mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2024-12-24 13:28:50 +01:00
ggml : remove old quantization functions (#5942)
* ggml : remove old quantization functions ggml-ci * ggml : simplify ggml_quantize_chunk ggml-ci * ggml : restrict correctness ggml-ci * ggml : remove hist data from the quantization API ggml-ci * tests : remove hist usage in test-backend-ops ggml-ci * vulkan : remove hist and fix typo
This commit is contained in:
parent
97c09585d6
commit
5b09797321
@ -189,12 +189,10 @@ int main(int argc, char ** argv) {
|
||||
|
||||
int32_t nelements = sizex*sizey;
|
||||
|
||||
std::vector<int64_t> hist_cur(1 << 4, 0);
|
||||
|
||||
// Set up a the benchmark matrices
|
||||
// printf("Creating new tensor q11 & Running quantize\n");
|
||||
struct ggml_tensor * q11 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
|
||||
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], hist_cur.data(), nullptr);
|
||||
ggml_quantize_chunk(qtype, (const float *) m11->data, q11->data, 0, nelements/m11->ne[0], m11->ne[0], nullptr);
|
||||
|
||||
// Set up a the compute graph
|
||||
// printf("Creating new tensor q31\n");
|
||||
@ -207,7 +205,7 @@ int main(int argc, char ** argv) {
|
||||
// Set up a second graph computation to make sure we override the CPU cache lines
|
||||
// printf("Creating new tensor q12 & Running quantize\n");
|
||||
struct ggml_tensor * q12 = ggml_new_tensor_2d(ctx, qtype, sizex, sizey);
|
||||
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], hist_cur.data(), nullptr);
|
||||
ggml_quantize_chunk(qtype, (const float *) m12->data, q12->data, 0, nelements/m12->ne[0], m12->ne[0], nullptr);
|
||||
|
||||
// printf("Creating new tensor q32\n");
|
||||
struct ggml_tensor * q32 = ggml_mul_mat(ctx, q12, m2);
|
||||
|
@ -1862,7 +1862,6 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
|
||||
std::vector<uint8_t> work(512);
|
||||
std::vector<float> conv_buf(512);
|
||||
std::vector<int64_t> hist_all(1 << 4, 0);
|
||||
size_t total_size_org = 0;
|
||||
size_t total_size_new = 0;
|
||||
|
||||
@ -1917,48 +1916,7 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
}
|
||||
new_data = work.data();
|
||||
|
||||
std::vector<int64_t> hist_cur(1 << 4, 0);
|
||||
|
||||
switch (new_type) {
|
||||
case GGML_TYPE_Q4_0: {
|
||||
new_size = ggml_quantize_q4_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q4_1: {
|
||||
new_size = ggml_quantize_q4_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q5_0: {
|
||||
new_size = ggml_quantize_q5_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q5_1: {
|
||||
new_size = ggml_quantize_q5_1(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q8_0: {
|
||||
new_size = ggml_quantize_q8_0(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q2_K: {
|
||||
new_size = ggml_quantize_q2_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q3_K: {
|
||||
new_size = ggml_quantize_q3_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q4_K: {
|
||||
new_size = ggml_quantize_q4_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q5_K: {
|
||||
new_size = ggml_quantize_q5_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
case GGML_TYPE_Q6_K: {
|
||||
new_size = ggml_quantize_q6_K(f32_data, new_data, n_elms, cur->ne[0], hist_cur.data());
|
||||
} break;
|
||||
default: {
|
||||
fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, new_type);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t j = 0; j < hist_cur.size(); ++j) {
|
||||
hist_all[j] += hist_cur[j];
|
||||
}
|
||||
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
|
||||
} else {
|
||||
new_type = cur->type;
|
||||
new_data = cur->data;
|
||||
@ -1993,17 +1951,6 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
|
||||
{
|
||||
printf("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
|
||||
printf("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
|
||||
|
||||
int64_t sum_all = 0;
|
||||
for (size_t i = 0; i < hist_all.size(); ++i) {
|
||||
sum_all += hist_all[i];
|
||||
}
|
||||
|
||||
printf("%s: hist: ", __func__);
|
||||
for (size_t i = 0; i < hist_all.size(); ++i) {
|
||||
printf("%5.3f ", hist_all[i] / (float)sum_all);
|
||||
}
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
return true;
|
||||
|
143
ggml-quants.c
143
ggml-quants.c
@ -1704,16 +1704,6 @@ void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) {
|
||||
quantize_row_q2_K_reference(x, vy, k);
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||
(void)hist; // TODO: collect histograms
|
||||
|
||||
for (int j = 0; j < n; j += k) {
|
||||
