mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 12:21:40 +01:00
GGUF: C++ refactor, backend support, misc fixes (#11030)
* GGUF: C++ refactor, backend support, misc fixes remove ggml_tensor.backend update CODEOWNERS [no ci] remove gguf_get_data from API revise GGUF API data types
This commit is contained in:
parent
017cc5f446
commit
53ff6b9b9f
@ -3,3 +3,9 @@
|
||||
/ci/ @ggerganov
|
||||
/.devops/*.Dockerfile @ngxson
|
||||
/examples/server/ @ngxson
|
||||
/ggml/src/ggml-cuda/fattn* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmq.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmv.* @JohannesGaessler
|
||||
/ggml/src/ggml-cuda/mmvq.* @JohannesGaessler
|
||||
/ggml/src/ggml-opt.cpp @JohannesGaessler
|
||||
/ggml/src/gguf.cpp @JohannesGaessler
|
||||
|
@ -2,6 +2,9 @@
|
||||
#define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING
|
||||
#endif
|
||||
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
// Change JSON_ASSERT from assert() to GGML_ASSERT:
|
||||
|
@ -1,4 +1,6 @@
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
#include "log.h"
|
||||
|
@ -1,7 +1,9 @@
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "llama.h"
|
||||
#include "ggml.h"
|
||||
#include "pca.hpp"
|
||||
#include "mean.hpp"
|
||||
|
||||
|
@ -1,7 +1,9 @@
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include "arg.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
@ -1,4 +1,5 @@
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include <cstdlib> /* abort() */
|
||||
#include <cstddef>
|
||||
|
@ -1,16 +1,18 @@
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
#include "llama.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cinttypes>
|
||||
#include <climits>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <stdexcept>
|
||||
#include <cstring>
|
||||
#include <fstream>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
#include <climits>
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstring>
|
||||
#include <stdexcept>
|
||||
|
||||
#if defined(_WIN32)
|
||||
#include <windows.h>
|
||||
@ -296,7 +298,7 @@ struct split_strategy {
|
||||
total_size += ggml_nbytes(t);
|
||||
}
|
||||
total_size = total_size / 1000 / 1000; // convert to megabytes
|
||||
printf("split %05d: n_tensors = %d, total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
|
||||
printf("split %05d: n_tensors = %" PRIi64 ", total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
|
||||
i_split++;
|
||||
}
|
||||
}
|
||||
|
@ -1,10 +1,9 @@
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include <cstdio>
|
||||
#include <cinttypes>
|
||||
#include <string>
|
||||
#include <sstream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
|
||||
#undef MIN
|
||||
@ -135,9 +134,10 @@ static bool gguf_ex_read_0(const std::string & fname) {
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name (ctx, i);
|
||||
const size_t size = gguf_get_tensor_size (ctx, i);
|
||||
const size_t offset = gguf_get_tensor_offset(ctx, i);
|
||||
|
||||
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
|
||||
printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset);
|
||||
}
|
||||
}
|
||||
|
||||
@ -182,9 +182,10 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
|
||||
|
||||
for (int i = 0; i < n_tensors; ++i) {
|
||||
const char * name = gguf_get_tensor_name (ctx, i);
|
||||
const size_t size = gguf_get_tensor_size (ctx, i);
|
||||
const size_t offset = gguf_get_tensor_offset(ctx, i);
|
||||
|
||||
printf("%s: tensor[%d]: name = %s, offset = %zu\n", __func__, i, name, offset);
|
||||
printf("%s: tensor[%d]: name = %s, size = %zu, offset = %zu\n", __func__, i, name, size, offset);
|
||||
}
|
||||
}
|
||||
|
||||
@ -199,7 +200,8 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
|
||||
|
||||
struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
|
||||
|
||||
printf("%s: tensor[%d]: n_dims = %d, name = %s, data = %p\n", __func__, i, ggml_n_dims(cur), cur->name, cur->data);
|
||||
printf("%s: tensor[%d]: n_dims = %d, ne = (%d, %d, %d, %d), name = %s, data = %p\n",
|
||||
__func__, i, ggml_n_dims(cur), int(cur->ne[0]), int(cur->ne[1]), int(cur->ne[2]), int(cur->ne[3]), cur->name, cur->data);
|
||||
|
||||
// print first 10 elements
|
||||
const float * data = (const float *) cur->data;
|
||||
@ -215,7 +217,7 @@ static bool gguf_ex_read_1(const std::string & fname, bool check_data) {
|
||||
const float * data = (const float *) cur->data;
|
||||
for (int j = 0; j < ggml_nelements(cur); ++j) {
|
||||
if (data[j] != 100 + i) {
|
||||
fprintf(stderr, "%s: tensor[%d]: data[%d] = %f\n", __func__, i, j, data[j]);
|
||||
fprintf(stderr, "%s: tensor[%d], data[%d]: found %f, expected %f\n", __func__, i, j, data[j], float(100 + i));
|
||||
gguf_free(ctx);
|
||||
return false;
|
||||
}
|
||||
@ -245,6 +247,8 @@ int main(int argc, char ** argv) {
|
||||
check_data = false;
|
||||
}
|
||||
|
||||
srand(123456);
|
||||
|
||||
const std::string fname(argv[1]);
|
||||
const std::string mode (argv[2]);
|
||||
|
||||
|
@ -7,6 +7,7 @@
|
||||
#include "ggml-cpu.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "gguf.h"
|
||||
|
||||
//#ifdef GGML_USE_CUDA
|
||||
//#include "ggml-cuda.h"
|
||||
@ -262,7 +263,7 @@ static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
{
|
||||
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
|
||||
int arr_n = gguf_get_arr_n(ctx_gguf, i);
|
||||
const void * data = gguf_get_arr_data(ctx_gguf, i);
|
||||
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
|
||||
std::stringstream ss;
|
||||
ss << "[";
|
||||
for (int j = 0; j < arr_n; j++) {
|
||||
@ -2734,7 +2735,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
total_size_org += orig_size;
|
||||
total_size_new += new_size;
|
||||
gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
|
||||
gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
|
||||
GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
|
||||
gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
|
||||
fout.write((const char *)new_data, new_size);
|
||||
size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
|
||||
for (size_t j = 0; j < pad; ++j) {
|
||||
|
@ -243,7 +243,8 @@ set(GGML_PUBLIC_HEADERS
|
||||
include/ggml-metal.h
|
||||
include/ggml-rpc.h
|
||||
include/ggml-sycl.h
|
||||
include/ggml-vulkan.h)
|
||||
include/ggml-vulkan.h
|
||||
include/gguf.h)
|
||||
|
||||
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
#if (GGML_METAL)
|
||||
|
@ -7,6 +7,7 @@
|
||||
#include "ggml.h"
|
||||
#include "ggml-alloc.h"
|
||||
#include "ggml-backend.h"
|
||||
#include "gguf.h"
|
||||
#include <memory>
|
||||
|
||||
// Smart pointers for ggml types
|
||||
|
@ -241,12 +241,6 @@
|
||||
#define GGML_ROPE_TYPE_MROPE 8
|
||||
#define GGML_ROPE_TYPE_VISION 24
|
||||
|
||||
#define GGUF_MAGIC "GGUF"
