&tmp, sizeof(tmp), file); helper_write(file, tmp);
} }
rewind(file); rewind(file);
return file; return file;
@ -505,6 +523,16 @@ static bool handcrafted_check_kv(const gguf_context * gguf_ctx, const unsigned i
} }
const char * data_gguf = reinterpret_cast<const char *>(gguf_get_arr_data(gguf_ctx, id)); const char * data_gguf = reinterpret_cast<const char *>(gguf_get_arr_data(gguf_ctx, id));
if (type_arr == GGUF_TYPE_BOOL) {
for (size_t arr_i = 0; arr_i < arr_n; ++arr_i) {
if (bool(data8[arr_i]) != bool(data_gguf[arr_i])) {
ok = false;
}
}
continue;
}
if (!std::equal(data8, data8 + arr_n*type_size, data_gguf)) { if (!std::equal(data8, data8 + arr_n*type_size, data_gguf)) {
ok = false; ok = false;
} }
@ -512,12 +540,20 @@ static bool handcrafted_check_kv(const gguf_context * gguf_ctx, const unsigned i
} }
const char * data_gguf = reinterpret_cast<const char *>(gguf_get_val_data(gguf_ctx, id)); const char * data_gguf = reinterpret_cast<const char *>(gguf_get_val_data(gguf_ctx, id));
if (type == GGUF_TYPE_BOOL) {
if (bool(*data8) != bool(*data_gguf)) {
ok = false;
}
continue;
}
if (!std::equal(data8, data8 + gguf_type_size(type), data_gguf)) { if (!std::equal(data8, data8 + gguf_type_size(type), data_gguf)) {
ok = false; ok = false;
} }
} }
const uint32_t expected_alignment = alignment_defined ? GGUF_DEFAULT_ALIGNMENT + 1 : GGUF_DEFAULT_ALIGNMENT; const uint32_t expected_alignment = alignment_defined ? 1 : GGUF_DEFAULT_ALIGNMENT;
if (gguf_get_alignment(gguf_ctx) != expected_alignment) { if (gguf_get_alignment(gguf_ctx) != expected_alignment) {
ok = false; ok = false;
} }
@ -539,7 +575,7 @@ static bool handcrafted_check_tensors(const gguf_context * gguf_ctx, const unsig
bool ok = true; bool ok = true;
const int id_alignment = gguf_find_key(gguf_ctx, "general.alignment"); const int id_alignment = gguf_find_key(gguf_ctx, GGUF_KEY_GENERAL_ALIGNMENT);
const uint32_t alignment = id_alignment >= 0 ? gguf_get_val_u32(gguf_ctx, id_alignment) : GGUF_DEFAULT_ALIGNMENT; const uint32_t alignment = id_alignment >= 0 ? gguf_get_val_u32(gguf_ctx, id_alignment) : GGUF_DEFAULT_ALIGNMENT;
uint64_t expected_offset = 0; uint64_t expected_offset = 0;
@ -607,7 +643,7 @@ static bool handcrafted_check_tensor_data(const gguf_context * gguf_ctx, const u
std::vector<uint8_t> data(size); std::vector<uint8_t> data(size);
GGML_ASSERT(fseek(file, gguf_get_data_offset(gguf_ctx) + offset, SEEK_SET) == 0); GGML_ASSERT(fseek(file, gguf_get_data_offset(gguf_ctx) + offset, SEEK_SET) == 0);
GGML_ASSERT(fread(data.data(), 1, size, file) == size); GGML_ASSERT(fread(data.data(), 1, data.size(), file) == data.size());
for (size_t j = 0; j < size; ++j) { for (size_t j = 0; j < size; ++j) {
const uint8_t expected_byte = (j + offset) % 256; const uint8_t expected_byte = (j + offset) % 256;
@ -627,15 +663,15 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
const std::vector<handcrafted_file_type> hfts = { const std::vector<handcrafted_file_type> hfts = {
HANDCRAFTED_HEADER_BAD_MAGIC, HANDCRAFTED_HEADER_BAD_MAGIC,