block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K;
|
||||
quantize_row_q2_K_reference(src + j, y, k);
|
||||
}
|
||||
return (n/QK_K*sizeof(block_q2_K));
|
||||
}
|
||||
|
||||
static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights,
|
||||
uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux,
|
||||
float rmin, float rdelta, int nstep, bool use_mad) {
|
||||
@ -1966,8 +1956,7 @@ static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restri
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_q2_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_q2_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row);
|
||||
if (!quant_weights) {
|
||||
quantize_row_q2_K_reference(src, dst, nrow*n_per_row);
|
||||
@ -2186,16 +2175,6 @@ void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) {
|
||||
quantize_row_q3_K_reference(x, vy, k);
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||
(void)hist; // TODO: collect histograms
|
||||
|
||||
for (int j = 0; j < n; j += k) {
|
||||
block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K;
|
||||
quantize_row_q3_K_reference(src + j, y, k);
|
||||
}
|
||||
return (n/QK_K*sizeof(block_q3_K));
|
||||
}
|
||||
|
||||
static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int n_per_row, const float * restrict quant_weights) {
|
||||
#if QK_K != 256
|
||||
(void)quant_weights;
|
||||
@ -2285,8 +2264,7 @@ static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restri
|
||||
#endif
|
||||
}
|
||||
|
||||
size_t quantize_q3_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_q3_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row);
|
||||
if (!quant_weights) {
|
||||
quantize_row_q3_K_reference(src, dst, nrow*n_per_row);
|
||||
@ -2456,17 +2434,6 @@ void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) {
|
||||
quantize_row_q4_K_reference(x, y, k);
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||
assert(k % QK_K == 0);
|
||||
(void)hist; // TODO: collect histograms
|
||||
|
||||
for (int j = 0; j < n; j += k) {
|
||||
block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K;
|
||||
quantize_row_q4_K_reference(src + j, y, k);
|
||||
}
|
||||
return (n/QK_K*sizeof(block_q4_K));
|
||||
}
|
||||
|
||||
static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int n_per_row, const float * quant_weights) {
|
||||
#if QK_K != 256
|
||||
(void)quant_weights;
|
||||
@ -2545,8 +2512,7 @@ static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restri
|
||||
#endif
|
||||
}
|
||||
|
||||
size_t quantize_q4_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_q4_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row);
|
||||
if (!quant_weights) {
|
||||
quantize_row_q4_K_reference(src, dst, nrow*n_per_row);
|
||||
@ -2757,17 +2723,6 @@ void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) {
|
||||
quantize_row_q5_K_reference(x, y, k);
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) {
|
||||
assert(k % QK_K == 0);
|
||||
(void)hist; // TODO: collect histograms
|
||||
|
||||
for (int j = 0; j < n; j += k) {
|
||||
block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K;
|
||||
quantize_row_q5_K_reference(src + j, y, k);
|
||||
}
|
||||
return (n/QK_K*sizeof(block_q5_K));
|
||||
}
|
||||
|
||||
static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int n_per_row, const float * quant_weights) {
|
||||
#if QK_K != 256
|
||||
(void)quant_weights;
|
||||
@ -2866,8 +2821,7 @@ static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restri
|
||||
#endif
|
||||
}
|
||||
|
||||
size_t quantize_q5_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_q5_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row);
|
||||
if (!quant_weights) {
|
||||
quantize_row_q5_K_reference(src, dst, nrow*n_per_row);
|
||||
@ -3020,17 +2974,6 @@ void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) {
|
||||
quantize_row_q6_K_reference(x, y, k);
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist) {
|
||||
assert(k % QK_K == 0);
|
||||
(void)hist; // TODO: collect histograms
|
||||
|
||||
for (int j = 0; j < n; j += k) {
|
||||
block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K;
|
||||
quantize_row_q6_K_reference(src + j, y, k);
|
||||
}
|
||||
return (n/QK_K*sizeof(block_q6_K));
|
||||
}
|
||||
|
||||
static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int n_per_row, const float * quant_weights) {
|
||||
#if QK_K != 256
|
||||
(void)quant_weights;
|
||||
@ -3120,8 +3063,7 @@ static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restri
|
||||
#endif
|
||||
}
|
||||
|
||||