|
||||
|
||||
#define GGUF_VERSION 3
|
||||
|
||||
#define GGUF_DEFAULT_ALIGNMENT 32
|
||||
|
||||
#define GGML_UNUSED(x) (void)(x)
|
||||
|
||||
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
|
||||
@ -403,12 +397,6 @@ extern "C" {
|
||||
GGML_PREC_F32,
|
||||
};
|
||||
|
||||
enum ggml_backend_type {
|
||||
GGML_BACKEND_TYPE_CPU = 0,
|
||||
GGML_BACKEND_TYPE_GPU = 10,
|
||||
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
|
||||
};
|
||||
|
||||
// model file types
|
||||
enum ggml_ftype {
|
||||
GGML_FTYPE_UNKNOWN = -1,
|
||||
@ -587,8 +575,6 @@ extern "C" {
|
||||
struct ggml_tensor {
|
||||
enum ggml_type type;
|
||||
|
||||
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
|
||||
|
||||
struct ggml_backend_buffer * buffer;
|
||||
|
||||
int64_t ne[GGML_MAX_DIMS]; // number of elements
|
||||
@ -2111,132 +2097,6 @@ extern "C" {
|
||||
int64_t n_per_row,
|
||||
const float * imatrix);
|
||||
|
||||
//
|
||||
// gguf
|
||||
//
|
||||
|
||||
enum gguf_type {
|
||||
GGUF_TYPE_UINT8 = 0,
|
||||
GGUF_TYPE_INT8 = 1,
|
||||
GGUF_TYPE_UINT16 = 2,
|
||||
GGUF_TYPE_INT16 = 3,
|
||||
GGUF_TYPE_UINT32 = 4,
|
||||
GGUF_TYPE_INT32 = 5,
|
||||
GGUF_TYPE_FLOAT32 = 6,
|
||||
GGUF_TYPE_BOOL = 7,
|
||||
GGUF_TYPE_STRING = 8,
|
||||
GGUF_TYPE_ARRAY = 9,
|
||||
GGUF_TYPE_UINT64 = 10,
|
||||
GGUF_TYPE_INT64 = 11,
|
||||
GGUF_TYPE_FLOAT64 = 12,
|
||||
GGUF_TYPE_COUNT, // marks the end of the enum
|
||||
};
|
||||
|
||||
struct gguf_context;
|
||||
|
||||
struct gguf_init_params {
|
||||
bool no_alloc;
|
||||
|
||||
// if not NULL, create a ggml_context and allocate the tensor data in it
|
||||
struct ggml_context ** ctx;
|
||||
};
|
||||
|
||||
GGML_API struct gguf_context * gguf_init_empty(void);
|
||||
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
|
||||
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
|
||||
|
||||
GGML_API void gguf_free(struct gguf_context * ctx);
|
||||
|
||||
GGML_API const char * gguf_type_name(enum gguf_type type);
|
||||
|
||||
GGML_API int gguf_get_version (const struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
|
||||
GGML_API void * gguf_get_data (const struct gguf_context * ctx);
|
||||
|
||||
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
|
||||
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
|
||||
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
|
||||
|
||||
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
|
||||
|
||||
// will abort if the wrong type is used for the key
|
||||
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
|
||||
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
|
||||
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
|
||||
|
||||
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
|
||||
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
|
||||
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
|
||||
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
|
||||
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
|
||||
|
||||
// removes key if it exists
|
||||
GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
|
||||
|
||||
// overrides existing values or adds a new one
|
||||
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
|
||||
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
|
||||
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
|
||||
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
|
||||
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
|
||||
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
|
||||
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
|
||||
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
|
||||
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
|
||||
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
|
||||
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
|
||||
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
|
||||
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
|
||||
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
|
||||
|
||||
// set or add KV pairs from another context
|
||||
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
|
||||
|
||||
// manage tensor info
|
||||
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
|
||||
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
|
||||
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
|
||||
|
||||
// writing gguf files can be done in 2 ways:
|
||||
//
|
||||
// - write the entire gguf_context to a binary file in a single pass:
|
||||
//
|
||||
// gguf_write_to_file(ctx, fname);
|
||||
//
|
||||
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
|
||||
//
|
||||
// FILE * f = fopen(fname, "wb");
|
||||
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
|
||||
// fwrite(f, ...);
|
||||
// void * data = gguf_meta_get_meta_data(ctx);
|
||||
// fseek(f, 0, SEEK_SET);
|
||||
// fwrite(f, data, gguf_get_meta_size(ctx));
|
||||
// free(data);
|
||||
// fclose(f);
|
||||
//
|
||||
|
||||
// write the entire context to a binary file
|
||||
GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
|
||||
|
||||
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
|
||||
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
|
||||
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
|
||||
|
||||
#ifdef __cplusplus
|
||||
// restrict not standard in C++
|
||||
# if defined(__GNUC__)
|
||||
|
202
ggml/include/gguf.h
Normal file
202
ggml/include/gguf.h
Normal file
@ -0,0 +1,202 @@
|
||||
// This file contains functionality related to "GGUF" files, the binary file format used by ggml.
|
||||
// GGUF files have the following structure:
|
||||
//
|
||||
// 1. File magic "GGUF" (4 bytes).
|
||||
// 2. File version (uint32_t).
|
||||
// 3. Number of ggml tensors in file (int64_t).
|
||||
// 4. Number of key-value-pairs in file (int64_t).
|
||||
// 5. For each KV pair:
|
||||
// 1. The key (string).
|
||||
// 2. The value type (gguf_type).
|
||||
// 3a. If the value type is GGUF_TYPE_ARRAY:
|
||||
// 1. The type of the array (gguf_type).
|
||||
// 2. The number of elements in the array (uint64_t).
|
||||
// 3. The binary representation of each element in the array.
|
||||
// 3b. Otherwise:
|
||||
// 1. The binary representation of the value.
|
||||
// 6. For each ggml tensor:
|
||||
// 1. The tensor name (string).
|
||||
// 2. The number of dimensions of the tensor (uint32_t).
|
||||
// 3. For each dimension:
|
||||
// 1. The size of the tensor in the dimension (int64_t).
|
||||
// 4. The tensor data type (ggml_type).
|
||||
// 5. The tensor data offset in the tensor data binary blob (uint64_t).
|
||||
// 7. The tensor data binary blob (optional, aligned).
|
||||
//
|
||||
// Strings are serialized as the string length (uint64_t) followed by the C string without the null terminator.
