remove unnecessary copies

This commit is contained in:
slaren 2023-10-04 01:53:21 +02:00
parent e9bcf66a5c
commit 55f2f2fb43

View File

@ -2676,13 +2676,34 @@ static struct ggml_cgraph * llm_build_llama(
}
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
offload_func_kq(KQ_mask);
ggml_set_name(KQ_mask, "KQ_mask");
ggml_allocr_alloc(lctx.alloc, KQ_mask);
struct ggml_tensor * KQ_mask_gpu = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
offload_func_kq(KQ_mask_gpu);
ggml_set_name(KQ_mask_gpu, "KQ_mask_gpu");
ggml_allocr_alloc(lctx.alloc, KQ_mask_gpu);
if (!ggml_allocr_is_measure(lctx.alloc)) {
float * data = (float *) KQ_mask->data;
memset(data, 0, ggml_nbytes(KQ_mask));
float * data = (float *) KQ_mask_gpu->data;
memset(data, 0, ggml_nbytes(KQ_mask_gpu));
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
const llama_pos pos = batch.pos[j];
const llama_seq_id seq_id = batch.seq_id[j];
for (int i = 0; i < n_kv; ++i) {
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
}
}
}
}
}
struct ggml_tensor * KQ_mask_cpu = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
ggml_set_name(KQ_mask_cpu, "KQ_mask_cpu");
ggml_allocr_alloc(lctx.alloc, KQ_mask_cpu);
if (!ggml_allocr_is_measure(lctx.alloc)) {
float * data = (float *) KQ_mask_cpu->data;
memset(data, 0, ggml_nbytes(KQ_mask_cpu));
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
@ -2699,12 +2720,21 @@ static struct ggml_cgraph * llm_build_llama(
}
// KQ_pos - contains the positions
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
offload_func_kq(KQ_pos);
ggml_set_name(KQ_pos, "KQ_pos");
ggml_allocr_alloc(lctx.alloc, KQ_pos);
struct ggml_tensor * KQ_pos_gpu = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
offload_func_kq(KQ_pos_gpu);
ggml_set_name(KQ_pos_gpu, "KQ_pos_gpu");
ggml_allocr_alloc(lctx.alloc, KQ_pos_gpu);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) KQ_pos->data;
int * data = (int *) KQ_pos_gpu->data;
for (int i = 0; i < n_tokens; ++i) {
data[i] = batch.pos[i];
}
}
struct ggml_tensor * KQ_pos_cpu = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_set_name(KQ_pos_cpu, "KQ_pos_cpu");
ggml_allocr_alloc(lctx.alloc, KQ_pos_cpu);
if (!ggml_allocr_is_measure(lctx.alloc)) {
int * data = (int *) KQ_pos_cpu->data;
for (int i = 0; i < n_tokens; ++i) {
data[i] = batch.pos[i];
}
@ -2732,7 +2762,9 @@ static struct ggml_cgraph * llm_build_llama(
ggml_element_size(kv_self.k_l[il])*n_embd_gqa,
0),
K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
if (il >= i_gpu_start) {
offload_func_kq(tmp);
}
ggml_build_forward_expand(gf, tmp);
}
}
@ -2744,8 +2776,14 @@ static struct ggml_cgraph * llm_build_llama(
offload_func_v = llama_nop;
offload_func_kq = llama_nop;
struct ggml_tensor * KQ_mask = KQ_mask_cpu;
struct ggml_tensor * KQ_pos = KQ_pos_cpu;
#ifdef GGML_USE_CUBLAS
if (il >= i_gpu_start) {
KQ_mask = KQ_mask_gpu;
KQ_pos = KQ_pos_gpu;
offload_func = ggml_cuda_assign_buffers_no_alloc;
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
@ -2779,11 +2817,11 @@ static struct ggml_cgraph * llm_build_llama(
struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
offload_func_kq(Kcur);
ggml_set_name(Kcur, "Kcur");
ggml_format_name(Kcur, "Kcur%d", il);
struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
offload_func_kq(Qcur);
ggml_set_name(Qcur, "Qcur");
ggml_format_name(Qcur, "Qcur%d", il);
// store key and value to memory
{
@ -2839,7 +2877,7 @@ static struct ggml_cgraph * llm_build_llama(
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
offload_func_kq(KQ_masked);
ggml_set_name(KQ_masked, "KQ_masked");
ggml_format_name(KQ_masked, "KQ_masked%d", il);
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);