size_t quantize_q6_K(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_q6_K(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row);
|
||||
if (!quant_weights) {
|
||||
quantize_row_q6_K_reference(src, dst, nrow*n_per_row);
|
||||
@ -3165,9 +3107,10 @@ static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restri
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_q4_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
size_t quantize_q4_0(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
if (!quant_weights) {
|
||||
return ggml_quantize_q4_0(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||
quantize_row_q4_0_reference(src, dst, nrow*n_per_row);
|
||||
return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
|
||||
}
|
||||
size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row);
|
||||
char * qrow = (char *)dst;
|
||||
@ -3209,9 +3152,10 @@ static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restri
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_q4_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
size_t quantize_q4_1(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
if (!quant_weights) {
|
||||
return ggml_quantize_q4_1(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||
quantize_row_q4_1_reference(src, dst, nrow*n_per_row);
|
||||
return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
|
||||
}
|
||||
size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row);
|
||||
char * qrow = (char *)dst;
|
||||
@ -3262,9 +3206,10 @@ static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restri
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_q5_0(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
size_t quantize_q5_0(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
if (!quant_weights) {
|
||||
return ggml_quantize_q5_0(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||
quantize_row_q5_0_reference(src, dst, nrow*n_per_row);
|
||||
return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
|
||||
}
|
||||
size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row);
|
||||
char * qrow = (char *)dst;
|
||||
@ -3314,9 +3259,10 @@ static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restri
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_q5_1(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
size_t quantize_q5_1(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
if (!quant_weights) {
|
||||
return ggml_quantize_q5_1(src, dst, nrow*n_per_row, n_per_row, hist);
|
||||
quantize_row_q5_1_reference(src, dst, nrow*n_per_row);
|
||||
return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
|
||||
}
|
||||
size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row);
|
||||
char * qrow = (char *)dst;
|
||||
@ -3328,6 +3274,13 @@ size_t quantize_q5_1(const float * src, void * dst, int nrow, int n_per_row, int
|
||||
return nrow * row_size;
|
||||
}
|
||||
|
||||
size_t quantize_q8_0(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
(void)quant_weights; // not used
|
||||
const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row);
|
||||
quantize_row_q8_0_reference(src, dst, nrow*n_per_row);
|
||||
return nrow * row_size;
|
||||
}
|
||||
|
||||
// ====================== "True" 2-bit (de)-quantization
|
||||
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int k) {
|
||||
@ -9373,7 +9326,7 @@ void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void
|
||||
#endif
|
||||
}
|
||||
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
assert(nrc == 1);
|
||||
UNUSED(nrc);
|
||||
@ -9620,7 +9573,7 @@ static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) {
|
||||
}
|
||||
#endif
|
||||
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc) {
|
||||
void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) {
|
||||
assert(n % QK_K == 0);
|
||||
assert(nrc == 1);
|
||||
UNUSED(nrc);
|
||||
@ -10220,7 +10173,7 @@ void iq2xs_init_impl(enum ggml_type type) {
|
||||
int * kmap_q2xs;
|
||||
uint16_t * kneighbors_q2xs;
|
||||
|
||||
printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
|
||||
//printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
|
||||
uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t));
|
||||
for (int k = 0; k < grid_size; ++k) {
|
||||
int8_t * pos = (int8_t *)(the_grid + k);
|
||||
@ -10275,7 +10228,7 @@ void iq2xs_init_impl(enum ggml_type type) {
|
||||
}
|
||||
num_neighbors += n;
|
||||
}
|
||||
printf("%s: %d neighbours in total\n", __func__, num_neighbors);
|
||||
//printf("%s: %d neighbours in total\n", __func__, num_neighbors);
|
||||
kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
