ggml : sync (unary ops refactor, static-correctness) (#2370)

* ggml : sync (unary ops, tests)

ggml-ci

* tests : remove unnecessary funcs
This commit is contained in:
Georgi Gerganov 2023-07-24 14:46:21 +03:00 committed by GitHub
parent 42f70cb2f6
commit 5b2b2dc6ae
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 867 additions and 572 deletions

View File

@ -3962,18 +3962,23 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
} }
func = ggml_cuda_mul; func = ggml_cuda_mul;
break; break;
case GGML_OP_GELU: case GGML_OP_UNARY:
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_GELU:
if (!any_on_device) { if (!any_on_device) {
return false; return false;
} }
func = ggml_cuda_gelu; func = ggml_cuda_gelu;
break; break;
case GGML_OP_SILU: case GGML_UNARY_OP_SILU:
if (!any_on_device) { if (!any_on_device) {
return false; return false;
} }
func = ggml_cuda_silu; func = ggml_cuda_silu;
break; break;
default:
return false;
} break;
case GGML_OP_NORM: case GGML_OP_NORM:
if (!any_on_device) { if (!any_on_device) {
return false; return false;

View File

@ -519,7 +519,9 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_OP_SILU: case GGML_OP_UNARY:
switch (ggml_get_unary_op(gf->nodes[i])) {
case GGML_UNARY_OP_SILU:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoder];
@ -533,7 +535,7 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_OP_RELU: case GGML_UNARY_OP_RELU:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoder];
@ -547,7 +549,7 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
case GGML_OP_GELU: case GGML_UNARY_OP_GELU:
{ {
if (encoder == nil) { if (encoder == nil) {
encoder = [command_buffer computeCommandEncoder]; encoder = [command_buffer computeCommandEncoder];
@ -561,6 +563,12 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
} break; } break;
default:
{
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false);
}
} break;
case GGML_OP_SOFT_MAX: case GGML_OP_SOFT_MAX:
{ {
if (encoder == nil) { if (encoder == nil) {
@ -979,10 +987,12 @@ void ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
} break; } break;
default: default:
{
fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); fprintf(stderr, "%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op));
GGML_ASSERT(false); GGML_ASSERT(false);
} }
} }
}
if (encoder != nil) { if (encoder != nil) {
[encoder endEncoding]; [encoder endEncoding];