HANDCRAFTED_HEADER_BAD_VERSION_1, HANDCRAFTED_HEADER_BAD_VERSION_1,
// HANDCRAFTED_FILE_TYPE_BAD_VERSION_FUTURE, // FIXME HANDCRAFTED_HEADER_BAD_VERSION_FUTURE,
HANDCRAFTED_HEADER_BAD_N_KV, HANDCRAFTED_HEADER_BAD_N_KV,
HANDCRAFTED_HEADER_BAD_N_TENSORS, HANDCRAFTED_HEADER_BAD_N_TENSORS,
HANDCRAFTED_HEADER_EMPTY, HANDCRAFTED_HEADER_EMPTY,
HANDCRAFTED_KV_BAD_KEY_SIZE, HANDCRAFTED_KV_BAD_KEY_SIZE,
HANDCRAFTED_KV_BAD_TYPE, HANDCRAFTED_KV_BAD_TYPE,
// HANDCRAFTED_KV_BAD_VALUE_SIZE, // FIXME sanitizer limit HANDCRAFTED_KV_DUPLICATE_KEY,
// HANDCRAFTED_FILE_TYPE_DUPLICATE_KEY, // FIXME HANDCRAFTED_KV_BAD_ALIGN,
HANDCRAFTED_KV_SUCCESS, HANDCRAFTED_KV_SUCCESS,
HANDCRAFTED_TENSORS_BAD_NAME_SIZE, HANDCRAFTED_TENSORS_BAD_NAME_SIZE,
@ -643,14 +679,16 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
HANDCRAFTED_TENSORS_BAD_SHAPE, HANDCRAFTED_TENSORS_BAD_SHAPE,
HANDCRAFTED_TENSORS_NE_TOO_BIG, HANDCRAFTED_TENSORS_NE_TOO_BIG,
HANDCRAFTED_TENSORS_BAD_TYPE, HANDCRAFTED_TENSORS_BAD_TYPE,
// HANDCRAFTED_TENSORS_BAD_OFFSET, // FIXME HANDCRAFTED_TENSORS_BAD_OFFSET,
HANDCRAFTED_TENSORS_DUPLICATE_NAME, HANDCRAFTED_TENSORS_DUPLICATE_NAME,
// HANDCRAFTED_TENSORS_BAD_ALIGNMENT, // FIXME HANDCRAFTED_TENSORS_BAD_ALIGN,
HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN,
HANDCRAFTED_TENSORS_SUCCESS, HANDCRAFTED_TENSORS_SUCCESS,
HANDCRAFTED_TENSORS_CUSTOM_ALIGN, HANDCRAFTED_TENSORS_CUSTOM_ALIGN,
HANDCRAFTED_DATA_NOT_ENOUGH_DATA, HANDCRAFTED_DATA_NOT_ENOUGH_DATA,
// HANDCRAFTED_DATA_BAD_ALIGNMENT, // FIXME HANDCRAFTED_DATA_BAD_ALIGN,
HANDCRAFTED_DATA_INCONSISTENT_ALIGN,
HANDCRAFTED_DATA_SUCCESS, HANDCRAFTED_DATA_SUCCESS,
HANDCRAFTED_DATA_CUSTOM_ALIGN, HANDCRAFTED_DATA_CUSTOM_ALIGN,
}; };
@ -674,6 +712,7 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
/*no_alloc =*/ false, /*no_alloc =*/ false,
/*ctx =*/ hft >= offset_has_data ? &ctx : nullptr, /*ctx =*/ hft >= offset_has_data ? &ctx : nullptr,
}; };
struct gguf_context * gguf_ctx = gguf_init_from_file_impl(file, gguf_params); struct gguf_context * gguf_ctx = gguf_init_from_file_impl(file, gguf_params);
if (expect_context_not_null(hft)) { if (expect_context_not_null(hft)) {
@ -689,7 +728,7 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
} }
ntest++; ntest++;
if (false && hft >= offset_has_data && !expect_context_not_null(hft)) { // FIXME if (hft >= offset_has_data && !expect_context_not_null(hft)) {
printf("%s: - no_dangling_ggml_context_pointer: ", __func__); printf("%s: - no_dangling_ggml_context_pointer: ", __func__);
if (ctx) { if (ctx) {
printf("\033[1;31mFAIL\033[0m\n"); printf("\033[1;31mFAIL\033[0m\n");
@ -700,23 +739,6 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
ntest++; ntest++;
} }
if (false && expect_context_not_null(hft)) { // FIXME
FILE * file_eb = get_handcrafted_file(seed, hft, /*extra_bytes =*/ 1);
struct gguf_context * gguf_ctx_eb = gguf_init_from_file_impl(file_eb, gguf_params);
printf("%s: - context_null_with_extra_bytes: ", __func__);
if (gguf_ctx_eb) {
printf("\033[1;31mFAIL\033[0m\n");
} else {
