mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-01 00:39:00 +01:00
llama : llama.h formatting + comments
This commit is contained in:
parent
b2debf65f2
commit
5a3369d8e8
@ -7477,6 +7477,10 @@ float * llama_get_logits(struct llama_context * ctx) {
|
||||
return ctx->logits.data();
|
||||
}
|
||||
|
||||
float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
|
||||
return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
|
||||
}
|
||||
|
||||
float * llama_get_embeddings(struct llama_context * ctx) {
|
||||
return ctx->embedding.data();
|
||||
}
|
||||
|
235
llama.h
235
llama.h
@ -66,26 +66,6 @@ extern "C" {
|
||||
typedef int32_t llama_token;
|
||||
typedef int32_t llama_seq_id;
|
||||
|
||||
// data used for batch inference
|
||||
typedef struct llama_batch {
|
||||
int32_t n_tokens;
|
||||
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
llama_pos * pos;
|
||||
llama_seq_id * seq_id;
|
||||
int8_t * logits; // if 0, do not extract logits for that token
|
||||
|
||||
// NOTE: helpers for smooth API transition - can be deprecated in the future
|
||||
// for future-proof code, use the above fields instead and ignore everything below
|
||||
//
|
||||
// pos[i] = all_pos_0 + i*all_pos_1
|
||||
//
|
||||
llama_pos all_pos_0; // used if pos == NULL
|
||||
llama_pos all_pos_1; // used if pos == NULL
|
||||
llama_seq_id all_seq_id; // used if seq_id == NULL
|
||||
} llama_batch;
|
||||
|
||||
enum llama_log_level {
|
||||
LLAMA_LOG_LEVEL_ERROR = 2,
|
||||
LLAMA_LOG_LEVEL_WARN = 3,
|
||||
@ -146,6 +126,35 @@ extern "C" {
|
||||
|
||||
typedef void (*llama_progress_callback)(float progress, void *ctx);
|
||||
|
||||
// Input data for llama_decode
|
||||
// A llama_batch object can contain input about one or many sequences
|
||||
// The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
|
||||
//
|
||||
// - token : the token ids of the input (used when embd is NULL)
|
||||
// - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
|
||||
// - pos : the positions of the respective token in the sequence
|
||||
// - seq_id : the sequence to which the respective token belongs
|
||||
// - logits : if zero, the logits for the respective token will not be output
|
||||
//
|
||||
typedef struct llama_batch {
|
||||
int32_t n_tokens;
|
||||
|
||||
llama_token * token;
|
||||
float * embd;
|
||||
llama_pos * pos;
|
||||
llama_seq_id * seq_id;
|
||||
int8_t * logits;
|
||||
|
||||
// NOTE: helpers for smooth API transition - can be deprecated in the future
|
||||
// for future-proof code, use the above fields instead and ignore everything below
|
||||
//
|
||||
// pos[i] = all_pos_0 + i*all_pos_1
|
||||
//
|
||||
llama_pos all_pos_0; // used if pos == NULL
|
||||
llama_pos all_pos_1; // used if pos == NULL
|
||||
llama_seq_id all_seq_id; // used if seq_id == NULL
|
||||
} llama_batch;
|
||||
|
||||
struct llama_context_params {
|
||||
uint32_t seed; // RNG seed, -1 for random
|
||||
int32_t n_ctx; // text context
|
||||
@ -239,6 +248,7 @@ extern "C" {
|
||||
int32_t n_eval;
|
||||
};
|
||||
|
||||
// Helpers for getting default parameters
|
||||
LLAMA_API struct llama_context_params llama_context_default_params(void);
|
||||
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
|
||||
|
||||
@ -283,8 +293,10 @@ extern "C" {
|
||||
|
||||
// Get a string describing the model type
|
||||
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
|
||||
|
||||
// Returns the total size of all the tensors in the model in bytes
|
||||
LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
|
||||
|
||||
// Returns the total number of parameters in the model
|
||||
LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