|
||||
// All enums are stored as int32_t.
|
||||
// All bool values are stored as int8_t.
|
||||
// If the special key "general.alignment" (uint32_t) is defined it is used for alignment,
|
||||
// otherwise GGUF_DEFAULT_ALIGNMENT is used.
|
||||
//
|
||||
// Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de)
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "ggml.h"
|
||||
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#define GGUF_MAGIC "GGUF"
|
||||
#define GGUF_VERSION 3
|
||||
|
||||
#define GGUF_KEY_GENERAL_ALIGNMENT "general.alignment"
|
||||
|
||||
#define GGUF_DEFAULT_ALIGNMENT 32
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
// types that can be stored as GGUF KV data
|
||||
enum gguf_type {
|
||||
GGUF_TYPE_UINT8 = 0,
|
||||
GGUF_TYPE_INT8 = 1,
|
||||
GGUF_TYPE_UINT16 = 2,
|
||||
GGUF_TYPE_INT16 = 3,
|
||||
GGUF_TYPE_UINT32 = 4,
|
||||
GGUF_TYPE_INT32 = 5,
|
||||
GGUF_TYPE_FLOAT32 = 6,
|
||||
GGUF_TYPE_BOOL = 7,
|
||||
GGUF_TYPE_STRING = 8,
|
||||
GGUF_TYPE_ARRAY = 9,
|
||||
GGUF_TYPE_UINT64 = 10,
|
||||
GGUF_TYPE_INT64 = 11,
|
||||
GGUF_TYPE_FLOAT64 = 12,
|
||||
GGUF_TYPE_COUNT, // marks the end of the enum
|
||||
};
|
||||
|
||||
struct gguf_context;
|
||||
|
||||
struct gguf_init_params {
|
||||
bool no_alloc;
|
||||
|
||||
// if not NULL, create a ggml_context and allocate the tensor data in it
|
||||
struct ggml_context ** ctx;
|
||||
};
|
||||
|
||||
GGML_API struct gguf_context * gguf_init_empty(void);
|
||||
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
|
||||
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
|
||||
|
||||
GGML_API void gguf_free(struct gguf_context * ctx);
|
||||
|
||||
GGML_API const char * gguf_type_name(enum gguf_type type);
|
||||
|
||||
GGML_API uint32_t gguf_get_version (const struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
|
||||
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
|
||||
|
||||
GGML_API int64_t gguf_get_n_kv(const struct gguf_context * ctx);
|
||||
GGML_API int64_t gguf_find_key(const struct gguf_context * ctx, const char * key); // returns -1 if key is not found
|
||||
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
// will abort if the wrong type is used for the key
|
||||
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id);
|
||||
GGML_API size_t gguf_get_arr_n (const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
// get raw pointer to the first element of the array with the given key_id
|
||||
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
|
||||
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
|
||||
|
||||
// get ith C string from array with given key_id
|
||||
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
|
||||
|
||||
GGML_API int64_t gguf_get_n_tensors (const struct gguf_context * ctx);
|
||||
GGML_API int64_t gguf_find_tensor (const struct gguf_context * ctx, const char * name); // returns -1 if the tensor is not found
|
||||
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id);
|
||||
GGML_API const char * gguf_get_tensor_name (const struct gguf_context * ctx, int64_t tensor_id);
|
||||
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int64_t tensor_id);
|
||||
GGML_API size_t gguf_get_tensor_size (const struct gguf_context * ctx, int64_t tensor_id);
|
||||
|
||||
// removes key if it exists, returns id that the key had prior to removal (-1 if it didn't exist)
|
||||
GGML_API int64_t gguf_remove_key(struct gguf_context * ctx, const char * key);
|
||||
|
||||
// overrides an existing KV pair or adds a new one, the new KV pair is always at the back
|
||||
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
|
||||
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
|
||||
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
|
||||
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
|
||||
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
|
||||
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
|
||||
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
|
||||
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
|
||||
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
|
||||
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
|
||||
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
|
||||
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
|
||||
|
||||
// creates a new array with n elements of the given type and copies the corresponding number of bytes from data
|
||||
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n);
|
||||
|
||||
// creates a new array with n strings and copies the corresponding strings from data
|
||||
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, size_t n);
|
||||
|
||||
// set or add KV pairs from another context
|
||||
GGML_API void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src);
|
||||
|
||||
// add tensor to GGUF context, tensor name must be unique
|
||||
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
|
||||
|
||||
// after changing a tensor's type, the offsets of all tensors with higher indices are immediately recalculated
|
||||
// in such a way that the tensor data remains as one contiguous block (except for padding)
|
||||
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
|
||||
|
||||
// assumes that at least gguf_get_tensor_size bytes can be read from data
|
||||
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data);
|
||||
|
||||
// writing gguf files can be done in 3 ways:
|
||||
//
|
||||
// - write the entire gguf_context to a binary file in a single pass:
|
||||
//
|
||||
// gguf_write_to_file(ctx, fname, /*only_meta =*/ false);
|
||||
//
|
||||
// - write only the meta data to a file, then re-open the file and append the tensor data:
|
||||
//
|
||||
// gguf_write_to_file(ctx, fname, /*only_meta =*/ true);
|
||||
// FILE * f = fopen(fname, "ab");
|
||||
// fwrite(f, ...); // write tensor data
|
||||
// fclose(f);
|
||||
//
|
||||
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
|
||||
//
|
||||
// FILE * f = fopen(fname, "wb");
|
||||
// const size_t size_meta = gguf_get_meta_size(ctx);
|
||||
// fseek(f, size_meta, SEEK_SET);
|
||||
// fwrite(f, ...); // write tensor data
|
||||
// void * data = malloc(size_meta);
|
||||
// gguf_get_meta_data(ctx, data);
|
||||
// rewind(f);
|
||||
// fwrite(data, 1, data, f);
|
||||
// free(data);
|
||||
// fclose(f);
|
||||
//
|
||||
|
||||
// write the entire context to a binary file
|
||||
GGML_API bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
|
||||
|
||||
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
|
||||
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
|
||||
|
||||
// writes the meta data to pointer "data"
|
||||
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
@ -208,6 +208,7 @@ add_library(ggml-base
|
||||