|
||||
iq2_data[gindex].neighbours = kneighbors_q2xs;
|
||||
int counter = 0;
|
||||
@ -10698,8 +10651,7 @@ static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict v
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_iq2_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
int nblock = n_per_row/QK_K;
|
||||
char * qrow = (char *)dst;
|
||||
@ -10711,8 +10663,7 @@ size_t quantize_iq2_xxs(const float * src, void * dst, int nrow, int n_per_row,
|
||||
return nrow * nblock * sizeof(block_iq2_xxs);
|
||||
}
|
||||
|
||||
size_t quantize_iq2_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
int nblock = n_per_row/QK_K;
|
||||
char * qrow = (char *)dst;
|
||||
@ -10816,7 +10767,7 @@ void iq3xs_init_impl(int grid_size) {
|
||||
int * kmap_q3xs;
|
||||
uint16_t * kneighbors_q3xs;
|
||||
|
||||
printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
|
||||
//printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size);
|
||||
uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t));
|
||||
for (int k = 0; k < grid_size; ++k) {
|
||||
int8_t * pos = (int8_t *)(the_grid + k);
|
||||
@ -10871,7 +10822,7 @@ void iq3xs_init_impl(int grid_size) {
|
||||
}
|
||||
num_neighbors += n;
|
||||
}
|
||||
printf("%s: %d neighbours in total\n", __func__, num_neighbors);
|
||||
//printf("%s: %d neighbours in total\n", __func__, num_neighbors);
|
||||
kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t));
|
||||
iq3_data[gindex].neighbours = kneighbors_q3xs;
|
||||
int counter = 0;
|
||||
@ -11154,8 +11105,7 @@ static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, v
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_iq3_xxs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
int nblock = n_per_row/QK_K;
|
||||
char * qrow = (char *)dst;
|
||||
@ -11361,8 +11311,7 @@ static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, vo
|
||||
}
|
||||
|
||||
#define IQ3S_BLOCK_SIZE 32
|
||||
size_t quantize_iq3_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
int nblock = n_per_row/QK_K;
|
||||
float scales[QK_K/IQ3S_BLOCK_SIZE];
|
||||
@ -11392,7 +11341,7 @@ void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int k) {
|
||||
|
||||
void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
quantize_iq3_s(x, y, 1, k, NULL, NULL);
|
||||
quantize_iq3_s(x, y, 1, k, NULL);
|
||||
}
|
||||
|
||||
|
||||
@ -11587,8 +11536,7 @@ static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_iq1_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
int nblock = n_per_row/QK_K;
|
||||
char * qrow = (char *)dst;
|
||||
@ -11613,7 +11561,7 @@ static inline int best_index_int8(int n, const int8_t * val, float x) {
|
||||
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
|
||||
}
|
||||
|
||||
static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * GGML_RESTRICT x,
|
||||
static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x,
|
||||
ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l,
|
||||
float * scales, float * weight, uint8_t * L,
|
||||
const int8_t * values,
|
||||
@ -11721,8 +11669,7 @@ static void quantize_row_iq4_nl_impl(const int super_block_size, const int block
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_iq4_nl(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
GGML_ASSERT(n_per_row%QK4_NL == 0);
|
||||
int nblock = n_per_row/QK4_NL;
|
||||
char * qrow = (char *)dst;
|
||||
@ -11752,14 +11699,13 @@ void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int k) {
|
||||
|
||||
void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int k) {
|
||||
assert(k % QK4_NL == 0);
|
||||
quantize_iq4_nl(x, y, 1, k, NULL, NULL);
|
||||
quantize_iq4_nl(x, y, 1, k, NULL);
|
||||
}
|
||||
|
||||
size_t quantize_iq4_xs(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
#if QK_K == 64
|
||||
return quantize_iq4_nl(src, dst, nrow, n_per_row, hist, quant_weights);
|
||||
return quantize_iq4_nl(src, dst, nrow, n_per_row, quant_weights);
|
||||
#else
|
||||
(void)hist;
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
int nblock = n_per_row/QK_K;
|
||||
char * qrow = (char *)dst;
|
||||
@ -11788,7 +11734,7 @@ void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int k) {
|
||||
|
||||
void quantize_row_iq4_xs_reference(const float * restrict x, block_iq4_xs * restrict y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
quantize_iq4_xs(x, y, 1, k, NULL, NULL);
|
||||
quantize_iq4_xs(x, y, 1, k, NULL);
|
||||
}
|
||||
|
||||
// =============================== 2.5625 bpw
|
||||
@ -11961,8 +11907,7 @@ static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy
|
||||
}
|
||||
}
|
||||
|
||||
size_t quantize_iq2_s(const float * src, void * dst, int nrow, int n_per_row, int64_t * hist, const float * quant_weights) {
|
||||
(void)hist;
|
||||
size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int nrow, int n_per_row, const float * quant_weights) {
|
||||
GGML_ASSERT(n_per_row%QK_K == 0);
|
||||
int nblock = n_per_row/QK_K;
|
||||
char * qrow = (char *)dst;
|
||||
@ -11976,7 +11921,7 @@ size_t quantize_iq2_s(const float * src, void * dst, int nrow, int n_per_row, in
|
||||
|
||||
void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
quantize_iq2_s(x, y, 1, k, NULL, NULL);
|
||||
quantize_iq2_s(x, y, 1, k, NULL);
|
||||
}
|
||||
|
||||
void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int k) {
|
||||
|
@ -261,6 +261,7 @@ void quantize_row_q4_K_reference(const float * GGML_RESTRICT x, block_q4_K * GGM
|
||||
void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int k);
|
||||
|
||||
void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int k);
|
||||
@ -280,6 +281,7 @@ void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, in
|
||||
void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
|
||||
void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
|
||||
@ -300,6 +302,7 @@ void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRI
|
||||
void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
|
||||
void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
|
||||
@ -321,6 +324,7 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const voi
|
||||
void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
@ -330,26 +334,26 @@ void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const
|
||||
void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc);
|
||||
|
||||
//
|
||||
// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization")
|
||||
//
|
||||
size_t quantize_iq2_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq2_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq2_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq1_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq4_nl (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq4_xs (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq3_s (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q2_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q3_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q4_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q5_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q6_K (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q4_0 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q4_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q5_0 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_q5_1 (const float * src, void * dst, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
|
||||
size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int nrows, int n_per_row, const float * imatrix);
|
||||
|
||||
void iq2xs_init_impl(enum ggml_type type);
|
||||
void iq2xs_free_impl(enum ggml_type type);
|
||||
|
@ -4102,45 +4102,7 @@ static void ggml_vk_test_transfer(ggml_backend_vk_context * ctx, size_t ne, bool
|
||||
}
|
||||
|
||||
static void ggml_vk_quantize_data(const float * from, void * to, size_t ne, ggml_type quant) {
|
||||
std::vector<int64_t> hist_cur(1 << 4, 0);
|
||||
|
||||
switch(quant) {
|
||||
case GGML_TYPE_F32:
|
||||
memcpy(to, from, sizeof(float) * ne);
|
||||
break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
ggml_quantize_q4_0(from, to, ne, ne, hist_cur.data());
|
||||
break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
ggml_quantize_q4_1(from, to, ne, ne, hist_cur.data());
|
||||
break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
ggml_quantize_q5_0(from, to, ne, ne, hist_cur.data());
|
||||
break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
ggml_quantize_q5_1(from, to, ne, ne, hist_cur.data());
|
||||
break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
ggml_quantize_q8_0(from, to, ne, ne, hist_cur.data());
|
||||
break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
ggml_quantize_q2_K(from, to, ne, ne, hist_cur.data());
|
||||
break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
ggml_quantize_q3_K(from, to, ne, ne, hist_cur.data());
|
||||
break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
ggml_quantize_q4_K(from, to, ne, ne, hist_cur.data());
|
||||
break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
ggml_quantize_q5_K(from, to, ne, ne, hist_cur.data());
|
||||
