diff --git a/examples/server/README.md b/examples/server/README.md index d006a8d37..6d6465692 100644 --- a/examples/server/README.md +++ b/examples/server/README.md @@ -343,6 +343,10 @@ node index.js ### POST `/completion`: Given a `prompt`, it returns the predicted completion. +> [!IMPORTANT] +> +> This endpoint is **not** OAI-compatible + *Options:* `prompt`: Provide the prompt for this completion as a string or as an array of strings or numbers representing tokens. Internally, if `cache_prompt` is `true`, the prompt is compared to the previous completion and only the "unseen" suffix is evaluated. A `BOS` token is inserted at the start, if all of the following conditions are true: @@ -444,38 +448,68 @@ These words will not be included in the completion, so make sure to add them to `timings_per_token`: Include prompt processing and text generation speed information in each response. Default: `false` +`post_sampling_probs`: Returns the probabilities of top `n_probs` tokens after applying sampling chain. + **Response format** - Note: In streaming mode (`stream`), only `content`, `tokens` and `stop` will be returned until end of completion. Responses are sent using the [Server-sent events](https://html.spec.whatwg.org/multipage/server-sent-events.html) standard. Note: the browser's `EventSource` interface cannot be used due to its lack of `POST` request support. -- `completion_probabilities`: An array of token probabilities for each completion. The array's length is `n_predict`. Each item in the array has the following structure: - -```json -{ - "content": "", - "tokens": [ generated token ids if requested ], - "probs": [ - { - "prob": float, - "tok_str": "" - }, - { - "prob": float, - "tok_str": "" - }, +- `completion_probabilities`: An array of token probabilities for each completion. The array's length is `n_predict`. Each item in the array has a nested array `top_logprobs`. It contains at **maximum** `n_probs` elements: + ```json + { + "content": "", + "tokens": [ generated token ids if requested ], ... - ] -}, -``` - -Notice that each `probs` is an array of length `n_probs`. + "probs": [ + { + "id": , + "logprob": float, + "token": "", + "bytes": [int, int, ...], + "top_logprobs": [ + { + "id": , + "logprob": float, + "token": "", + "bytes": [int, int, ...], + }, + { + "id": , + "logprob": float, + "token": "", + "bytes": [int, int, ...], + }, + ... + ] + }, + { + "id": , + "logprob": float, + "token": "", + "bytes": [int, int, ...], + "top_logprobs": [ + ... + ] + }, + ... + ] + }, + ``` + Please note that if `post_sampling_probs` is set to `true`: + - `logprob` will be replaced with `prob`, with the value between 0.0 and 1.0 + - `top_logprobs` will be replaced with `top_probs`. Each element contains: + - `id`: token ID + - `token`: token in string + - `bytes`: token in bytes + - `prob`: token probability, with the value between 0.0 and 1.0 + - Number of elements in `top_probs` may be less than `n_probs` - `content`: Completion result as a string (excluding `stopping_word` if any). In case of streaming mode, will contain the next token as a string. - `tokens`: Same as `content` but represented as raw token ids. Only populated if `"return_tokens": true` or `"stream": true` in the request. - `stop`: Boolean for use with `stream` to check whether the generation has stopped (Note: This is not related to stopping words array `stop` from input options) - `generation_settings`: The provided options above excluding `prompt` but including `n_ctx`, `model`. These options may differ from the original ones in some way (e.g. bad values filtered out, strings converted to tokens, etc.). -- `model`: The path to the model loaded with `-m` -- `prompt`: The provided `prompt` +- `model`: The model alias (for model path, please use `/props` endpoint) +- `prompt`: The processed `prompt` (special tokens may be added) - `stop_type`: Indicating whether the completion has stopped. Possible values are: - `none`: Generating (not stopped) - `eos`: Stopped because it encountered the EOS token diff --git a/examples/server/server.cpp b/examples/server/server.cpp index 