|
||||
|
||||
@ -305,7 +317,7 @@ extern "C" {
|
||||
const char * path_lora,
|
||||
const char * path_base_model,
|
||||
int n_threads),
|
||||
"please use llama_model_apply_lora_from_file instead");
|
||||
"use llama_model_apply_lora_from_file instead");
|
||||
|
||||
LLAMA_API int llama_model_apply_lora_from_file(
|
||||
const struct llama_model * model,
|
||||
@ -322,20 +334,40 @@ extern "C" {
|
||||
"avoid using this, it will be removed in the future, instead - count the tokens in user code");
|
||||
|
||||
// Remove all tokens data of cells in [c0, c1)
|
||||
LLAMA_API void llama_kv_cache_tokens_rm(struct llama_context * ctx, int32_t c0, int32_t c1);
|
||||
LLAMA_API void llama_kv_cache_tokens_rm(
|
||||
struct llama_context * ctx,
|
||||
int32_t c0,
|
||||
int32_t c1);
|
||||
|
||||
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||||
LLAMA_API void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1);
|
||||
LLAMA_API void llama_kv_cache_seq_rm(
|
||||
struct llama_context * ctx,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1);
|
||||
|
||||
// Copy all tokens that belong to the specified sequence to another sequence
|
||||
LLAMA_API void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1);
|
||||
// Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
|
||||
LLAMA_API void llama_kv_cache_seq_cp(
|
||||
struct llama_context * ctx,
|
||||
llama_seq_id seq_id_src,
|
||||
llama_seq_id seq_id_dst,
|
||||
llama_pos p0,
|
||||
llama_pos p1);
|
||||
|
||||
// Removes all tokens that do not belong to the specified sequence
|
||||
LLAMA_API void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id);
|
||||
LLAMA_API void llama_kv_cache_seq_keep(
|
||||
struct llama_context * ctx,
|
||||
llama_seq_id seq_id);
|
||||
|
||||
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
|
||||
// If the KV cache is RoPEd, the KV data is updated accordingly
|
||||
LLAMA_API void llama_kv_cache_seq_shift(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta);
|
||||
LLAMA_API void llama_kv_cache_seq_shift(
|
||||
struct llama_context * ctx,
|
||||
llama_seq_id seq_id,
|
||||
llama_pos p0,
|
||||
llama_pos p1,
|
||||
llama_pos delta);
|
||||
|
||||
//
|
||||
// State / sessions
|
||||
@ -348,21 +380,35 @@ extern "C" {
|
||||
// Copies the state to the specified destination address.
|
||||
// Destination needs to have allocated enough memory.
|
||||
// Returns the number of bytes copied
|
||||
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
|
||||
LLAMA_API size_t llama_copy_state_data(
|
||||
struct llama_context * ctx,
|
||||
uint8_t * dst);
|
||||
|
||||
// Set the state reading from the specified address
|
||||
// Returns the number of bytes read
|
||||
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
|
||||
LLAMA_API size_t llama_set_state_data(
|
||||
struct llama_context * ctx,
|
||||
uint8_t * src);
|
||||
|
||||
// Save/load session file
|
||||
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
|
||||
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
|
||||
LLAMA_API bool llama_load_session_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_session,
|
||||
llama_token * tokens_out,
|
||||
size_t n_token_capacity,
|
||||
size_t * n_token_count_out);
|
||||
|
||||
LLAMA_API bool llama_save_session_file(
|
||||
struct llama_context * ctx,
|
||||
const char * path_session,
|
||||
const llama_token * tokens,
|
||||
size_t n_token_count);
|
||||
|
||||
//
|
||||
// Decoding
|
||||
//
|
||||
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token.
|
||||
// Run the llama inference to obtain the logits and probabilities for the next token(s).
