diff --git a/llama.cpp b/llama.cpp index b0d23abbe..35945d357 100644 --- a/llama.cpp +++ b/llama.cpp @@ -3432,6 +3432,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s const std::string name = ggml_get_name(meta); + // TODO: avoid hardcoded tensor names - use the TN_* constants if (name.find("attn_v.weight") != std::string::npos) { ++n_attention_wv; } @@ -3510,6 +3511,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s } else { new_type = quantized_type; #ifdef GGML_USE_K_QUANTS + // TODO: avoid hardcoded tensor names - use the TN_* constants if (name == TN_OUTPUT) { int nx = tensor->ne[0]; int ny = tensor->ne[1]; @@ -3524,7 +3526,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) && (i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K; ++i_attention_wv; - } else if (name.find("feed_forward.w2.weight") != std::string::npos) { + } else if (name.find("ffn_down.weight") != std::string::npos) { if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&