5ed4e8d27..fa3682a92 100644 --- a/examples/server/server.cpp +++ b/examples/server/server.cpp @@ -93,6 +93,7 @@ struct slot_params { std::vector antiprompt; bool timings_per_token = false; + bool post_sampling_probs = false; bool ignore_eos = false; struct common_params_sampling sampling; @@ -151,6 +152,7 @@ struct slot_params { {"speculative.n_min", speculative.n_min}, {"speculative.p_min", speculative.p_min}, {"timings_per_token", timings_per_token}, + {"post_sampling_probs", post_sampling_probs}, }; } }; @@ -231,6 +233,7 @@ struct server_task { params.sampling.seed = json_value(data, "seed", defaults.sampling.seed); params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs); params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep); + params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs); params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min); params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max); @@ -436,36 +439,67 @@ inline std::string stop_type_to_str(stop_type type) { struct completion_token_output { llama_token tok; + float prob; std::string text_to_send; - struct token_prob { + struct prob_info { llama_token tok; - std::string tok_str; + std::string txt; float prob; }; - std::vector probs; + std::vector probs; - json to_json() const { + json to_json(bool post_sampling_probs) const { json probs_for_token = json::array(); for (const auto & p : probs) { + std::string txt(p.txt); + txt.resize(validate_utf8(txt)); probs_for_token.push_back(json { - {"tok_str", p.tok_str}, - {"prob", p.prob}, + {"id", p.tok}, + {"token", txt}, + {"bytes", str_to_bytes(p.txt)}, + { + post_sampling_probs ? "prob" : "logprob", + post_sampling_probs ? p.prob : logarithm(p.prob) + }, }); } return probs_for_token; } - static json probs_vector_to_json(const std::vector & probs) { + static json probs_vector_to_json(const std::vector & probs, bool post_sampling_probs) { json out = json::array(); - for (const auto & prob : probs) { - const std::string tok_str = prob.text_to_send; + for (const auto & p : probs) { + std::string txt(p.text_to_send); + txt.resize(validate_utf8(txt)); out.push_back(json { - {"content", tok_str}, - {"probs", prob.to_json()}, + {"id", p.tok}, + {"token", txt}, + {"bytes", str_to_bytes(p.text_to_send)}, + { + post_sampling_probs ? "prob" : "logprob", + post_sampling_probs ? p.prob : logarithm(p.prob) + }, + { + post_sampling_probs ? "top_probs" : "top_logprobs", + p.to_json(post_sampling_probs) + }, }); } return out; } + + static float logarithm(float x) { + // nlohmann::json converts -inf to null, so we need to prevent that + return x == 0.0f ? std::numeric_limits::lowest() : std::log(x); + } + + static std::vector str_to_bytes(const std::string & str) { + std::vector bytes; + for (unsigned char c : str) { + bytes.push_back(c); + } + return bytes; + } }; struct server_task_result_cmpl_final : server_task_result { @@ -486,6 +520,7 @@ struct server_task_result_cmpl_final : server_task_result { std::string stopping_word; stop_type stop = STOP_TYPE_NONE; + bool post_sampling_probs; std::vector probs_output; slot_params generation_params; @@ -530,8 +565,8 @@ struct server_task_result_cmpl_final : server_task_result { {"tokens_cached", n_tokens_cached}, {"timings", timings.to_json()}, }; - if (!probs_output.empty()) { - res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output); + if (!stream && !probs_output.empty()) { + res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs); } return res; } @@ -542,19 +577,25 @@ struct server_task_result_cmpl_final : server_task_result { finish_reason = "stop"; } - json choices = json::array({json{ + json choice = json{ {"finish_reason", finish_reason}, {"index", 0}, {"message", json { {"content", content}, {"role", "assistant"} } - }}}); + }}; + + if (!stream && probs_output.size() > 0) { + choice["logprobs"] = json{ + {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)}, + }; + } std::time_t t = std::time(0); json res = json { - {"choices", choices}, + {"choices", json::array({choice})}, {"created", t}, {"model", oaicompat_model}, {"object", "chat.completion"}, @@ -584,12 +625,14 @@ struct server_task_result_cmpl_final : server_task_result { finish_reason = "stop"; } - json choices = json::array({json{{"finish_reason", finish_reason}, - {"index", 0}, - {"delta", json::object()}}}); + json choice = json{ + {"finish_reason", finish_reason}, + {"index", 0}, + {"delta", json::object()} + }; json ret = json { - {"choices", choices}, + {"choices", json::array({choice})}, {"created", t}, {"id", oaicompat_cmpl_id}, {"model", oaicompat_model}, @@ -618,7 +661,8 @@ struct server_task_result_cmpl_partial : server_task_result { int32_t n_decoded; int32_t n_prompt_tokens; - std::vector probs_output; + bool post_sampling_probs; + completion_token_output prob_output; result_timings timings; // OAI-compat fields @@ -655,8 +699,8 @@ struct server_task_result_cmpl_partial : server_task_result { if (timings.prompt_n > 0) { res.push_back({"timings", timings.to_json()}); } - if (!probs_output.empty()) { - res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output); + if (!prob_output.probs.empty()) { + res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs); } return res; } @@ -708,6 +752,14 @@ struct server_task_result_cmpl_partial : server_task_result { }}); } + GGML_ASSERT(choices.size() >= 1); + + if (prob_output.probs.size() > 0) { + choices[0]["logprobs"] = json{ + {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)}, + }; + } + json ret = json { {"choices", choices}, {"created", t}, @@ -1001,7 +1053,6 @@ struct server_slot { // stats size_t n_sent_text = 0; // number of sent text character - size_t n_sent_token_probs = 0; int64_t t_start_process_prompt; int64_t t_start_generation; @@ -1023,7 +1074,6 @@ struct server_slot { stopping_word = ""; n_past = 0; n_sent_text = 0; - n_sent_token_probs = 0; task_type = SERVER_TASK_TYPE_COMPLETION; generated_tokens.clear(); @@ -1764,7 +1814,7 @@ struct server_context { bool process_token(completion_token_output & result, server_slot & slot) { // remember which tokens were sampled - used for repetition penalties during sampling - const std::string token_str = common_token_to_piece(ctx, result.tok, params_base.special); + const std::string token_str = result.text_to_send; slot.sampled = result.tok; slot.generated_text += token_str; @@ -1774,26 +1824,7 @@ struct server_context { slot.has_next_token = true; // check if there is incomplete UTF-8 character at the end - bool incomplete = false; - for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i) { - unsigned char c = slot.generated_text[slot.generated_text.size() - i]; - if ((c & 0xC0) == 0x80) { - // continuation byte: 10xxxxxx - continue; - } - if ((c & 0xE0) == 0xC0) { - // 2-byte character: 110xxxxx ... - incomplete = i < 2; - } else if ((c & 0xF0) == 0xE0) { - // 3-byte character: 1110xxxx ... - incomplete = i < 3; - } else if ((c & 0xF8) == 0xF0) { - // 4-byte character: 11110xxx ... - incomplete = i < 4; - } - // else 1-byte character or invalid byte - break; - } + bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size(); // search stop word and delete it if (!incomplete) { @@ -1923,6 +1954,55 @@ struct server_context { return slot.has_next_token; // continue } + void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) { + size_t n_probs = slot.params.sampling.n_probs; + size_t n_vocab = llama_n_vocab(llama_get_model(ctx)); + if (post_sampling) { + const auto * cur_p = common_sampler_get_candidates(slot.smpl); + const size_t max_probs = cur_p->size; + + // set probability for sampled token + for (size_t i = 0; i < max_probs; i++) { + if (cur_p->data[i].id == result.tok) { + result.prob = cur_p->data[i].p; + break; + } + } + + // set probability for top n_probs tokens + result.probs.reserve(max_probs); + for (size_t i = 0; i < std::min(max_probs, n_probs); i++) { + result.probs.push_back({ + cur_p->data[i].id, + common_detokenize(ctx, {cur_p->data[i].id}, special), + cur_p->data[i].p + }); + } + } else { + // TODO: optimize this with min-p optimization + std::vector cur = get_token_probabilities(ctx, idx); + + // set probability for sampled token + for (size_t i = 0; i < n_vocab; i++) { + // set probability