763
ggml.c

File diff suppressed because it is too large Load Diff

60
ggml.h
View File

@ -330,16 +330,6 @@ extern "C" {
GGML_OP_ARGMAX, GGML_OP_ARGMAX,
GGML_OP_REPEAT, GGML_OP_REPEAT,
GGML_OP_REPEAT_BACK, GGML_OP_REPEAT_BACK,
GGML_OP_ABS,
GGML_OP_SGN,
GGML_OP_NEG,
GGML_OP_STEP,
GGML_OP_TANH,
GGML_OP_ELU,
GGML_OP_RELU,
GGML_OP_GELU,
GGML_OP_GELU_QUICK,
GGML_OP_SILU,
GGML_OP_SILU_BACK, GGML_OP_SILU_BACK,
GGML_OP_NORM, // normalize GGML_OP_NORM, // normalize
GGML_OP_RMS_NORM, GGML_OP_RMS_NORM,
@ -378,6 +368,8 @@ extern "C" {
GGML_OP_WIN_PART, GGML_OP_WIN_PART,
GGML_OP_WIN_UNPART, GGML_OP_WIN_UNPART,
GGML_OP_UNARY,
GGML_OP_MAP_UNARY, GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY, GGML_OP_MAP_BINARY,
@ -391,6 +383,18 @@ extern "C" {
GGML_OP_COUNT, GGML_OP_COUNT,
}; };
enum ggml_unary_op {
GGML_UNARY_OP_ABS,
GGML_UNARY_OP_SGN,
GGML_UNARY_OP_NEG,
GGML_UNARY_OP_STEP,
GGML_UNARY_OP_TANH,
GGML_UNARY_OP_ELU,
GGML_UNARY_OP_RELU,
GGML_UNARY_OP_GELU,
GGML_UNARY_OP_GELU_QUICK,
GGML_UNARY_OP_SILU,
};
// ggml object // ggml object
struct ggml_object { struct ggml_object {
@ -535,6 +539,7 @@ extern "C" {
GGML_API const char * ggml_type_name(enum ggml_type type); GGML_API const char * ggml_type_name(enum ggml_type type);
GGML_API const char * ggml_op_name (enum ggml_op op); GGML_API const char * ggml_op_name (enum ggml_op op);
GGML_API const char * ggml_op_symbol(enum ggml_op op);
GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor); GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
@ -558,6 +563,7 @@ extern "C" {
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx); GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch); GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc); GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx); GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
@ -617,9 +623,11 @@ extern "C" {
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor); GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor); GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor); GGML_API enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name);
GGML_API struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...); GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
// //
// operations on tensors with backpropagation // operations on tensors with backpropagation
@ -629,6 +637,11 @@ extern "C" {
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_dup_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_add( GGML_API struct ggml_tensor * ggml_add(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,
@ -952,11 +965,22 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * b); struct ggml_tensor * b);
// a -> b, in-place, return view(b)
GGML_API struct ggml_tensor * ggml_cpy_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// make contiguous // make contiguous
GGML_API struct ggml_tensor * ggml_cont( GGML_API struct ggml_tensor * ggml_cont(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a); struct ggml_tensor * a);
// make contiguous, in-place
GGML_API struct ggml_tensor * ggml_cont_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// return view(a), b specifies the new shape // return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view // TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape( GGML_API struct ggml_tensor * ggml_reshape(
@ -1268,6 +1292,16 @@ extern "C" {
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *); typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *); typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
GGML_API struct ggml_tensor * ggml_unary(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op);
GGML_API struct ggml_tensor * ggml_unary_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op);
GGML_API struct ggml_tensor * ggml_map_unary_f32( GGML_API struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * a, struct ggml_tensor * a,