../include/ggml-backend.h
|
||||
../include/ggml-cpp.h
|
||||
../include/ggml-opt.h
|
||||
../include/gguf.h
|
||||
ggml.c
|
||||
ggml-alloc.c
|
||||
ggml-backend.cpp
|
||||
@ -215,7 +216,8 @@ add_library(ggml-base
|
||||
ggml-threading.cpp
|
||||
ggml-threading.h
|
||||
ggml-quants.c
|
||||
ggml-quants.h)
|
||||
ggml-quants.h
|
||||
gguf.cpp)
|
||||
|
||||
target_include_directories(ggml-base PRIVATE .)
|
||||
|
||||
|
@ -3,6 +3,8 @@
|
||||
// GGML internal header
|
||||
|
||||
#include "ggml.h"
|
||||
#include "gguf.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <math.h>
|
||||
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
|
||||
@ -551,22 +553,15 @@ static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
|
||||
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
|
||||
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
|
||||
|
||||
// expose GGUF internals for test code
|
||||
|
||||
GGML_API size_t gguf_type_size(enum gguf_type type);
|
||||
|
||||
GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
|
||||
|
||||
struct gguf_buf {
|
||||
void * data;
|
||||
size_t size;
|
||||
size_t offset;
|
||||
};
|
||||
GGML_API struct gguf_buf gguf_buf_init(size_t size);
|
||||
GGML_API void gguf_buf_free(struct gguf_buf buf);
|
||||
|
||||
GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
#include <vector>
|
||||
|
||||
// expose GGUF internals for test code
|
||||
GGML_API size_t gguf_type_size(enum gguf_type type);
|
||||
GGML_API struct gguf_context * gguf_init_from_file_impl(FILE * file, struct gguf_init_params params);
|
||||
GGML_API void gguf_write_to_buf(const struct gguf_context * ctx, std::vector<int8_t> & buf, bool only_meta);
|
||||
#endif // __cplusplus
|
||||
|
1276
ggml/src/ggml.c
1276
ggml/src/ggml.c
File diff suppressed because it is too large
Load Diff
1325
ggml/src/gguf.cpp
Normal file
1325
ggml/src/gguf.cpp
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,5 +1,6 @@
|
||||
#include "llama-impl.h"
|
||||
|
||||
#include "gguf.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <cinttypes>
|
||||
@ -138,7 +139,7 @@ std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
|
||||
{
|
||||
const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
|
||||
int arr_n = gguf_get_arr_n(ctx_gguf, i);
|
||||
const void * data = gguf_get_arr_data(ctx_gguf, i);
|
||||
const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
|
||||
std::stringstream ss;
|
||||
ss << "[";
|
||||
for (int j = 0; j < arr_n; j++) {
|
||||
|
@ -18,7 +18,7 @@ const char * llama_file_version_name(llama_fver version) {
|
||||
}
|
||||
|
||||
namespace GGUFMeta {
|
||||
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
|
||||
template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int64_t)>
|
||||
struct GKV_Base_Type {
|
||||
static constexpr gguf_type gt = gt_;
|
||||
|
||||
@ -60,10 +60,11 @@ namespace GGUFMeta {
|
||||
public:
|
||||
static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
|
||||
static ArrayInfo getter(const gguf_context *ctx, const int k) {
|
||||
const enum gguf_type arr_type = gguf_get_arr_type(ctx, k);
|
||||
return ArrayInfo {
|
||||
gguf_get_arr_type(ctx, k),
|
||||
arr_type,
|
||||
size_t(gguf_get_arr_n(ctx, k)),
|
||||
gguf_get_arr_data(ctx, k),
|
||||
arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx, k),
|
||||
};
|
||||
}
|
||||
};
|
||||
@ -553,7 +554,7 @@ llama_model_loader::llama_model_loader(const std::string & fname, bool use_mmap,
|
||||
const enum gguf_type type = gguf_get_kv_type(meta.get(), i);
|
||||
const std::string type_name =
|
||||
type == GGUF_TYPE_ARRAY
|
||||
? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
|
||||
? format("%s[%s,%zu]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
|
||||
: gguf_type_name(type);
|
||||
|
||||
std::string value = gguf_kv_to_str(meta.get(), i);
|
||||
|
@ -875,7 +875,8 @@ static void llama_model_quantize_impl(const std::string & fname_inp, const std::
|
||||
|
||||
// update the gguf meta data as we go
|
||||
gguf_set_tensor_type(ctx_outs[cur_split].get(), name.c_str(), new_type);
|
||||
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data, new_size);
|
||||
GGML_ASSERT(gguf_get_tensor_size(ctx_outs[cur_split].get(), gguf_find_tensor(ctx_outs[cur_split].get(), name.c_str())) == new_size);
|
||||
gguf_set_tensor_data(ctx_outs[cur_split].get(), name.c_str(), new_data);
|
||||
|
||||
// write tensor data + padding
|
||||
fout.write((const char *) new_data, new_size);
|
||||
|
@ -15,66 +15,71 @@ constexpr int offset_has_tensors = 2000;
|
||||
constexpr int offset_has_data = 3000;
|
||||
|
||||
enum handcrafted_file_type {
|
||||
HANDCRAFTED_HEADER_BAD_MAGIC = 10,
|
||||
HANDCRAFTED_HEADER_BAD_VERSION_1 = 20,
|
||||
HANDCRAFTED_HEADER_BAD_VERSION_FUTURE = 30,
|
||||
HANDCRAFTED_HEADER_BAD_N_TENSORS = 40,
|
||||
HANDCRAFTED_HEADER_BAD_N_KV = 50,
|
||||
HANDCRAFTED_HEADER_EMPTY = 800,
|
||||
HANDCRAFTED_HEADER_BAD_MAGIC = 10,
|
||||
HANDCRAFTED_HEADER_BAD_VERSION_1 = 20,
|
||||
HANDCRAFTED_HEADER_BAD_VERSION_FUTURE = 30,
|
||||
HANDCRAFTED_HEADER_BAD_N_TENSORS = 40,
|
||||
HANDCRAFTED_HEADER_BAD_N_KV = 50,
|
||||
HANDCRAFTED_HEADER_EMPTY = 800,
|
||||
|
||||
HANDCRAFTED_KV_BAD_KEY_SIZE = 10 + offset_has_kv,
|
||||
HANDCRAFTED_KV_BAD_TYPE = 20 + offset_has_kv,
|
||||
HANDCRAFTED_KV_BAD_VALUE_SIZE = 30 + offset_has_kv,
|
||||
HANDCRAFTED_KV_DUPLICATE_KEY = 40 + offset_has_kv,
|
||||
HANDCRAFTED_KV_SUCCESS = 800 + offset_has_kv,
|
||||
HANDCRAFTED_KV_BAD_KEY_SIZE = 10 + offset_has_kv,
|
||||
HANDCRAFTED_KV_BAD_TYPE = 20 + offset_has_kv,
|
||||
// HANDCRAFTED_KV_BAD_VALUE_SIZE = 30 + offset_has_kv, // removed because it can result in allocations > 1 TB (default sanitizer limit)
|
||||
HANDCRAFTED_KV_DUPLICATE_KEY = 40 + offset_has_kv,
|
||||
HANDCRAFTED_KV_BAD_ALIGN = 50 + offset_has_kv,
|
||||
HANDCRAFTED_KV_SUCCESS = 800 + offset_has_kv,
|
||||
|
||||
HANDCRAFTED_TENSORS_BAD_NAME_SIZE = 10 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_BAD_N_DIMS = 20 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_BAD_SHAPE = 30 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_NE_TOO_BIG = 40 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_BAD_TYPE = 50 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_BAD_OFFSET = 60 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_DUPLICATE_NAME = 70 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_BAD_ALIGNMENT = 80 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_SUCCESS = 800 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_CUSTOM_ALIGN = 810 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_BAD_NAME_SIZE = 10 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_BAD_N_DIMS = 20 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_BAD_SHAPE = 30 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_NE_TOO_BIG = 40 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_BAD_TYPE = 50 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_BAD_OFFSET = 60 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_DUPLICATE_NAME = 70 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_BAD_ALIGN = 75 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN = 80 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_SUCCESS = 800 + offset_has_tensors,
