added tests and fixed nsigma impl

This commit is contained in:
VJHack 2025-01-13 17:48:35 -06:00
parent 8fb681bf9a
commit 54ef105c85
2 changed files with 28 additions and 13 deletions

View File

@ -1655,36 +1655,32 @@ struct llama_sampler_top_n_sigma {
static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler * /*smpl*/) { static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler * /*smpl*/) {
return "top-n-sigma"; return "top-n-sigma";
} }
#include <iostream>
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) {
const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx; const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx;
// 1. Find max logit: M
// 2. Find standard deviation of logits: sig
// 3. Create a mask where m[i] = 1 if ith logit >= M - n (sig), else m[i] = 0
// 4. Apply mask: ith logit itself if m[i]==1, else ith logit = -inf
// 5. p = softmax(l)
// find max logit and calculate mean // find max logit and calculate mean
int32_t max = cur_p->data[0].logit; float max = cur_p->data[0].logit;
int32_t logits_sum = 0; float logits_sum = 0;
for (size_t i = 0; i < cur_p->size; ++i) { for (size_t i = 0; i < cur_p->size; ++i) {
if(cur_p->data[i].logit > max){ if(cur_p->data[i].logit > max){
max = cur_p->data[i].logit; max = cur_p->data[i].logit;
} }
logits_sum += cur_p->data[i].logit; logits_sum += cur_p->data[i].logit;
} }
int32_t mean = logits_sum/cur_p->size; float mean = (float)logits_sum/cur_p->size;
// calculate standard deviation // calculate standard deviation
int32_t acc = 0; float acc = 0;
for(size_t i = 0; i < cur_p->size; ++i){ for(size_t i = 0; i < cur_p->size; ++i){
acc += (cur_p->data[i].logit - mean) * (cur_p->data[i].logit - mean); acc += pow(cur_p->data[i].logit - mean, 2);
} }
int32_t std = sqrt(acc/cur_p->size); float std = sqrt((float)acc/cur_p->size);
//apply mask //apply mask
for(size_t i = 0; i < cur_p->size; ++i){ for(size_t i = 0; i < cur_p->size; ++i){
if(cur_p->data[i].logit < max - (ctx->n * std)) { if(cur_p->data[i].logit < max - ((float)ctx->n * std)) {
cur_p->data[i].logit = -INFINITY; cur_p->data[i].logit = -INFINITY;
} }
} }

View File

@ -182,6 +182,17 @@ static void test_dry(
tester.check(); tester.check();
} }
static void test_top_n_sigma(const std::vector<float> & probs, const std::vector<float> & probs_expected, int n) {
sampler_tester tester(probs, probs_expected);
DUMP(&tester.cur_p);
tester.apply(llama_sampler_init_top_n_sigma(n));
tester.apply(llama_sampler_init_dist (0));
DUMP(&tester.cur_p);
tester.check();
}
static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p static void test_sampler_queue(const size_t n_vocab, const std::string & samplers_sequence, const int top_k, const float top_p, const float min_p
) { ) {
sampler_tester tester(n_vocab); sampler_tester tester(n_vocab);
@ -349,6 +360,14 @@ int main(void) {
test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 1}, {0.241818f, 0.241818f, 0.241818f, 0.241818f, 0.032727f}, 2.0f, 1.1f, 2, 5, {}); test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 1}, {0.241818f, 0.241818f, 0.241818f, 0.241818f, 0.032727f}, 2.0f, 1.1f, 2, 5, {});
test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 3, 4, 0, 1}, {0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, 1.0f, 1.1f, 4, 7, {}); test_dry({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 3, 4, 0, 1}, {0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, 1.0f, 1.1f, 4, 7, {});
test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.571429f, 0.428571f, 0.0f, 0.0f}, 1);
test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {1.0f, 0.0f, 0.0f, 0.0f}, 0);
test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 3);
// test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.44444f, 0.33333f, 0.22222f}, 3);
// test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
// test_top_n_sigma({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f); test_sampler_queue(10000, "k", 10000, 1.0f, 1.0f);
test_sampler_queue(10000, "k", 1, 1.0f, 1.0f); test_sampler_queue(10000, "k", 1, 1.0f, 1.0f);
test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f); test_sampler_queue(10000, "p", 10000, 1.0f, 1.0f);