break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
ggml_quantize_q6_K(from, to, ne, ne, hist_cur.data());
|
||||
break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
ggml_quantize_chunk(quant, from, to, 0, 1, ne, nullptr);
|
||||
}
|
||||
|
||||
static void ggml_vk_test_dequant(ggml_backend_vk_context * ctx, size_t ne, ggml_type quant) {
|
||||
|
339
ggml.c
339
ggml.c
@ -20159,133 +20159,6 @@ void ggml_quantize_free(void) {
|
||||
ggml_critical_section_end();
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
|
||||
assert(k % QK4_0 == 0);
|
||||
const int nb = k / QK4_0;
|
||||
|
||||
for (int b = 0; b < n; b += k) {
|
||||
block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
|
||||
|
||||
quantize_row_q4_0_reference(src + b, y, k);
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
for (int j = 0; j < QK4_0; j += 2) {
|
||||
const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
|
||||
const uint8_t vi1 = y[i].qs[j/2] >> 4;
|
||||
|
||||
hist[vi0]++;
|
||||
hist[vi1]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (n/QK4_0*sizeof(block_q4_0));
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
|
||||
assert(k % QK4_1 == 0);
|
||||
const int nb = k / QK4_1;
|
||||
|
||||
for (int b = 0; b < n; b += k) {
|
||||
block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
|
||||
|
||||
quantize_row_q4_1_reference(src + b, y, k);
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
for (int j = 0; j < QK4_1; j += 2) {
|
||||
const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
|
||||
const uint8_t vi1 = y[i].qs[j/2] >> 4;
|
||||
|
||||
hist[vi0]++;
|
||||
hist[vi1]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (n/QK4_1*sizeof(block_q4_1));
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
|
||||
assert(k % QK5_0 == 0);
|
||||
const int nb = k / QK5_0;
|
||||
|
||||
for (int b = 0; b < n; b += k) {
|
||||
block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
|
||||
|
||||
quantize_row_q5_0_reference(src + b, y, k);
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, &y[i].qh, sizeof(qh));
|
||||
|
||||
for (int j = 0; j < QK5_0; j += 2) {
|
||||
const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
|
||||
const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
|
||||
|
||||
// cast to 16 bins
|
||||
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
|
||||
const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
|
||||
|
||||
hist[vi0]++;
|
||||
hist[vi1]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (n/QK5_0*sizeof(block_q5_0));
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
|
||||
assert(k % QK5_1 == 0);
|
||||
const int nb = k / QK5_1;
|
||||
|
||||
for (int b = 0; b < n; b += k) {
|
||||
block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
|
||||
|
||||
quantize_row_q5_1_reference(src + b, y, k);
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
uint32_t qh;
|
||||
memcpy(&qh, &y[i].qh, sizeof(qh));
|
||||
|
||||
for (int j = 0; j < QK5_1; j += 2) {
|
||||
const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
|
||||
const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
|
||||
|
||||
// cast to 16 bins
|
||||
const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
|
||||
const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
|
||||
|
||||
hist[vi0]++;
|
||||
hist[vi1]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (n/QK5_1*sizeof(block_q5_1));
|
||||
}
|
||||
|
||||
size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
|
||||
assert(k % QK8_0 == 0);
|
||||
const int nb = k / QK8_0;
|
||||
|
||||
for (int b = 0; b < n; b += k) {
|
||||
block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
|
||||
|
||||
quantize_row_q8_0_reference(src + b, y, k);
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
for (int j = 0; j < QK8_0; ++j) {
|
||||
const int8_t vi = y[i].qs[j];
|
||||
|
||||
hist[vi/16 + 8]++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return (n/QK8_0*sizeof(block_q8_0));
|
||||
}
|
||||
|
||||
bool ggml_quantize_requires_imatrix(enum ggml_type type) {
|
||||
return
|
||||
type == GGML_TYPE_IQ2_XXS ||
|
||||
@ -20293,177 +20166,52 @@ bool ggml_quantize_requires_imatrix(enum ggml_type type) {
|
||||
type == GGML_TYPE_IQ1_S;
|
||||
}
|
||||
|
||||
size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
|
||||
int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
|
||||
size_t ggml_quantize_chunk(
|
||||
enum ggml_type type,
|
||||
const float * src,
|
||||
void * dst,
|
||||
int start,
|
||||
int nrows,
|
||||
int n_per_row,
|
||||
const float * imatrix) {
|
||||