for sampled token + if (cur[i].id == result.tok) { + result.prob = cur[i].p; + break; + } + } + + // set probability for top n_probs tokens + result.probs.reserve(n_probs); + for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) { + result.probs.push_back({ + cur[i].id, + common_detokenize(ctx, {cur[i].id}, special), + cur[i].p + }); + } + } + } + void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) { send_error(task.id, error, type); } @@ -1950,8 +2030,9 @@ struct server_context { res->content = tkn.text_to_send; res->tokens = { tkn.tok }; - res->n_decoded = slot.n_decoded; - res->n_prompt_tokens = slot.n_prompt_tokens; + res->n_decoded = slot.n_decoded; + res->n_prompt_tokens = slot.n_prompt_tokens; + res->post_sampling_probs = slot.params.post_sampling_probs; res->verbose = slot.params.verbose; res->oaicompat = slot.params.oaicompat; @@ -1961,17 +2042,7 @@ struct server_context { // populate res.probs_output if (slot.params.sampling.n_probs > 0) { - const llama_tokens to_send_toks = common_tokenize(ctx, tkn.text_to_send, false); - - const size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size()); - const size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size()); - - std::vector probs_output; - if (probs_pos < probs_stop_pos) { - res->probs_output = std::vector( - slot.generated_token_probs.begin() + probs_pos, - slot.generated_token_probs.begin() + probs_stop_pos); - } + res->prob_output = tkn; // copy the token probs } // populate timings if this is final response or timings_per_token is enabled @@ -1993,13 +2064,14 @@ struct server_context { res->timings = slot.get_timings(); res->prompt = common_detokenize(ctx, slot.prompt_tokens, true); - res->truncated = slot.truncated; - res->n_decoded = slot.n_decoded; - res->n_prompt_tokens = slot.n_prompt_tokens; - res->n_tokens_cached = slot.n_past; - res->has_new_line = slot.has_new_line; - res->stopping_word = slot.stopping_word; - res->stop = slot.stop; + res->truncated = slot.truncated; + res->n_decoded = slot.n_decoded; + res->n_prompt_tokens = slot.n_prompt_tokens; + res->n_tokens_cached = slot.n_past; + res->has_new_line = slot.has_new_line; + res->stopping_word = slot.stopping_word; + res->stop = slot.stop; + res->post_sampling_probs = slot.params.post_sampling_probs; res->verbose = slot.params.verbose; res->stream = slot.params.stream; @@ -2796,7 +2868,9 @@ struct server_context { continue; // continue loop of slots } - llama_token id = common_sampler_sample(slot.smpl, ctx, slot.i_batch - i); + const int tok_idx = slot.i_batch - i; + + llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx); slot.i_batch = -1; @@ -2815,17 +2889,12 @@ struct server_context { slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3; completion_token_output result; - result.tok = id; + result.tok = id; + result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special); + result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs - const auto * cur_p = common_sampler_get_candidates(slot.smpl); - - for (size_t i = 0; i < (size_t) slot.params.sampling.n_probs; ++i) { - auto tok_id = cur_p->data[i].id; - result.probs.push_back({ - tok_id, - tokens_to_output_formatted_string(ctx, tok_id), - i >= cur_p->size ? 0.0f : cur_p->data[i].p, - }); + if (slot.params.sampling.n_probs > 0) { + populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx); } if (!process_token(result, slot)) { @@ -2909,7 +2978,11 @@ struct server_context { for (size_t i = 0; i < ids.size(); ++i) { completion_token_output result; - result.tok = ids[i]; + result.tok = ids[i]; + result.text_to_send = common_token_to_piece(ctx, result.tok, params_base.special); + result.prob = 1.0f; // set later + + // TODO: set result.probs if (!process_token(result, slot)) { // release slot because of stop condition diff --git a/examples/server/tests/unit/test_chat_completion.py b/examples/server/tests/unit/test_chat_completion.py index 6573cc17f..0fa1a17c1 100644 --- a/examples/server/tests/unit/test_chat_completion.py +++ b/examples/server/tests/unit/test_chat_completion.py @@ -92,7 +92,6 @@ def