|
||||
HANDCRAFTED_TENSORS_CUSTOM_ALIGN = 810 + offset_has_tensors,
|
||||
|
||||
HANDCRAFTED_DATA_NOT_ENOUGH_DATA = 10 + offset_has_data,
|
||||
HANDCRAFTED_DATA_BAD_ALIGNMENT = 20 + offset_has_data,
|
||||
HANDCRAFTED_DATA_SUCCESS = 800 + offset_has_data,
|
||||
HANDCRAFTED_DATA_CUSTOM_ALIGN = 810 + offset_has_data,
|
||||
HANDCRAFTED_DATA_NOT_ENOUGH_DATA = 10 + offset_has_data,
|
||||
HANDCRAFTED_DATA_BAD_ALIGN = 15 + offset_has_data,
|
||||
HANDCRAFTED_DATA_INCONSISTENT_ALIGN = 20 + offset_has_data,
|
||||
HANDCRAFTED_DATA_SUCCESS = 800 + offset_has_data,
|
||||
HANDCRAFTED_DATA_CUSTOM_ALIGN = 810 + offset_has_data,
|
||||
};
|
||||
|
||||
std::string handcrafted_file_type_name(const enum handcrafted_file_type hft) {
|
||||
switch (hft) {
|
||||
case HANDCRAFTED_HEADER_BAD_MAGIC: return "HEADER_BAD_MAGIC";
|
||||
case HANDCRAFTED_HEADER_BAD_VERSION_1: return "HEADER_BAD_VERSION_1";
|
||||
case HANDCRAFTED_HEADER_BAD_VERSION_FUTURE: return "HEADER_BAD_VERSION_FUTURE";
|
||||
case HANDCRAFTED_HEADER_BAD_N_KV: return "HEADER_BAD_N_KV";
|
||||
case HANDCRAFTED_HEADER_BAD_N_TENSORS: return "HEADER_BAD_N_TENSORS";
|
||||
case HANDCRAFTED_HEADER_EMPTY: return "HEADER_EMPTY";
|
||||
case HANDCRAFTED_HEADER_BAD_MAGIC: return "HEADER_BAD_MAGIC";
|
||||
case HANDCRAFTED_HEADER_BAD_VERSION_1: return "HEADER_BAD_VERSION_1";
|
||||
case HANDCRAFTED_HEADER_BAD_VERSION_FUTURE: return "HEADER_BAD_VERSION_FUTURE";
|
||||
case HANDCRAFTED_HEADER_BAD_N_KV: return "HEADER_BAD_N_KV";
|
||||
case HANDCRAFTED_HEADER_BAD_N_TENSORS: return "HEADER_BAD_N_TENSORS";
|
||||
case HANDCRAFTED_HEADER_EMPTY: return "HEADER_EMPTY";
|
||||
|
||||
case HANDCRAFTED_KV_BAD_KEY_SIZE: return "KV_BAD_KEY_SIZE";
|
||||
case HANDCRAFTED_KV_BAD_TYPE: return "KV_BAD_TYPE";
|
||||
case HANDCRAFTED_KV_BAD_VALUE_SIZE: return "KV_BAD_VALUE_SIZE";
|
||||
case HANDCRAFTED_KV_DUPLICATE_KEY: return "KV_DUPLICATE_KEY";
|
||||
case HANDCRAFTED_KV_SUCCESS: return "KV_RANDOM_KV";
|
||||
case HANDCRAFTED_KV_BAD_KEY_SIZE: return "KV_BAD_KEY_SIZE";
|
||||
case HANDCRAFTED_KV_BAD_TYPE: return "KV_BAD_TYPE";
|
||||
case HANDCRAFTED_KV_DUPLICATE_KEY: return "KV_DUPLICATE_KEY";
|
||||
case HANDCRAFTED_KV_BAD_ALIGN: return "KV_BAD_ALIGN";
|
||||
case HANDCRAFTED_KV_SUCCESS: return "KV_RANDOM_KV";
|
||||
|
||||
case HANDCRAFTED_TENSORS_BAD_NAME_SIZE: return "TENSORS_BAD_NAME_SIZE";
|
||||
case HANDCRAFTED_TENSORS_BAD_N_DIMS: return "TENSORS_BAD_N_DIMS";
|
||||
case HANDCRAFTED_TENSORS_BAD_SHAPE: return "TENSORS_BAD_SHAPE";
|
||||
case HANDCRAFTED_TENSORS_NE_TOO_BIG: return "TENSORS_NE_TOO_BIG";
|
||||
case HANDCRAFTED_TENSORS_BAD_TYPE: return "TENSORS_BAD_TYPE";
|
||||
case HANDCRAFTED_TENSORS_BAD_OFFSET: return "TENSORS_BAD_OFFSET";
|
||||
case HANDCRAFTED_TENSORS_DUPLICATE_NAME: return "TENSORS_DUPLICATE_NAME";
|
||||
case HANDCRAFTED_TENSORS_BAD_ALIGNMENT: return "TENSORS_BAD_ALIGNMENT";
|
||||
case HANDCRAFTED_TENSORS_SUCCESS: return "TENSORS_SUCCESS";
|
||||
case HANDCRAFTED_TENSORS_CUSTOM_ALIGN: return "TENSORS_CUSTOM_ALIGN";
|
||||
case HANDCRAFTED_TENSORS_BAD_NAME_SIZE: return "TENSORS_BAD_NAME_SIZE";
|
||||
case HANDCRAFTED_TENSORS_BAD_N_DIMS: return "TENSORS_BAD_N_DIMS";
|
||||
case HANDCRAFTED_TENSORS_BAD_SHAPE: return "TENSORS_BAD_SHAPE";
|
||||
case HANDCRAFTED_TENSORS_NE_TOO_BIG: return "TENSORS_NE_TOO_BIG";
|
||||
case HANDCRAFTED_TENSORS_BAD_TYPE: return "TENSORS_BAD_TYPE";
|
||||
case HANDCRAFTED_TENSORS_BAD_OFFSET: return "TENSORS_BAD_OFFSET";
|
||||
case HANDCRAFTED_TENSORS_DUPLICATE_NAME: return "TENSORS_DUPLICATE_NAME";
|
||||
case HANDCRAFTED_TENSORS_BAD_ALIGN: return "TENSORS_BAD_ALIGN";
|
||||
case HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN: return "TENSORS_INCONSISTENT_ALIGN";
|
||||
case HANDCRAFTED_TENSORS_SUCCESS: return "TENSORS_SUCCESS";
|
||||
case HANDCRAFTED_TENSORS_CUSTOM_ALIGN: return "TENSORS_CUSTOM_ALIGN";
|
||||
|
||||
case HANDCRAFTED_DATA_NOT_ENOUGH_DATA: return "DATA_NOT_ENOUGH_DATA";
|
||||
case HANDCRAFTED_DATA_BAD_ALIGNMENT: return "DATA_BAD_ALIGNMENT";
|
||||
case HANDCRAFTED_DATA_SUCCESS: return "DATA_SUCCESS";
|
||||
case HANDCRAFTED_DATA_CUSTOM_ALIGN: return "DATA_CUSTOM_ALIGN";
|
||||
case HANDCRAFTED_DATA_NOT_ENOUGH_DATA: return "DATA_NOT_ENOUGH_DATA";
|
||||
case HANDCRAFTED_DATA_BAD_ALIGN: return "DATA_BAD_ALIGN";
|
||||
case HANDCRAFTED_DATA_INCONSISTENT_ALIGN: return "DATA_INCONSISTENT_ALIGN";
|
||||
case HANDCRAFTED_DATA_SUCCESS: return "DATA_SUCCESS";
|
||||
case HANDCRAFTED_DATA_CUSTOM_ALIGN: return "DATA_CUSTOM_ALIGN";
|
||||
}
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
@ -140,31 +145,41 @@ std::vector<std::pair<enum gguf_type, enum gguf_type>> get_kv_types(std::mt19937
|
||||
return kv_types;
|
||||
}
|
||||
|
||||
static void helper_write(const void * data, const size_t nbytes, FILE * file) {
|
||||
template <typename T>
|
||||
static void helper_write(FILE * file, const T & val) {
|
||||
GGML_ASSERT(fwrite(&val, 1, sizeof(val), file) == sizeof(val));
|
||||
}
|
||||
|
||||
static void helper_write(FILE * file, const void * data, const size_t nbytes) {
|
||||
GGML_ASSERT(fwrite(data, 1, nbytes, file) == nbytes);
|
||||
}
|
||||
|
||||
static FILE * get_handcrafted_file(const unsigned int seed, const enum handcrafted_file_type hft, const int extra_bytes = 0) {
|
||||
FILE * file = tmpfile();
|
||||
|
||||
if (!file) {
|
||||
return file;
|
||||
}
|
||||
|
||||
std::mt19937 rng(seed);
|
||||
uint32_t alignment = GGUF_DEFAULT_ALIGNMENT;
|
||||
|
||||
if (hft == HANDCRAFTED_HEADER_BAD_MAGIC) {
|
||||
const char bad_magic[4] = {'F', 'U', 'G', 'G'};
|
||||
helper_write(bad_magic, sizeof(bad_magic), file);
|
||||
helper_write(file, bad_magic, sizeof(bad_magic));
|
||||
} else {
|
||||
helper_write(GGUF_MAGIC, 4, file);
|
||||
helper_write(file, GGUF_MAGIC, 4);
|
||||
}
|
||||
|
||||
if (hft == HANDCRAFTED_HEADER_BAD_VERSION_1) {
|
||||
const uint32_t version = 1;
|
||||
helper_write(&version, sizeof(version), file);
|
||||
helper_write(file, version);
|
||||
} else if (hft == HANDCRAFTED_HEADER_BAD_VERSION_FUTURE) {
|
||||
const uint32_t version = GGUF_VERSION + 1;
|
||||
helper_write(&version, sizeof(version), file);
|
||||
helper_write(file, version);
|
||||
} else {
|
||||
const uint32_t version = GGUF_VERSION;
|
||||
helper_write(&version, sizeof(version), file);