|
||||
// tokens + n_tokens is the provided batch of new tokens to process
|
||||
// n_past is the number of tokens to use from previous eval calls
|
||||
// Returns 0 on success
|
||||
@ -373,7 +419,7 @@ extern "C" {
|
||||
int32_t n_tokens,
|
||||
int n_past,
|
||||
int n_threads),
|
||||
"please use llama_decode() instead");
|
||||
"use llama_decode() instead");
|
||||
|
||||
// Same as llama_eval, but use float matrix input directly.
|
||||
// DEPRECATED: use llama_decode() instead
|
||||
@ -383,7 +429,7 @@ extern "C" {
|
||||
int32_t n_tokens,
|
||||
int n_past,
|
||||
int n_threads),
|
||||
"please use llama_decode() instead");
|
||||
"use llama_decode() instead");
|
||||
|
||||
// Return batch for single sequence of tokens starting at pos_0
|
||||
//
|
||||
@ -396,12 +442,14 @@ extern "C" {
|
||||
llama_seq_id seq_id);
|
||||
|
||||
// Allocates a batch of tokens on the heap
|
||||
// The batch needs to be freed with llama_batch_free()
|
||||
// If embd > 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
||||
// The batch has to be freed with llama_batch_free()
|
||||
// If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
|
||||
// Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
|
||||
// The rest of the llama_batch members are allocated with size n_tokens
|
||||
// All members are left uninitialized
|
||||
LLAMA_API struct llama_batch llama_batch_init(int32_t n_tokens, int32_t embd);
|
||||
LLAMA_API struct llama_batch llama_batch_init(
|
||||
int32_t n_tokens,
|
||||
int32_t embd);
|
||||
|
||||
// Frees a batch of tokens allocated with llama_batch_init()
|
||||
LLAMA_API void llama_batch_free(struct llama_batch batch);
|
||||
@ -417,11 +465,15 @@ extern "C" {
|
||||
|
||||
// Token logits obtained from the last call to llama_eval()
|
||||
// The logits for the last token are stored in the last row
|
||||
// Can be mutated in order to change the probabilities of the next token
|
||||
// Rows: n_tokens
|
||||
// Logits for which llama_batch.logits[i] == 0 are undefined
|
||||
// Rows: n_tokens provided with llama_batch
|
||||
// Cols: n_vocab
|
||||
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
|
||||
|
||||
// Logits for the ith token. Equivalent to:
|
||||
// llama_get_logits(ctx) + i*n_vocab
|
||||
LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
|
||||
|
||||
// Get the embeddings for the input
|
||||
// shape: [n_embd] (1-dimensional)
|
||||
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
|
||||
@ -502,10 +554,21 @@ extern "C" {
|
||||
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
|
||||
|
||||
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
|
||||
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
|
||||
LLAMA_API void llama_sample_repetition_penalty(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
const llama_token * last_tokens,
|
||||
size_t last_tokens_size,
|
||||
float penalty);
|
||||
|
||||
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
|
||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
|
||||
LLAMA_API void llama_sample_frequency_and_presence_penalties(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
const llama_token * last_tokens,
|
||||
size_t last_tokens_size,
|
||||
float alpha_frequency,
|
||||
float alpha_presence);
|
||||
|
||||
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
|
||||
@ -518,26 +581,54 @@ extern "C" {
|
||||
float scale);
|
||||
|
||||
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
|
||||
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
LLAMA_API void llama_sample_softmax(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates);
|
||||
|
||||
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
|
||||
LLAMA_API void llama_sample_top_k(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
int k,
|
||||
size_t min_keep);
|
||||
|
||||
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
|
||||
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||
LLAMA_API void llama_sample_top_p(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
float p,
|
||||
size_t min_keep);
|
||||
|
||||
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
|
||||
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
|
||||
LLAMA_API void llama_sample_tail_free(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
float z,
|
||||
size_t min_keep);
|
||||
|
||||
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
|
||||
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
|
||||
LLAMA_API void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
|
||||