test_chat_completion_with_openai_library(): seed=42, temperature=0.8, ) - print(res) assert res.choices[0].finish_reason == "length" assert res.choices[0].message.content is not None assert match_regex("(Suddenly)+", res.choices[0].message.content) @@ -163,3 +162,64 @@ def test_chat_completion_with_timings_per_token(): assert "predicted_per_second" in data["timings"] assert "predicted_n" in data["timings"] assert data["timings"]["predicted_n"] <= 10 + + +def test_logprobs(): + global server + server.start() + client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}") + res = client.chat.completions.create( + model="gpt-3.5-turbo-instruct", + temperature=0.0, + messages=[ + {"role": "system", "content": "Book"}, + {"role": "user", "content": "What is the best book"}, + ], + max_tokens=5, + logprobs=True, + top_logprobs=10, + ) + output_text = res.choices[0].message.content + aggregated_text = '' + assert res.choices[0].logprobs is not None + assert res.choices[0].logprobs.content is not None + for token in res.choices[0].logprobs.content: + aggregated_text += token.token + assert token.logprob <= 0.0 + assert token.bytes is not None + assert len(token.top_logprobs) > 0 + assert aggregated_text == output_text + + +def test_logprobs_stream(): + global server + server.start() + client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}") + res = client.chat.completions.create( + model="gpt-3.5-turbo-instruct", + temperature=0.0, + messages=[ + {"role": "system", "content": "Book"}, + {"role": "user", "content": "What is the best book"}, + ], + max_tokens=5, + logprobs=True, + top_logprobs=10, + stream=True, + ) + output_text = '' + aggregated_text = '' + for data in res: + choice = data.choices[0] + if choice.finish_reason is None: + if choice.delta.content: + output_text += choice.delta.content + assert choice.logprobs is not None + assert choice.logprobs.content is not None + for token in choice.logprobs.content: + aggregated_text += token.token + assert token.logprob <= 0.0 + assert token.bytes is not None + assert token.top_logprobs is not None + assert len(token.top_logprobs) > 0 + assert aggregated_text == output_text diff --git a/examples/server/tests/unit/test_completion.py b/examples/server/tests/unit/test_completion.py index 36aee57dd..b88d45f18 100644 --- a/examples/server/tests/unit/test_completion.py +++ b/examples/server/tests/unit/test_completion.py @@ -270,9 +270,68 @@ def test_n_probs(): assert "completion_probabilities" in res.body assert len(res.body["completion_probabilities"]) == 5 for tok in res.body["completion_probabilities"]: - assert "probs" in tok - assert len(tok["probs"]) == 10 - for prob in tok["probs"]: - assert "prob" in prob - assert "tok_str" in prob - assert 0.0 <= prob["prob"] <= 1.0 + assert "id" in tok and tok["id"] > 0 + assert "token" in tok and type(tok["token"]) == str + assert "logprob" in tok and tok["logprob"] <= 0.0 + assert "bytes" in tok and type(tok["bytes"]) == list + assert len(tok["top_logprobs"]) == 10 + for prob in tok["top_logprobs"]: + assert "id" in prob and prob["id"] > 0 + assert "token" in prob and type(prob["token"]) == str + assert "logprob" in prob and prob["logprob"] <= 0.0 + assert "bytes" in prob and type(prob["bytes"]) == list + + +def test_n_probs_stream(): + global server + server.start() + res = server.make_stream_request("POST", "/completion", data={ + "prompt": "I believe the meaning of life is", + "n_probs": 10, + "temperature": 0.0, + "n_predict": 5, + "stream": True, + }) + for data in res: + if data["stop"] == False: + assert "completion_probabilities" in data + assert len(data["completion_probabilities"]) == 1 + for tok in data["completion_probabilities"]: + assert "id" in tok and tok["id"] > 0 + assert "token" in tok and type(tok["token"]) == str + assert "logprob" in tok and tok["logprob"] <= 0.0 + assert "bytes" in tok and type(tok["bytes"]) == list + assert len(tok["top_logprobs"]) == 10 + for prob in tok["top_logprobs"]: + assert "id" in prob and prob["id"] > 0 + assert "token" in prob and type(prob["token"]) == str + assert "logprob" in prob and prob["logprob"] <= 0.0 + assert "bytes" in prob