|
||||
helper_write(file, version);
|
||||
}
|
||||
|
||||
std::vector<tensor_config_t> tensor_configs;
|
||||
@ -174,10 +189,10 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
|
||||
|
||||
if (hft == HANDCRAFTED_HEADER_BAD_N_TENSORS) {
|
||||
const uint64_t n_tensors = -1;
|
||||
helper_write(&n_tensors, sizeof(n_tensors), file);
|
||||
helper_write(file, n_tensors);
|
||||
} else {
|
||||
const uint64_t n_tensors = tensor_configs.size();
|
||||
helper_write(&n_tensors, sizeof(n_tensors), file);
|
||||
helper_write(file, n_tensors);
|
||||
}
|
||||
|
||||
std::vector<std::pair<enum gguf_type, enum gguf_type>> kv_types;
|
||||
@ -186,41 +201,49 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
|
||||
}
|
||||
{
|
||||
uint64_t n_kv = kv_types.size();
|
||||
if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
|
||||
if (hft == HANDCRAFTED_KV_BAD_ALIGN ||
|
||||
hft == HANDCRAFTED_TENSORS_BAD_ALIGN || hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN ||
|
||||
hft == HANDCRAFTED_DATA_BAD_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
|
||||
|
||||
n_kv += 1;
|
||||
} else if (hft == HANDCRAFTED_HEADER_BAD_N_KV) {
|
||||
n_kv = -1;
|
||||
}
|
||||
helper_write(&n_kv, sizeof(n_kv), file);
|
||||
helper_write(file, n_kv);
|
||||
}
|
||||
|
||||
if (hft < offset_has_kv) {
|
||||
while (ftell(file) % alignment != 0) {
|
||||
const char pad = 0;
|
||||
helper_write(file, pad);
|
||||
}
|
||||
|
||||
for (int i = 0; i < extra_bytes; ++i) {
|
||||
const char tmp = 0;
|
||||
helper_write(&tmp, sizeof(tmp), file);
|
||||
helper_write(file, tmp);
|
||||
}
|
||||
rewind(file);
|
||||
return file;
|
||||
}
|
||||
|
||||
for (int i = 0; i < int(kv_types.size()); ++i) {
|
||||
const enum gguf_type type = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? -1 : kv_types[i].first);
|
||||
const enum gguf_type type_arr = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? -1 : kv_types[i].second);
|
||||
const enum gguf_type type = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? GGUF_TYPE_COUNT : kv_types[i].first);
|
||||
const enum gguf_type type_arr = gguf_type(hft == HANDCRAFTED_KV_BAD_TYPE ? GGUF_TYPE_COUNT : kv_types[i].second);
|
||||
|
||||
const std::string key = "my_key_" + std::to_string((hft == HANDCRAFTED_KV_DUPLICATE_KEY ? i/2 : i));
|
||||
|
||||
if (hft == HANDCRAFTED_KV_BAD_KEY_SIZE) {
|
||||
const uint64_t n = -1;
|
||||
helper_write(&n, sizeof(n), file);
|
||||
helper_write(file, n);
|
||||
} else {
|
||||
const uint64_t n = key.length();
|
||||
helper_write(&n, sizeof(n), file);
|
||||
helper_write(file, n);
|
||||
}
|
||||
helper_write(key.data(), key.length(), file);
|
||||
helper_write(file, key.data(), key.length());
|
||||
|
||||
{
|
||||
const int32_t type32 = int32_t(type);
|
||||
helper_write(&type32, sizeof(type32), file);
|
||||
helper_write(file, type32);
|
||||
}
|
||||
|
||||
uint32_t data[16];
|
||||
@ -233,69 +256,67 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
|
||||
|
||||
if (type == GGUF_TYPE_STRING) {
|
||||
const uint64_t n = rng() % sizeof(data);
|
||||
helper_write(&n, sizeof(n), file);
|
||||
helper_write(data, n, file);
|
||||
helper_write(file, n);
|
||||
helper_write(file, data, n);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (type == GGUF_TYPE_ARRAY) {
|
||||
{
|
||||
const int32_t type32 = int32_t(type_arr);
|
||||
helper_write(&type32, sizeof(type32), file);
|
||||
helper_write(file, type32);
|
||||
}
|
||||
if (type_arr == GGUF_TYPE_STRING) {
|
||||
const uint64_t nstr = rng() % (16 + 1);
|
||||
helper_write(&nstr, sizeof(nstr), file);
|
||||
helper_write(file, nstr);
|
||||
for (uint64_t istr = 0; istr < nstr; ++istr) {
|
||||
const uint64_t n = rng() % (sizeof(uint32_t) + 1);
|
||||
helper_write(&n, sizeof(n), file);
|
||||
helper_write(&data[istr], n, file);
|
||||
helper_write(file, n);
|
||||
helper_write(file, &data[istr], n);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
const size_t type_size = gguf_type_size(type_arr);
|
||||
const uint64_t n = (rng() % sizeof(data)) / type_size;
|
||||
helper_write(&n, sizeof(n), file);
|
||||
helper_write(&data, n*type_size, file);
|
||||
helper_write(file, n);
|
||||
helper_write(file, &data, n*type_size);
|
||||
continue;
|
||||
}
|
||||
|
||||
size_t type_size = hft == HANDCRAFTED_KV_BAD_TYPE ? 1 : gguf_type_size(type);
|
||||
if (hft == HANDCRAFTED_KV_BAD_VALUE_SIZE) {
|
||||
type_size += rng() % 3;
|
||||
}
|
||||
helper_write(data, type_size, file);
|
||||
helper_write(file, data, hft == HANDCRAFTED_KV_BAD_TYPE ? 1 : gguf_type_size(type));
|
||||
}
|
||||
|
||||
if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
|
||||
const std::string key = "general.alignment";
|
||||
{
|
||||
const uint64_t n = key.length();
|
||||
helper_write(&n, sizeof(n), file);
|
||||
}
|
||||
helper_write(key.data(), key.length(), file);
|
||||
if (hft == HANDCRAFTED_KV_BAD_ALIGN ||
|
||||
hft == HANDCRAFTED_TENSORS_BAD_ALIGN || hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN ||
|
||||
hft == HANDCRAFTED_DATA_BAD_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
|
||||
|
||||
const uint64_t n = strlen(GGUF_KEY_GENERAL_ALIGNMENT);
|
||||
helper_write(file, n);
|
||||
helper_write(file, GGUF_KEY_GENERAL_ALIGNMENT, n);
|
||||
|
||||
const int32_t type = gguf_type(GGUF_TYPE_UINT32);
|
||||
helper_write(&type, sizeof(type), file);
|
||||
helper_write(file, type);
|
||||
|
||||
const uint32_t alignment = GGUF_DEFAULT_ALIGNMENT + 1;
|
||||
helper_write(&alignment, sizeof(alignment), file);
|
||||
alignment = expect_context_not_null(hft) ? 1 : 13;
|
||||
helper_write(file, alignment);
|
||||
}
|
||||
|
||||
if (hft < offset_has_tensors) {
|
||||
while (ftell(file) % alignment != 0) {
|
||||
const char pad = 0;
|
||||
helper_write(file, pad);
|
||||
}
|
||||
|
||||
for (int i = 0; i < extra_bytes; ++i) {
|
||||
const char tmp = 0;
|
||||
helper_write(&tmp, sizeof(tmp), file);
|
||||
helper_write(file, tmp);
|
||||
}
|
||||
rewind(file);
|
||||
return file;
|
||||
}
|
||||
|
||||
uint32_t alignment = GGUF_DEFAULT_ALIGNMENT;
|
||||
if (hft == HANDCRAFTED_TENSORS_BAD_ALIGNMENT || hft == HANDCRAFTED_DATA_BAD_ALIGNMENT) {
|
||||
alignment -= 1;
|
||||
} else if (hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN) {
|
||||
alignment += 1;
|
||||
if (hft == HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN || hft == HANDCRAFTED_DATA_INCONSISTENT_ALIGN) {
|
||||
alignment = 1;
|
||||
}
|
||||
|
||||
uint64_t offset = 0;
|
||||
@ -313,9 +334,9 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
|
||||
}
|
||||
{
|
||||
const uint64_t n = name.length();
|
||||
helper_write(&n, sizeof(n), file);
|
||||
helper_write(file, n);
|
||||
}
|
||||
helper_write(name.data(), name.length(), file);
|
||||