LLAMA_API void llama_sample_typical(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
float p,
|
||||
size_t min_keep);
|
||||
|
||||
LLAMA_API DEPRECATED(void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp),
|
||||
"Use llama_sample_temp instead");
|
||||
LLAMA_API void llama_sample_temp(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
float temp);
|
||||
|
||||
LLAMA_API DEPRECATED(void llama_sample_temperature(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
float temp),
|
||||
"use llama_sample_temp instead");
|
||||
|
||||
/// @details Apply constraints from grammar
|
||||
LLAMA_API void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar);
|
||||
LLAMA_API void llama_sample_grammar(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
const struct llama_grammar * grammar);
|
||||
|
||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
@ -545,23 +636,41 @@ extern "C" {
|
||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||||
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
|
||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
|
||||
LLAMA_API llama_token llama_sample_token_mirostat(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
float tau,
|
||||
float eta,
|
||||
int m,
|
||||
float * mu);
|
||||
|
||||
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
|
||||
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
|
||||
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
|
||||
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
|
||||
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
|
||||
LLAMA_API llama_token llama_sample_token_mirostat_v2(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
float tau,
|
||||
float eta,
|
||||
float * mu);
|
||||
|
||||
/// @details Selects the token with the highest probability.
|
||||
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
LLAMA_API llama_token llama_sample_token_greedy(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates);
|
||||
|
||||
/// @details Randomly selects a token from the candidates based on their probabilities.
|
||||
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
|
||||
LLAMA_API llama_token llama_sample_token(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates);
|
||||
|
||||
/// @details Accepts the sampled token into the grammar
|
||||
LLAMA_API void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token);
|
||||
LLAMA_API void llama_grammar_accept_token(
|
||||
struct llama_context * ctx,
|
||||
struct llama_grammar * grammar,
|
||||
llama_token token);
|
||||
|
||||
//
|
||||
// Beam search
|
||||
@ -569,9 +678,10 @@ extern "C" {
|
||||
|
||||
struct llama_beam_view {
|
||||
const llama_token * tokens;
|
||||
|
||||
size_t n_tokens;
|
||||
float p; // Cumulative beam probability (renormalized relative to all beams)
|
||||
bool eob; // Callback should set this to true when a beam is at end-of-beam.
|
||||
float p; // Cumulative beam probability (renormalized relative to all beams)
|
||||
bool eob; // Callback should set this to true when a beam is at end-of-beam.
|
||||
};
|
||||
|
||||
// Passed to beam_search_callback function.
|
||||
@ -580,9 +690,10 @@ extern "C" {
|
||||
// These pointers are valid only during the synchronous callback, so should not be saved.
|
||||
struct llama_beams_state {
|
||||
struct llama_beam_view * beam_views;
|
||||
|
||||
size_t n_beams; // Number of elements in beam_views[].
|
||||
size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
|
||||
bool last_call; // True iff this is the last callback invocation.
|
||||
bool last_call; // True iff this is the last callback invocation.
|
||||
};
|
||||
|
||||
// Type of pointer to the beam_search_callback function.
|
||||
@ -598,10 +709,18 @@ extern "C" {
|
||||
/// @param n_past Number of tokens already evaluated.
|
||||
/// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
|
||||
/// @param n_threads Number of threads as passed to llama_eval().
|
||||
LLAMA_API void llama_beam_search(struct llama_context * ctx, llama_beam_search_callback_fn_t callback, void * callback_data, size_t n_beams, int n_past, int n_predict, int n_threads);
|
||||
LLAMA_API void llama_beam_search(
|
||||
struct llama_context * ctx,
|
||||
llama_beam_search_callback_fn_t callback,
|
||||
void * callback_data,
|
||||
size_t n_beams,
|
||||
int n_past,
|
||||
int n_predict,
|
||||
int n_threads);
|
||||
|
||||
// Performance information
|
||||
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
|
||||
|
||||
LLAMA_API void llama_print_timings(struct llama_context * ctx);
|
||||
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user