diff --git a/llama.cpp b/llama.cpp index 01a35dfb6..ad35e4a2e 100644 --- a/llama.cpp +++ b/llama.cpp @@ -15849,7 +15849,11 @@ struct llama_context * llama_new_context_with_model( ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false)); // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary - bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER; + bool pipeline_parallel = + llama_get_device_count() > 1 && + model->n_gpu_layers > (int)model->hparams.n_layer && + model->split_mode == LLAMA_SPLIT_MODE_LAYER && + params.offload_kqv; #ifndef GGML_USE_CUDA // pipeline parallelism requires support for async compute and events // currently this is only implemented in the CUDA backend