View File

@ -64,7 +64,7 @@ void get_random_dims(int64_t * dims, int ndims) {
} }
} }
struct ggml_tensor * get_random_tensor( struct ggml_tensor * get_random_tensor_f32(
struct ggml_context * ctx0, struct ggml_context * ctx0,
int ndims, int ndims,
int64_t ne[], int64_t ne[],
@ -112,7 +112,55 @@ struct ggml_tensor * get_random_tensor(
return result; return result;
} }
struct ggml_tensor * get_random_tensor_int( struct ggml_tensor * get_random_tensor_f16(
struct ggml_context * ctx0,
int ndims,
int64_t ne[],
float fmin,
float fmax) {
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F16, ndims, ne);
switch (ndims) {
case 1:
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
break;
case 2:
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
}
break;
case 3:
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
}
}
break;
case 4:
for (int i3 = 0; i3 < ne[3]; i3++) {
for (int i2 = 0; i2 < ne[2]; i2++) {
for (int i1 = 0; i1 < ne[1]; i1++) {
for (int i0 = 0; i0 < ne[0]; i0++) {
((ggml_fp16_t *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = ggml_fp32_to_fp16(frand()*(fmax - fmin) + fmin);
}
}
}
}
break;
default:
assert(false);
};
return result;
}
struct ggml_tensor * get_random_tensor_i32(
struct ggml_context * ctx0, struct ggml_context * ctx0,
int ndims, int ndims,
int64_t ne[], int64_t ne[],
@ -160,23 +208,6 @@ struct ggml_tensor * get_random_tensor_int(
return result; return result;
} }
float get_element(const struct ggml_tensor * t, int idx) {
if (t->type == GGML_TYPE_F32) {
return ((float *)t->data)[idx];
}
if (t->type == GGML_TYPE_I32) {
return ((int32_t *)t->data)[idx];
}
assert(false);
return INFINITY;
}
void set_element(struct ggml_tensor * t, int idx, float value) {
((float *)t->data)[idx] = value;
}
void print_elements(const char* label, const struct ggml_tensor * t) { void print_elements(const char* label, const struct ggml_tensor * t) {
if (!t) { if (!t) {
printf("%s: %s = null\n", __func__, label); printf("%s: %s = null\n", __func__, label);
@ -186,7 +217,7 @@ void print_elements(const char* label, const struct ggml_tensor * t) {
printf("%s: %s = [", __func__, label); printf("%s: %s = [", __func__, label);
for (int k = 0; k < nelements; ++k) { for (int k = 0; k < nelements; ++k) {
if (k > 0) { printf(", "); } if (k > 0) { printf(", "); }
printf("%.5f", get_element(t, k)); printf("%.5f", ggml_get_f32_1d(t, k));
} }
printf("] shape: ["); printf("] shape: [");
for (int k = 0; k < t->n_dims; ++k) { for (int k = 0; k < t->n_dims; ++k) {
@ -237,23 +268,23 @@ bool check_gradient(
const int nelements = ggml_nelements(x[i]); const int nelements = ggml_nelements(x[i]);
for (int k = 0; k < nelements; ++k) { for (int k = 0; k < nelements; ++k) {
// compute gradient using finite differences // compute gradient using finite differences
const float x0 = get_element(x[i], k); const float x0 = ggml_get_f32_1d(x[i], k);
const float xm = x0 - eps; const float xm = x0 - eps;
const float xp = x0 + eps; const float xp = x0 + eps;
set_element(x[i], k, xp); ggml_set_f32_1d(x[i], k, xp);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
const float f0 = ggml_get_f32_1d(f, 0); const float f0 = ggml_get_f32_1d(f, 0);
set_element(x[i], k, xm); ggml_set_f32_1d(x[i], k, xm);
ggml_graph_compute_with_ctx(ctx0, &gf, n_threads); ggml_graph_compute_with_ctx(ctx0, &gf, n_threads);
const float f1 = ggml_get_f32_1d(f, 0); const float f1 = ggml_get_f32_1d(f, 0);
const float g0 = (f0 - f1)/(2.0f*eps); const float g0 = (f0 - f1)/(2.0f*eps);
set_element(x[i], k, x0); ggml_set_f32_1d(x[i], k, x0);
// compute gradient using backward graph // compute gradient using backward graph
ggml_graph_reset (&gf); ggml_graph_reset (&gf);
@ -261,7 +292,7 @@ bool check_gradient(
ggml_graph_compute_with_ctx(ctx0, &gb, n_threads); ggml_graph_compute_with_ctx(ctx0, &gb, n_threads);
const float g1 = get_element(x[i]->grad, k); const float g1 = ggml_get_f32_1d(x[i]->grad, k);
const float error_abs = fabsf(g0 - g1); const float error_abs = fabsf(g0 - g1);
const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabsf(g0) : 0; const float error_rel = g0 != 0 ? fabsf(g0 - g1)/fabsf(g0) : 0;
@ -392,19 +423,35 @@ int main(int argc, const char ** argv) {
struct ggml_tensor * x[MAX_NARGS]; struct ggml_tensor * x[MAX_NARGS];
// add // add f32
{ {
const int nargs = 2; const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) { for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1])); struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1]));
check_gradient("add", ctx0, x, f, ndims, nargs, 1e-3f, 2e-3f, 2e-3f); check_gradient("add f32", ctx0, x, f, ndims, nargs, 1e-3f, 2e-3f, 2e-3f);
}
}
// add f16
{
const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add(ctx0, x[0], x[1]));