const int n = nrows * n_per_row;
|
||||
|
||||
if (ggml_quantize_requires_imatrix(type)) {
|
||||
GGML_ASSERT(imatrix != NULL);
|
||||
}
|
||||
|
||||
GGML_ASSERT(start % type_traits[type].blck_size == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
|
||||
ggml_quantize_init(type); // this is noop if already initialized
|
||||
|
||||
const size_t start_row = start / n_per_row;
|
||||
const size_t row_size = ggml_row_size(type, n_per_row);
|
||||
|
||||
size_t result = 0;
|
||||
int n = nrows * n_per_row;
|
||||
|
||||
switch (type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
{
|
||||
GGML_ASSERT(start % QK4_0 == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q4_1:
|
||||
{
|
||||
GGML_ASSERT(start % QK4_1 == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q5_0:
|
||||
{
|
||||
GGML_ASSERT(start % QK5_0 == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q5_1:
|
||||
{
|
||||
GGML_ASSERT(start % QK5_1 == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q8_0:
|
||||
{
|
||||
GGML_ASSERT(start % QK8_0 == 0);
|
||||
block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
|
||||
result = ggml_quantize_q8_0(src + start, block, n, n, hist);
|
||||
} break;
|
||||
case GGML_TYPE_Q2_K:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q3_K:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q5_K:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_XXS:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
GGML_ASSERT(imatrix);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_XS:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
GGML_ASSERT(imatrix);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_XXS:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ3_S:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ2_S:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ1_S:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_NL:
|
||||
case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
#if QK_K == 64
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
#endif
|
||||
{
|
||||
GGML_ASSERT(start % QK4_NL == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
#if QK_K != 64
|
||||
case GGML_TYPE_IQ4_XS:
|
||||
{
|
||||
GGML_ASSERT(start % QK_K == 0);
|
||||
GGML_ASSERT(start % n_per_row == 0);
|
||||
size_t start_row = start / n_per_row;
|
||||
size_t row_size = ggml_row_size(type, n_per_row);
|
||||
result = quantize_iq4_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
|
||||
GGML_ASSERT(result == row_size * nrows);
|
||||
} break;
|
||||
case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
#else
|
||||
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
|
||||
#endif
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
@ -20480,6 +20228,9 @@ size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, i
|
||||
default:
|
||||
assert(false);
|
||||
}
|
||||
|
||||
GGML_ASSERT(result == nrows * row_size);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
23
ggml.h
23
ggml.h
@ -2194,25 +2194,18 @@ extern "C" {
|
||||
GGML_API void ggml_quantize_init(enum ggml_type type);
|
||||
GGML_API void ggml_quantize_free(void);
|
||||
|
||||
// TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
|
||||
GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
|
||||
GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
|
||||
|
||||
// some quantization type cannot be used without an importance matrix
|
||||
GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
|
||||
|
||||
// calls ggml_quantize_init internally (i.e. can allocate memory)
|
||||
GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst,
|
||||
int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
|
||||
GGML_API size_t ggml_quantize_chunk(
|
||||
enum ggml_type type,
|
||||
const float * src,
|
||||
void * dst,
|
||||
int start,
|
||||
int nrows,
|
||||
int n_per_row,
|
||||
const float * imatrix);
|
||||
|
||||
//
|
||||
// gguf
|
||||
|
48
llama.cpp
48
llama.cpp
@ -11890,17 +11890,16 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty
|
||||
return new_type;
|
||||
}
|
||||
|
||||
static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, int64_t * hist_cur, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
||||
static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
||||
std::mutex mutex;
|
||||
int counter = 0;
|
||||
size_t new_size = 0;
|
||||
if (nthread < 2) {
|
||||
// single-thread
|
||||
return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur, imatrix);
|
||||
return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
|
||||
}
|
||||