helper_write(file, name.data(), name.length());
|
||||
|
||||
uint32_t n_dims = hft == HANDCRAFTED_TENSORS_NE_TOO_BIG ? 2 : 1;
|
||||
for (int i = GGML_MAX_DIMS-1; i >= 1; --i) {
|
||||
@ -326,35 +347,35 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
|
||||
}
|
||||
if (hft == HANDCRAFTED_TENSORS_BAD_N_DIMS) {
|
||||
const uint32_t n_dims_bad = GGML_MAX_DIMS + 1;
|
||||
helper_write(&n_dims_bad, sizeof(n_dims_bad), file);
|
||||
helper_write(file, n_dims_bad);
|
||||
} else {
|
||||
helper_write(&n_dims, sizeof(n_dims), file);
|
||||
helper_write(file, n_dims);
|
||||
}
|
||||
|
||||
if (hft == HANDCRAFTED_TENSORS_BAD_SHAPE) {
|
||||
for (uint32_t j = 0; j < n_dims; ++j) {
|
||||
const int64_t bad_dim = -1;
|
||||
helper_write(&bad_dim, sizeof(bad_dim), file);
|
||||
helper_write(file, bad_dim);
|
||||
}
|
||||
} else if (hft == HANDCRAFTED_TENSORS_NE_TOO_BIG){
|
||||
for (uint32_t j = 0; j < n_dims; ++j) {
|
||||
const int64_t big_dim = 4*int64_t(INT32_MAX);
|
||||
helper_write(&big_dim, sizeof(big_dim), file);
|
||||
helper_write(file, big_dim);
|
||||
}
|
||||
} else {
|
||||
helper_write(shape.data(), n_dims*sizeof(int64_t), file);
|
||||
helper_write(file, shape.data(), n_dims*sizeof(int64_t));
|
||||
}
|
||||
|
||||
{
|
||||
const int32_t type32 = hft == HANDCRAFTED_TENSORS_BAD_TYPE ? -1 : int32_t(type);
|
||||
helper_write(&type32, sizeof(type32), file);
|
||||
const int32_t type32 = hft == HANDCRAFTED_TENSORS_BAD_TYPE ? GGML_TYPE_COUNT : int32_t(type);
|
||||
helper_write(file, type32);
|
||||
}
|
||||
|
||||
if (hft == HANDCRAFTED_TENSORS_BAD_OFFSET) {
|
||||
const uint64_t bad_offset = -1;
|
||||
helper_write(&bad_offset, sizeof(bad_offset), file);
|
||||
helper_write(file, bad_offset);
|
||||
} else {
|
||||
helper_write(&offset, sizeof(offset), file);
|
||||
helper_write(file, offset);
|
||||
}
|
||||
|
||||
int64_t ne = shape[0];
|
||||
@ -364,12 +385,9 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
|
||||
offset += GGML_PAD(ggml_row_size(type, ne), alignment);
|
||||
}
|
||||
|
||||
const uint32_t alignment_overshoot = ftell(file) % alignment;
|
||||
if (alignment_overshoot != 0) {
|
||||
for (size_t i = alignment_overshoot; i < alignment; ++i) {
|
||||
const char pad = 0;
|
||||
helper_write(&pad, sizeof(pad), file);
|
||||
}
|
||||
while (ftell(file) % alignment != 0) {
|
||||
const char pad = 0;
|
||||
helper_write(file, pad);
|
||||
}
|
||||
|
||||
if (hft >= offset_has_data) {
|
||||
@ -380,13 +398,13 @@ static FILE * get_handcrafted_file(const unsigned int seed, const enum handcraft
|
||||
}
|
||||
for (uint64_t i = 0; i < nbytes; ++i) {
|
||||
const uint8_t random_byte = i % 256;
|
||||
helper_write(&random_byte, sizeof(random_byte), file);
|
||||
helper_write(file, random_byte);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < extra_bytes; ++i) {
|
||||
const char tmp = 0;
|
||||
helper_write(&tmp, sizeof(tmp), file);
|
||||
helper_write(file, tmp);
|
||||
}
|
||||
rewind(file);
|
||||
return file;
|
||||
@ -505,6 +523,16 @@ static bool handcrafted_check_kv(const gguf_context * gguf_ctx, const unsigned i
|
||||
}
|
||||
|
||||
const char * data_gguf = reinterpret_cast<const char *>(gguf_get_arr_data(gguf_ctx, id));
|
||||
|
||||
if (type_arr == GGUF_TYPE_BOOL) {
|
||||
for (size_t arr_i = 0; arr_i < arr_n; ++arr_i) {
|
||||
if (bool(data8[arr_i]) != bool(data_gguf[arr_i])) {
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!std::equal(data8, data8 + arr_n*type_size, data_gguf)) {
|
||||
ok = false;
|
||||
}
|
||||
@ -512,12 +540,20 @@ static bool handcrafted_check_kv(const gguf_context * gguf_ctx, const unsigned i
|
||||
}
|
||||
|
||||
const char * data_gguf = reinterpret_cast<const char *>(gguf_get_val_data(gguf_ctx, id));
|
||||
|
||||
if (type == GGUF_TYPE_BOOL) {
|
||||
if (bool(*data8) != bool(*data_gguf)) {
|
||||
ok = false;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!std::equal(data8, data8 + gguf_type_size(type), data_gguf)) {
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
|
||||
const uint32_t expected_alignment = alignment_defined ? GGUF_DEFAULT_ALIGNMENT + 1 : GGUF_DEFAULT_ALIGNMENT;
|
||||
const uint32_t expected_alignment = alignment_defined ? 1 : GGUF_DEFAULT_ALIGNMENT;
|
||||
if (gguf_get_alignment(gguf_ctx) != expected_alignment) {
|
||||
ok = false;
|
||||
}
|
||||
@ -539,7 +575,7 @@ static bool handcrafted_check_tensors(const gguf_context * gguf_ctx, const unsig
|
||||
|
||||
bool ok = true;
|
||||
|
||||
const int id_alignment = gguf_find_key(gguf_ctx, "general.alignment");
|
||||
const int id_alignment = gguf_find_key(gguf_ctx, GGUF_KEY_GENERAL_ALIGNMENT);
|
||||
const uint32_t alignment = id_alignment >= 0 ? gguf_get_val_u32(gguf_ctx, id_alignment) : GGUF_DEFAULT_ALIGNMENT;
|
||||
|
||||
uint64_t expected_offset = 0;
|
||||
@ -607,7 +643,7 @@ static bool handcrafted_check_tensor_data(const gguf_context * gguf_ctx, const u
|
||||
|
||||
std::vector<uint8_t> data(size);
|
||||
GGML_ASSERT(fseek(file, gguf_get_data_offset(gguf_ctx) + offset, SEEK_SET) == 0);
|
||||
GGML_ASSERT(fread(data.data(), 1, size, file) == size);
|
||||
GGML_ASSERT(fread(data.data(), 1, data.size(), file) == data.size());
|
||||
|
||||
for (size_t j = 0; j < size; ++j) {
|
||||
const uint8_t expected_byte = (j + offset) % 256;
|
||||
@ -627,15 +663,15 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
|
||||
const std::vector<handcrafted_file_type> hfts = {
|
||||
HANDCRAFTED_HEADER_BAD_MAGIC,
|
||||
HANDCRAFTED_HEADER_BAD_VERSION_1,
|
||||
// HANDCRAFTED_FILE_TYPE_BAD_VERSION_FUTURE, // FIXME
|
||||
HANDCRAFTED_HEADER_BAD_VERSION_FUTURE,
|
||||
HANDCRAFTED_HEADER_BAD_N_KV,
|
||||
HANDCRAFTED_HEADER_BAD_N_TENSORS,
|
||||
HANDCRAFTED_HEADER_EMPTY,
|
||||
|
||||
HANDCRAFTED_KV_BAD_KEY_SIZE,
|
||||
HANDCRAFTED_KV_BAD_TYPE,
|
||||
// HANDCRAFTED_KV_BAD_VALUE_SIZE, // FIXME sanitizer limit
|
||||
// HANDCRAFTED_FILE_TYPE_DUPLICATE_KEY, // FIXME
|
||||
HANDCRAFTED_KV_DUPLICATE_KEY,
|
||||
HANDCRAFTED_KV_BAD_ALIGN,
|
||||
HANDCRAFTED_KV_SUCCESS,
|
||||
|
||||
HANDCRAFTED_TENSORS_BAD_NAME_SIZE,
|
||||
@ -643,14 +679,16 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
|
||||
HANDCRAFTED_TENSORS_BAD_SHAPE,
|
||||
HANDCRAFTED_TENSORS_NE_TOO_BIG,
|
||||
HANDCRAFTED_TENSORS_BAD_TYPE,
|
||||
// HANDCRAFTED_TENSORS_BAD_OFFSET, // FIXME
|
||||
HANDCRAFTED_TENSORS_BAD_OFFSET,
|
||||
HANDCRAFTED_TENSORS_DUPLICATE_NAME,
|
||||
// HANDCRAFTED_TENSORS_BAD_ALIGNMENT, // FIXME
|
||||
HANDCRAFTED_TENSORS_BAD_ALIGN,
|
||||
HANDCRAFTED_TENSORS_INCONSISTENT_ALIGN,
|
||||
HANDCRAFTED_TENSORS_SUCCESS,
|
||||
HANDCRAFTED_TENSORS_CUSTOM_ALIGN,
|
||||
|
||||
HANDCRAFTED_DATA_NOT_ENOUGH_DATA,
|
||||
// HANDCRAFTED_DATA_BAD_ALIGNMENT, // FIXME
|
||||
HANDCRAFTED_DATA_BAD_ALIGN,
|
||||
HANDCRAFTED_DATA_INCONSISTENT_ALIGN,
|
||||
HANDCRAFTED_DATA_SUCCESS,