printf("\033[1;32mOK\033[0m\n");
npass++;
}
ntest++;
gguf_free(gguf_ctx_eb);
fclose(file_eb);
}
const bool alignment_defined = hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN; const bool alignment_defined = hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN;
if (expect_context_not_null(hft)) { if (expect_context_not_null(hft)) {
@ -763,14 +785,15 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
ntest++; ntest++;
} }
fclose(file);
if (gguf_ctx) { if (gguf_ctx) {
ggml_free(ctx); ggml_free(ctx);
gguf_free(gguf_ctx); gguf_free(gguf_ctx);
} }
fclose(file);
printf("\n"); printf("\n");
} }
return std::make_pair(npass, ntest); return std::make_pair(npass, ntest);
} }
@ -789,10 +812,6 @@ static struct random_gguf_context_result get_random_gguf_context(ggml_backend_t
const std::string key = "my_key_" + std::to_string(rng() % 1024); const std::string key = "my_key_" + std::to_string(rng() % 1024);
const enum gguf_type type = gguf_type(rng() % GGUF_TYPE_COUNT); const enum gguf_type type = gguf_type(rng() % GGUF_TYPE_COUNT);
if (type == GGUF_TYPE_STRING || type == GGUF_TYPE_ARRAY) {
continue; // FIXME memory leak
}
switch (type) { switch (type) {
case GGUF_TYPE_UINT8: gguf_set_val_u8 (gguf_ctx, key.c_str(), rng() % (1 << 7)); break; case GGUF_TYPE_UINT8: gguf_set_val_u8 (gguf_ctx, key.c_str(), rng() % (1 << 7)); break;
case GGUF_TYPE_INT8: gguf_set_val_i8 (gguf_ctx, key.c_str(), rng() % (1 << 7) - (1 << 6)); break; case GGUF_TYPE_INT8: gguf_set_val_i8 (gguf_ctx, key.c_str(), rng() % (1 << 7) - (1 << 6)); break;
@ -826,6 +845,9 @@ static struct random_gguf_context_result get_random_gguf_context(ggml_backend_t
std::vector<uint32_t> random_data((nbytes + sizeof(uint32_t) - 1) / sizeof(uint32_t)); std::vector<uint32_t> random_data((nbytes + sizeof(uint32_t) - 1) / sizeof(uint32_t));
for (size_t j = 0; j < random_data.size(); ++j) { for (size_t j = 0; j < random_data.size(); ++j) {
random_data[j] = rng(); random_data[j] = rng();
if (type_arr == GGUF_TYPE_BOOL) {
random_data[j] &= 0x01010101; // the sanitizer complains if booleans are not 0 or 1
}
} }
gguf_set_arr_data(gguf_ctx, key.c_str(), type_arr, random_data.data(), ne); gguf_set_arr_data(gguf_ctx, key.c_str(), type_arr, random_data.data(), ne);
} break; } break;
@ -928,6 +950,17 @@ static bool all_kv_in_other(const gguf_context * ctx, const gguf_context * other
continue; continue;
} }
if (type_arr == GGUF_TYPE_BOOL) {
const int8_t * data = reinterpret_cast<const int8_t *>(gguf_get_arr_data(ctx, id));
const int8_t * data_other = reinterpret_cast<const int8_t *>(gguf_get_arr_data(other, idx_other));
for (int arr_i = 0; arr_i < arr_n; ++arr_i) {
if (bool(data[arr_i]) != bool(data_other[arr_i])) {
ok = false;
}
}
continue;
}
if (type_arr == GGUF_TYPE_STRING) { if (type_arr == GGUF_TYPE_STRING) {
for (int arr_i = 0; arr_i < arr_n; ++arr_i) { for (int arr_i = 0; arr_i < arr_n; ++arr_i) {
const std::string str = gguf_get_arr_str(ctx, id, arr_i); const std::string str = gguf_get_arr_str(ctx, id, arr_i);