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
|
||||
auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
|
||||
nrows, n_per_row, imatrix]() {
|
||||
std::array<int64_t, 1 << 4> local_hist = {};
|
||||
const int nrows_per_chunk = chunk_size / n_per_row;
|
||||
size_t local_size = 0;
|
||||
while (true) {
|
||||
@ -11908,17 +11907,13 @@ static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const flo
|
||||
int first_row = counter; counter += nrows_per_chunk;
|
||||
if (first_row >= nrows) {
|
||||
if (local_size > 0) {
|
||||
for (int j=0; j<int(local_hist.size()); ++j) {
|
||||
hist_cur[j] += local_hist[j];
|
||||
}
|
||||
new_size += local_size;
|
||||
}
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
|
||||
local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
|
||||
first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
|
||||
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
|
||||
}
|
||||
};
|
||||
for (int it = 0; it < nthread - 1; ++it) {
|
||||
@ -12041,7 +12036,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
|
||||
size_t total_size_org = 0;
|
||||
size_t total_size_new = 0;
|
||||
std::vector<int64_t> hist_all(1 << 4, 0);
|
||||
|
||||
std::vector<std::thread> workers;
|
||||
workers.reserve(nthread);
|
||||
@ -12175,7 +12169,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
work.resize(nelements * 4); // upper bound on size
|
||||
}
|
||||
new_data = work.data();
|
||||
std::array<int64_t, 1 << 4> hist_cur = {};
|
||||
|
||||
const int n_per_row = tensor->ne[0];
|
||||
const int nrows = nelements / n_per_row;
|
||||
@ -12185,22 +12178,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
|
||||
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
|
||||
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
|
||||
new_size = llama_tensor_quantize_internal(new_type, f32_data, new_data, chunk_size, nrows, n_per_row, hist_cur.data(), imatrix, workers, nthread_use);
|
||||
new_size = llama_tensor_quantize_internal(new_type, f32_data, new_data, chunk_size, nrows, n_per_row, imatrix, workers, nthread_use);
|
||||
|
||||
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||
int64_t tot_count = 0;
|
||||
for (size_t i = 0; i < hist_cur.size(); i++) {
|
||||
hist_all[i] += hist_cur[i];
|
||||
tot_count += hist_cur[i];
|
||||
}
|
||||
|
||||
if (tot_count > 0) {
|
||||
LLAMA_LOG_INFO(" | hist: ");
|
||||
for (size_t i = 0; i < hist_cur.size(); i++) {
|
||||
LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
|
||||
}
|
||||
}
|
||||
LLAMA_LOG_INFO("\n");
|
||||
LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
|
||||
}
|
||||
total_size_org += ggml_nbytes(tensor);
|
||||
total_size_new += new_size;
|
||||
@ -12229,22 +12209,6 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
||||
LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
|
||||
LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
|
||||
|
||||
// print histogram for all tensors
|
||||
{
|
||||
int64_t sum_all = 0;
|
||||
for (size_t i = 0; i < hist_all.size(); i++) {
|
||||
sum_all += hist_all[i];
|
||||
}
|
||||
|
||||
if (sum_all > 0) {
|
||||
LLAMA_LOG_INFO("%s: hist: ", __func__);
|
||||
for (size_t i = 0; i < hist_all.size(); i++) {
|
||||
LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
|
||||
}
|
||||
LLAMA_LOG_INFO("\n");
|
||||
}
|
||||
}
|
||||
|
||||
if (qs.n_fallback > 0) {
|
||||
LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) incompatible with k-quants and required fallback quantization\n",
|
||||
__func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
|
||||
|
@ -53,7 +53,6 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
} else if (ggml_is_quantized(tensor->type) || tensor->type == GGML_TYPE_F16) {
|
||||
GGML_ASSERT(size % ggml_blck_size(tensor->type) == 0);
|
||||
std::vector<uint8_t> dataq(ggml_row_size(tensor->type, size));
|
||||
int64_t hist[16];
|
||||
std::vector<float> imatrix(tensor->ne[0], 1.0f); // dummy importance matrix
|
||||
const float * im = imatrix.data();
|
||||
if (!ggml_quantize_requires_imatrix(tensor->type)) {
|
||||
@ -63,7 +62,7 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
im = nullptr;
|
||||
}
|
||||
}
|
||||
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], hist, im);
|
||||
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size/tensor->ne[0], tensor->ne[0], im);
|
||||
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
|
||||
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
|
||||
// This is going to create some weird integers though.
|
||||
|
Loading…
Reference in New Issue
Block a user