check_gradient("add f16", ctx0, x, f, ndims, nargs, 1e-1f, 2e-1f, 2e-1f);
} }
} }
@ -414,7 +461,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 4; ++ndims) { for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
@ -430,7 +477,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 4; ++ndims) { for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
@ -446,7 +493,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 4; ++ndims) { for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, 0.5f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, 0.5f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
@ -462,7 +509,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 2; ++ndims) { for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
@ -478,7 +525,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 2; ++ndims) { for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
@ -494,7 +541,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 2; ++ndims) { for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, 2.0f*1e-3f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
@ -510,7 +557,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 2; ++ndims) { for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
@ -527,7 +574,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 4; ++ndims) { for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
@ -537,6 +584,40 @@ int main(int argc, const char ** argv) {
} }
} }
// mean, not yet fully implemented
if(0)
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_mean(ctx0, x[0]));
check_gradient("mean", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// argmax
if (0)
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_argmax(ctx0, x[0]));
check_gradient("argmax", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// repeat // repeat
{ {
int64_t ne2[4]; int64_t ne2[4];
@ -549,15 +630,36 @@ int main(int argc, const char ** argv) {
const int nargs = 1; const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) { for (int ndims = 1; ndims <= 2; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[1], ggml_repeat(ctx0, x[0], x[1])))); struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[1], ggml_repeat(ctx0, x[0], x[1]))));
check_gradient("repeat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY); check_gradient("repeat", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY);
} }
}
// repeat back
{
int64_t ne2[4];
get_random_dims(ne2, 4);
ne2[0] = ne[0] * ne2[0];
ne2[1] = ne[1] * ne2[1];
ne2[2] = 1;
ne2[3] = 1;
const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) {
x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_sqr(ctx0, ggml_sub(ctx0, x[0], ggml_repeat_back(ctx0, x[1], x[0]))));
check_gradient("repeat back", ctx0, x, f, ndims, nargs, 1e-3f, 1e-2f, INFINITY);
}
} }
// abs (finite differences do not work) // abs (finite differences do not work)
@ -566,7 +668,7 @@ int main(int argc, const char ** argv) {
// for (int ndims = 1; ndims <= 2; ++ndims) { // for (int ndims = 1; ndims <= 2; ++ndims) {
// for (int i = 0; i < nargs; ++i) { // for (int i = 0; i < nargs; ++i) {
// x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); // x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
// ggml_set_param(ctx0, x[i]); // ggml_set_param(ctx0, x[i]);
// } // }
@ -576,17 +678,82 @@ int main(int argc, const char ** argv) {
// } // }
//} //}
// sgn
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_sgn(ctx0, x[0]));
check_gradient("sgn", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// neg
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_neg(ctx0, x[0]));
check_gradient("neg", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// step
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_step(ctx0, x[0]));
check_gradient("step", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// tanh, not yet fully implemented
if(0)
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_tanh(ctx0, x[0]));
check_gradient("tanh", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// mul_mat // mul_mat
{ {
const int nargs = 2; const int nargs = 2;
for (int ndims = 2; ndims <= 2; ++ndims) { for (int ndims = 2; ndims <= 2; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
{ {
int64_t ne2[4]; int64_t ne2[4];
get_random_dims(ne2, 4); get_random_dims(ne2, 4);
ne2[0] = ne[0]; ne2[0] = ne[0];
x[1] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
} }
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
@ -602,13 +769,63 @@ int main(int argc, const char ** argv) {
} }
} }
// elu, not yet fully implemented
if(0)
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_elu(ctx0, x[0]));
check_gradient("elu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// relu
