mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 09:39:08 +01:00
remove unnecessary copies
This commit is contained in:
parent
e9bcf66a5c
commit
55f2f2fb43
66
llama.cpp
66
llama.cpp
@ -2676,13 +2676,34 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
}
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
offload_func_kq(KQ_mask);
|
||||
ggml_set_name(KQ_mask, "KQ_mask");
|
||||
ggml_allocr_alloc(lctx.alloc, KQ_mask);
|
||||
struct ggml_tensor * KQ_mask_gpu = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
offload_func_kq(KQ_mask_gpu);
|
||||
ggml_set_name(KQ_mask_gpu, "KQ_mask_gpu");
|
||||
ggml_allocr_alloc(lctx.alloc, KQ_mask_gpu);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
float * data = (float *) KQ_mask->data;
|
||||
memset(data, 0, ggml_nbytes(KQ_mask));
|
||||
float * data = (float *) KQ_mask_gpu->data;
|
||||
memset(data, 0, ggml_nbytes(KQ_mask_gpu));
|
||||
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
const llama_pos pos = batch.pos[j];
|
||||
const llama_seq_id seq_id = batch.seq_id[j];
|
||||
|
||||
for (int i = 0; i < n_kv; ++i) {
|
||||
if (!kv_self.cells[i].has_seq_id(seq_id) || kv_self.cells[i].pos > pos) {
|
||||
data[h*(n_kv*n_tokens) + j*n_kv + i] = -INFINITY;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
struct ggml_tensor * KQ_mask_cpu = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_kv, n_tokens, 1);
|
||||
ggml_set_name(KQ_mask_cpu, "KQ_mask_cpu");
|
||||
ggml_allocr_alloc(lctx.alloc, KQ_mask_cpu);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
float * data = (float *) KQ_mask_cpu->data;
|
||||
memset(data, 0, ggml_nbytes(KQ_mask_cpu));
|
||||
|
||||
for (int h = 0; h < 1; ++h) {
|
||||
for (int j = 0; j < n_tokens; ++j) {
|
||||
@ -2699,12 +2720,21 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
}
|
||||
|
||||
// KQ_pos - contains the positions
|
||||
struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
offload_func_kq(KQ_pos);
|
||||
ggml_set_name(KQ_pos, "KQ_pos");
|
||||
ggml_allocr_alloc(lctx.alloc, KQ_pos);
|
||||
struct ggml_tensor * KQ_pos_gpu = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
offload_func_kq(KQ_pos_gpu);
|
||||
ggml_set_name(KQ_pos_gpu, "KQ_pos_gpu");
|
||||
ggml_allocr_alloc(lctx.alloc, KQ_pos_gpu);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
int * data = (int *) KQ_pos->data;
|
||||
int * data = (int *) KQ_pos_gpu->data;
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
data[i] = batch.pos[i];
|
||||
}
|
||||
}
|
||||
struct ggml_tensor * KQ_pos_cpu = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
|
||||
ggml_set_name(KQ_pos_cpu, "KQ_pos_cpu");
|
||||
ggml_allocr_alloc(lctx.alloc, KQ_pos_cpu);
|
||||
if (!ggml_allocr_is_measure(lctx.alloc)) {
|
||||
int * data = (int *) KQ_pos_cpu->data;
|
||||
for (int i = 0; i < n_tokens; ++i) {
|
||||
data[i] = batch.pos[i];
|
||||
}
|
||||
@ -2732,7 +2762,9 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
ggml_element_size(kv_self.k_l[il])*n_embd_gqa,
|
||||
0),
|
||||
K_shift, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||
if (il >= i_gpu_start) {
|
||||
offload_func_kq(tmp);
|
||||
}
|
||||
ggml_build_forward_expand(gf, tmp);
|
||||
}
|
||||
}
|
||||
@ -2744,8 +2776,14 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
offload_func_v = llama_nop;
|
||||
offload_func_kq = llama_nop;
|
||||
|
||||
struct ggml_tensor * KQ_mask = KQ_mask_cpu;
|
||||
struct ggml_tensor * KQ_pos = KQ_pos_cpu;
|
||||
|
||||
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
if (il >= i_gpu_start) {
|
||||
KQ_mask = KQ_mask_gpu;
|
||||
KQ_pos = KQ_pos_gpu;
|
||||
offload_func = ggml_cuda_assign_buffers_no_alloc;
|
||||
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
|
||||
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
|
||||
@ -2779,11 +2817,11 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
|
||||
struct ggml_tensor * Kcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||
offload_func_kq(Kcur);
|
||||
ggml_set_name(Kcur, "Kcur");
|
||||
ggml_format_name(Kcur, "Kcur%d", il);
|
||||
|
||||
struct ggml_tensor * Qcur = ggml_rope_custom(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), KQ_pos, n_embd_head, 0, 0, freq_base, freq_scale);
|
||||
offload_func_kq(Qcur);
|
||||
ggml_set_name(Qcur, "Qcur");
|
||||
ggml_format_name(Qcur, "Qcur%d", il);
|
||||
|
||||
// store key and value to memory
|
||||
{
|
||||
@ -2839,7 +2877,7 @@ static struct ggml_cgraph * llm_build_llama(
|
||||
// KQ_masked = mask_past(KQ_scaled)
|
||||
struct ggml_tensor * KQ_masked = ggml_add(ctx0, KQ_scaled, KQ_mask);
|
||||
offload_func_kq(KQ_masked);
|
||||
ggml_set_name(KQ_masked, "KQ_masked");
|
||||
ggml_format_name(KQ_masked, "KQ_masked%d", il);
|
||||
|
||||
// KQ = soft_max(KQ_masked)
|
||||
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
||||
|
Loading…
Reference in New Issue
Block a user