|
||||
HANDCRAFTED_DATA_CUSTOM_ALIGN,
|
||||
};
|
||||
@ -674,6 +712,7 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
|
||||
/*no_alloc =*/ false,
|
||||
/*ctx =*/ hft >= offset_has_data ? &ctx : nullptr,
|
||||
};
|
||||
|
||||
struct gguf_context * gguf_ctx = gguf_init_from_file_impl(file, gguf_params);
|
||||
|
||||
if (expect_context_not_null(hft)) {
|
||||
@ -689,7 +728,7 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
|
||||
}
|
||||
ntest++;
|
||||
|
||||
if (false && hft >= offset_has_data && !expect_context_not_null(hft)) { // FIXME
|
||||
if (hft >= offset_has_data && !expect_context_not_null(hft)) {
|
||||
printf("%s: - no_dangling_ggml_context_pointer: ", __func__);
|
||||
if (ctx) {
|
||||
printf("\033[1;31mFAIL\033[0m\n");
|
||||
@ -700,23 +739,6 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
|
||||
ntest++;
|
||||
}
|
||||
|
||||
if (false && expect_context_not_null(hft)) { // FIXME
|
||||
FILE * file_eb = get_handcrafted_file(seed, hft, /*extra_bytes =*/ 1);
|
||||
struct gguf_context * gguf_ctx_eb = gguf_init_from_file_impl(file_eb, gguf_params);
|
||||
|
||||
printf("%s: - context_null_with_extra_bytes: ", __func__);
|
||||
if (gguf_ctx_eb) {
|
||||
printf("\033[1;31mFAIL\033[0m\n");
|
||||
} else {
|
||||
printf("\033[1;32mOK\033[0m\n");
|
||||
npass++;
|
||||
}
|
||||
ntest++;
|
||||
|
||||
gguf_free(gguf_ctx_eb);
|
||||
fclose(file_eb);
|
||||
}
|
||||
|
||||
const bool alignment_defined = hft == HANDCRAFTED_TENSORS_CUSTOM_ALIGN || hft == HANDCRAFTED_DATA_CUSTOM_ALIGN;
|
||||
|
||||
if (expect_context_not_null(hft)) {
|
||||
@ -763,14 +785,15 @@ static std::pair<int, int> test_handcrafted_file(const unsigned int seed) {
|
||||
ntest++;
|
||||
}
|
||||
|
||||
fclose(file);
|
||||
if (gguf_ctx) {
|
||||
ggml_free(ctx);
|
||||
gguf_free(gguf_ctx);
|
||||
}
|
||||
fclose(file);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
||||
return std::make_pair(npass, ntest);
|
||||
}
|
||||
|
||||
@ -789,10 +812,6 @@ static struct random_gguf_context_result get_random_gguf_context(ggml_backend_t
|
||||
const std::string key = "my_key_" + std::to_string(rng() % 1024);
|
||||
const enum gguf_type type = gguf_type(rng() % GGUF_TYPE_COUNT);
|
||||
|
||||
if (type == GGUF_TYPE_STRING || type == GGUF_TYPE_ARRAY) {
|
||||
continue; // FIXME memory leak
|
||||
}
|
||||
|
||||
switch (type) {
|
||||
case GGUF_TYPE_UINT8: gguf_set_val_u8 (gguf_ctx, key.c_str(), rng() % (1 << 7)); break;
|
||||
case GGUF_TYPE_INT8: gguf_set_val_i8 (gguf_ctx, key.c_str(), rng() % (1 << 7) - (1 << 6)); break;
|
||||
@ -826,6 +845,9 @@ static struct random_gguf_context_result get_random_gguf_context(ggml_backend_t
|
||||
std::vector<uint32_t> random_data((nbytes + sizeof(uint32_t) - 1) / sizeof(uint32_t));
|
||||
for (size_t j = 0; j < random_data.size(); ++j) {
|
||||
random_data[j] = rng();
|
||||
if (type_arr == GGUF_TYPE_BOOL) {
|
||||
random_data[j] &= 0x01010101; // the sanitizer complains if booleans are not 0 or 1
|
||||
}
|
||||
}
|
||||
gguf_set_arr_data(gguf_ctx, key.c_str(), type_arr, random_data.data(), ne);
|
||||
} break;
|
||||
@ -928,6 +950,17 @@ static bool all_kv_in_other(const gguf_context * ctx, const gguf_context * other
|
||||
continue;
|
||||
}
|
||||
|
||||
if (type_arr == GGUF_TYPE_BOOL) {
|
||||
const int8_t * data = reinterpret_cast<const int8_t *>(gguf_get_arr_data(ctx, id));
|
||||
const int8_t * data_other = reinterpret_cast<const int8_t *>(gguf_get_arr_data(other, idx_other));
|
||||
for (int arr_i = 0; arr_i < arr_n; ++arr_i) {
|
||||
if (bool(data[arr_i]) != bool(data_other[arr_i])) {
|
||||
ok = false;
|
||||
}
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if (type_arr == GGUF_TYPE_STRING) {
|
||||
for (int arr_i = 0; arr_i < arr_n; ++arr_i) {
|
||||
const std::string str = gguf_get_arr_str(ctx, id, arr_i);
|
||||
@ -939,8 +972,8 @@ static bool all_kv_in_other(const gguf_context * ctx, const gguf_context * other
|
||||
continue;
|
||||
}
|
||||
|
||||
const char * data = reinterpret_cast<const char *>(gguf_get_arr_data(ctx, id));
|
||||
const char * data_other = reinterpret_cast<const char *>(gguf_get_arr_data(other, idx_other));
|
||||
const int8_t * data = reinterpret_cast<const int8_t *>(gguf_get_arr_data(ctx, id));
|
||||
const int8_t * data_other = reinterpret_cast<const int8_t *>(gguf_get_arr_data(other, idx_other));
|
||||
if (!std::equal(data, data + arr_n*gguf_type_size(type_arr), data_other)) {
|
||||
ok = false;
|
||||
}
|
||||
@ -1028,21 +1061,6 @@ static bool same_tensor_data(const struct ggml_context * orig, const struct ggml
|
||||
}
|
||||
|
||||
static std::pair<int, int> test_roundtrip(ggml_backend_dev_t dev, const unsigned int seed, const bool only_meta) {
|
||||
FILE * file = tmpfile();
|
||||
#ifdef _WIN32
|
||||
if (!file) {
|
||||
printf("%s: failed to create tmpfile(), needs elevated privileges on Windows");
|
||||
printf("%s: skipping tests");
|
||||
return std::make_pair(0, 0);
|
||||
}
|
||||
#else
|
||||
GGML_ASSERT(file);
|
||||
#endif // _WIN32
|
||||
|
||||
if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
|
||||
return std::make_pair(0, 0); // FIXME
|
||||
}
|
||||
|
||||
ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
|
||||
printf("%s: device=%s, backend=%s, only_meta=%s\n",
|
||||
__func__, ggml_backend_dev_description(dev), ggml_backend_name(backend), only_meta ? "yes" : "no");
|
||||
@ -1060,10 +1078,24 @@ static std::pair<int, int> test_roundtrip(ggml_backend_dev_t dev, const unsigned
|
||||
bbuf = result.buffer;
|
||||
}
|
||||
|
||||
struct gguf_buf gbuf = gguf_buf_init(16 * 1024);
|
||||
gguf_write_to_buf(gguf_ctx_0, &gbuf, only_meta);
|
||||
helper_write(gbuf.data, gbuf.offset, file);
|
||||
rewind(file);
|
||||
FILE * file = tmpfile();
|
||||
|
||||
#ifdef _WIN32
|
||||
if (!file) {
|
||||
printf("%s: failed to create tmpfile(), needs elevated privileges on Windows");
|
||||
printf("%s: skipping tests");
|
||||
return std::make_pair(0, 0);
|
||||
}
|
||||
#else
|
||||
GGML_ASSERT(file);
|
||||
#endif // _WIN32
|
||||
|
||||
{
|
||||
std::vector<int8_t> buf;
|
||||
gguf_write_to_buf(gguf_ctx_0, buf, only_meta);
|
||||
GGML_ASSERT(fwrite(buf.data(), 1, buf.size(), file) == buf.size());
|
||||
rewind(file);
|
||||
}
|
||||
|
||||
struct ggml_context * ctx_1 = nullptr;
|
||||
struct gguf_init_params gguf_params = {
|
||||
@ -1151,9 +1183,8 @@ static std::pair<int, int> test_roundtrip(ggml_backend_dev_t dev, const unsigned
|
||||
ggml_free(ctx_1);
|
||||
gguf_free(gguf_ctx_0);
|
||||
gguf_free(gguf_ctx_1);
|
||||
gguf_buf_free(gbuf);
|
||||
ggml_backend_free(backend);
|
||||
GGML_ASSERT(fclose(file) == 0);
|
||||
fclose(file);
|
||||
|
||||
printf("\n");
|
||||
return std::make_pair(npass, ntest);
|
||||
|
Loading…
Reference in New Issue
Block a user