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_relu(ctx0, x[0]));
check_gradient("relu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
}
}
// gelu, not yet fully implemented
if(0)
{
const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
struct ggml_tensor* f = ggml_sum(ctx0, ggml_gelu(ctx0, x[0]));
check_gradient("gelu", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, 1e-3f);
}
}
// silu // silu
{ {
const int nargs = 1; const int nargs = 1;
for (int ndims = 1; ndims <= 2; ++ndims) { for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
@ -629,7 +846,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 1; ndims <= 2; ++ndims) { for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
@ -647,8 +864,8 @@ int main(int argc, const char ** argv) {
ne2[0] = 1; ne2[0] = 1;
for (int ndims = 1; ndims <= 2; ++ndims) { for (int ndims = 1; ndims <= 2; ++ndims) {
x[1] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]); ggml_set_param(ctx0, x[1]);
@ -659,20 +876,37 @@ int main(int argc, const char ** argv) {
} }
} }
// cpy // cpy f32
{ {
const int nargs = 2; const int nargs = 2;
for (int ndims = 1; ndims <= 2; ++ndims) { for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) { for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[i] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]); ggml_set_param(ctx0, x[i]);
} }
// x[1] is overwritten by x[0], so the gradients don't propagate to x[1] // x[1] is overwritten by x[0], so the gradients don't propagate to x[1]
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1])); struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1]));
check_gradient("cpy", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY); check_gradient("cpy f32", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
}
}
// cpy f16
{
const int nargs = 2;
for (int ndims = 1; ndims <= 2; ++ndims) {
for (int i = 0; i < nargs; ++i) {
x[i] = get_random_tensor_f16(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[i]);
}
// x[1] is overwritten by x[0], so the gradients don't propagate to x[1]
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cpy(ctx0, x[0], x[1]));
check_gradient("cpy f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY);
} }
} }
@ -689,8 +923,8 @@ int main(int argc, const char ** argv) {
for (int i = 0; i < ndims; ++i) { for (int i = 0; i < ndims; ++i) {
ne2[0] *= ne[i]; ne2[0] *= ne[i];
} }
x[0] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
@ -712,8 +946,8 @@ int main(int argc, const char ** argv) {
for (int i = 0; i < ndims; ++i) { for (int i = 0; i < ndims; ++i) {
ne2[0] *= ne[i]; ne2[0] *= ne[i];
} }
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
x[1] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
@ -729,7 +963,7 @@ int main(int argc, const char ** argv) {
const int nargs = 2; const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) { for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 1); get_random_dims(ne2, 1);
@ -737,7 +971,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 1); get_random_dims(ne2, 1);
} }
x[1] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]); ggml_set_param(ctx0, x[1]);
const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1])); const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1]));
@ -758,7 +992,7 @@ int main(int argc, const char ** argv) {
const int nargs = 2; const int nargs = 2;
for (int ndims = 2; ndims <= 4; ++ndims) { for (int ndims = 2; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 2); get_random_dims(ne2, 2);
@ -766,7 +1000,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 2); get_random_dims(ne2, 2);
} }
x[1] = get_random_tensor(ctx0, 2, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]); ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
@ -790,7 +1024,7 @@ int main(int argc, const char ** argv) {
const int nargs = 2; const int nargs = 2;
for (int ndims = 3; ndims <= 4; ++ndims) { for (int ndims = 3; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 3); get_random_dims(ne2, 3);
@ -798,7 +1032,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 3); get_random_dims(ne2, 3);
} }
x[1] = get_random_tensor(ctx0, 3, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, 3, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]); ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
@ -824,7 +1058,7 @@ int main(int argc, const char ** argv) {
const int nargs = 2; const int nargs = 2;
for (int ndims = 4; ndims <= 4; ++ndims) { for (int ndims = 4; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 4); get_random_dims(ne2, 4);
@ -832,7 +1066,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 4); get_random_dims(ne2, 4);
} }
x[1] = get_random_tensor(ctx0, 4, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]); ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