and type(prob["bytes"]) == list + + +def test_n_probs_post_sampling(): + global server + server.start() + res = server.make_request("POST", "/completion", data={ + "prompt": "I believe the meaning of life is", + "n_probs": 10, + "temperature": 0.0, + "n_predict": 5, + "post_sampling_probs": True, + }) + assert res.status_code == 200 + assert "completion_probabilities" in res.body + assert len(res.body["completion_probabilities"]) == 5 + for tok in res.body["completion_probabilities"]: + assert "id" in tok and tok["id"] > 0 + assert "token" in tok and type(tok["token"]) == str + assert "prob" in tok and 0.0 < tok["prob"] <= 1.0 + assert "bytes" in tok and type(tok["bytes"]) == list + assert len(tok["top_probs"]) == 10 + for prob in tok["top_probs"]: + assert "id" in prob and prob["id"] > 0 + assert "token" in prob and type(prob["token"]) == str + assert "prob" in prob and 0.0 <= prob["prob"] <= 1.0 + assert "bytes" in prob and type(prob["bytes"]) == list + # because the test model usually output token with either 100% or 0% probability, we need to check all the top_probs + assert any(prob["prob"] == 1.0 for prob in tok["top_probs"]) diff --git a/examples/server/tests/unit/test_embedding.py b/examples/server/tests/unit/test_embedding.py index e32d74582..43e372fc7 100644 --- a/examples/server/tests/unit/test_embedding.py +++ b/examples/server/tests/unit/test_embedding.py @@ -50,6 +50,8 @@ def test_embedding_multiple(): @pytest.mark.parametrize( "input,is_multi_prompt", [ + # do not crash on empty input + ("", False), # single prompt ("string", False), ([12, 34, 56], False), @@ -103,6 +105,7 @@ def test_embedding_pooling_none_oai(): # /v1/embeddings does not support pooling type 'none' assert res.status_code == 400 + assert "error" in res.body def test_embedding_openai_library_single(): diff --git a/examples/server/utils.hpp b/examples/server/utils.hpp index ffdffe904..94bb285b6 100644 --- a/examples/server/utils.hpp +++ b/examples/server/utils.hpp @@ -171,6 +171,36 @@ static std::vector tokenize_input_prompts(llama_context * ctx, con return result; } +// return the last index of character that can form a valid string +// if the last character is potentially cut in half, return the index before the cut +// if validate_utf8(text) == text.size(), then the whole text is valid utf8 +static size_t validate_utf8(const std::string& text) { + size_t len = text.size(); + if (len == 0) return 0; + + // Check the last few bytes to see if a multi-byte character is cut off + for (size_t i = 1; i <= 4 && i <= len; ++i) { + unsigned char c = text[len - i]; + // Check for start of a multi-byte sequence from the end + if ((c & 0xE0) == 0xC0) { + // 2-byte character start: 110xxxxx + // Needs at least 2 bytes + if (i < 2) return len - i; + } else if ((c & 0xF0) == 0xE0) { + // 3-byte character start: 1110xxxx + // Needs at least 3 bytes + if (i < 3) return len - i; + } else if ((c & 0xF8) == 0xF0) { + // 4-byte character start: 11110xxx + // Needs at least 4 bytes + if (i < 4) return len - i; + } + } + + // If no cut-off multi-byte character is found, return full length + return len; +} + // // template utils // @@ -671,3 +701,33 @@ static json format_logit_bias(const std::vector & logit_bias) static std::string safe_json_to_str(json data) { return data.dump(-1, ' ', false, json::error_handler_t::replace); } + +static std::vector get_token_probabilities(llama_context * ctx, int idx) { + std::vector cur; + const auto * logits = llama_get_logits_ith(ctx, idx); + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); + + cur.resize(n_vocab); + for (llama_token token_id = 0; token_id < n_vocab; token_id++) { + cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f}; + } + + // sort tokens by logits + std::sort(cur.begin(), cur.end(), [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }); + + // apply softmax + float max_l = cur[0].logit; + float cum_sum = 0.0f; + for (size_t i = 0; i < cur.size(); ++i) { + float p = expf(cur[i].logit - max_l); + cur[i].p = p; + cum_sum += p; + } + for (size_t i = 0; i < cur.size(); ++i) { + cur[i].p /= cum_sum; + } + + return cur; +}