@ -939,8 +972,8 @@ static bool all_kv_in_other(const gguf_context * ctx, const gguf_context * other
continue; continue;
} }
const char * data = reinterpret_cast<const char *>(gguf_get_arr_data(ctx, id)); const int8_t * data = reinterpret_cast<const int8_t *>(gguf_get_arr_data(ctx, id));
const char * data_other = reinterpret_cast<const char *>(gguf_get_arr_data(other, idx_other)); const int8_t * data_other = reinterpret_cast<const int8_t *>(gguf_get_arr_data(other, idx_other));
if (!std::equal(data, data + arr_n*gguf_type_size(type_arr), data_other)) { if (!std::equal(data, data + arr_n*gguf_type_size(type_arr), data_other)) {
ok = false; ok = false;
} }
@ -1028,21 +1061,6 @@ static bool same_tensor_data(const struct ggml_context * orig, const struct ggml
} }
static std::pair<int, int> test_roundtrip(ggml_backend_dev_t dev, const unsigned int seed, const bool only_meta) { static std::pair<int, int> test_roundtrip(ggml_backend_dev_t dev, const unsigned int seed, const bool only_meta) {
FILE * file = tmpfile();
#ifdef _WIN32
if (!file) {
printf("%s: failed to create tmpfile(), needs elevated privileges on Windows");
printf("%s: skipping tests");
return std::make_pair(0, 0);
}
#else
GGML_ASSERT(file);
#endif // _WIN32
if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
return std::make_pair(0, 0); // FIXME
}
ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr); ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
printf("%s: device=%s, backend=%s, only_meta=%s\n", printf("%s: device=%s, backend=%s, only_meta=%s\n",
__func__, ggml_backend_dev_description(dev), ggml_backend_name(backend), only_meta ? "yes" : "no"); __func__, ggml_backend_dev_description(dev), ggml_backend_name(backend), only_meta ? "yes" : "no");
@ -1060,10 +1078,24 @@ static std::pair<int, int> test_roundtrip(ggml_backend_dev_t dev, const unsigned
bbuf = result.buffer; bbuf = result.buffer;
} }
struct gguf_buf gbuf = gguf_buf_init(16 * 1024); FILE * file = tmpfile();
gguf_write_to_buf(gguf_ctx_0, &gbuf, only_meta);
helper_write(gbuf.data, gbuf.offset, file); #ifdef _WIN32
rewind(file); if (!file) {
printf("%s: failed to create tmpfile(), needs elevated privileges on Windows");
printf("%s: skipping tests");
return std::make_pair(0, 0);
}
#else
GGML_ASSERT(file);
#endif // _WIN32
{
std::vector<int8_t> buf;
gguf_write_to_buf(gguf_ctx_0, buf, only_meta);
GGML_ASSERT(fwrite(buf.data(), 1, buf.size(), file) == buf.size());
rewind(file);
}
struct ggml_context * ctx_1 = nullptr; struct ggml_context * ctx_1 = nullptr;
struct gguf_init_params gguf_params = { struct gguf_init_params gguf_params = {
@ -1151,9 +1183,8 @@ static std::pair<int, int> test_roundtrip(ggml_backend_dev_t dev, const unsigned
ggml_free(ctx_1); ggml_free(ctx_1);
gguf_free(gguf_ctx_0); gguf_free(gguf_ctx_0);
gguf_free(gguf_ctx_1); gguf_free(gguf_ctx_1);
gguf_buf_free(gbuf);
ggml_backend_free(backend); ggml_backend_free(backend);
GGML_ASSERT(fclose(file) == 0); fclose(file);
printf("\n"); printf("\n");
return std::make_pair(npass, ntest); return std::make_pair(npass, ntest);