@ -858,7 +1092,7 @@ int main(int argc, const char ** argv) {
const int nargs = 2; const int nargs = 2;
for (int ndims = 1; ndims <= 4; ++ndims) { for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 1); get_random_dims(ne2, 1);
@ -866,7 +1100,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 1); get_random_dims(ne2, 1);
} }
x[1] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, 1, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]); ggml_set_param(ctx0, x[1]);
const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1])); const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1]));
@ -887,7 +1121,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1; const int nargs = 1;
for (int ndims = 2; ndims <= 4; ++ndims) { for (int ndims = 2; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
get_random_dims(ne2, 2); get_random_dims(ne2, 2);
@ -895,7 +1129,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 2); get_random_dims(ne2, 2);
} }
x[1] = get_random_tensor(ctx0, 2, ne2, -1.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, 2, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[1]); ggml_set_param(ctx0, x[1]);
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]); max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
@ -915,7 +1149,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1; const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) { for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
@ -941,7 +1175,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1; const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) { for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
get_random_dims(ne2, 2); get_random_dims(ne2, 2);
while (ne2[0]*ne2[1] > ggml_nelements(x[0])) { while (ne2[0]*ne2[1] > ggml_nelements(x[0])) {
@ -971,7 +1205,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1; const int nargs = 1;
for (int ndims = 1; ndims <= 4; ++ndims) { for (int ndims = 1; ndims <= 4; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
get_random_dims(ne2, 3); get_random_dims(ne2, 3);
while (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0])) { while (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0])) {
@ -1010,7 +1244,7 @@ int main(int argc, const char ** argv) {
for (int i=ndims; i<4; ++i) { for (int i=ndims; i<4; ++i) {
ne2[i] = 1; ne2[i] = 1;
} }
x[0] = get_random_tensor(ctx0, 4, ne2, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
@ -1043,7 +1277,7 @@ int main(int argc, const char ** argv) {
for (int i=ndims; i<4; ++i) { for (int i=ndims; i<4; ++i) {
ne2[i] = 1; ne2[i] = 1;
} }
x[0] = get_random_tensor(ctx0, 4, ne2, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, 4, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
@ -1060,8 +1294,8 @@ int main(int argc, const char ** argv) {
int64_t ne3[4] = {1+irand(ne[1]), 1, 1, 1}; int64_t ne3[4] = {1+irand(ne[1]), 1, 1, 1};
const int nargs = 1; const int nargs = 1;
const int ndims = 2; const int ndims = 2;
x[0] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor_int(ctx0, 1, ne3, 0, ne2[1]); x[1] = get_random_tensor_i32(ctx0, 1, ne3, 0, ne2[1]);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
@ -1075,7 +1309,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1; const int nargs = 1;
const int ndims = 2; const int ndims = 2;
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
int n_past = irand(ne[0]); int n_past = irand(ne[0]);
@ -1090,7 +1324,7 @@ int main(int argc, const char ** argv) {
const int nargs = 1; const int nargs = 1;
const int ndims = 2; const int ndims = 2;
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
int n_past = irand(ne[0]); int n_past = irand(ne[0]);
@ -1108,7 +1342,7 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 4); get_random_dims(ne2, 4);
for (int ndims = 1; ndims <= 3; ++ndims) { for (int ndims = 1; ndims <= 3; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_soft_max(ctx0, x[0])); struct ggml_tensor * f = ggml_sum(ctx0, ggml_soft_max(ctx0, x[0]));
@ -1125,8 +1359,8 @@ int main(int argc, const char ** argv) {
get_random_dims(ne2, 4); get_random_dims(ne2, 4);
for (int ndims = 1; ndims <= 3; ++ndims) { for (int ndims = 1; ndims <= 3; ++ndims) {
x[0] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
x[1] = get_random_tensor(ctx0, ndims, ne2, 0.0f, 1.0f); x[1] = get_random_tensor_f32(ctx0, ndims, ne2, 0.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_cross_entropy_loss(ctx0, x[0], x[1])); struct ggml_tensor * f = ggml_sum(ctx0, ggml_cross_entropy_loss(ctx0, x[0], x[1]));
@ -1136,7 +1370,7 @@ int main(int argc, const char ** argv) {
} }
} }
// rope // rope f32
{ {
const int nargs = 1; const int nargs = 1;
@ -1148,7 +1382,7 @@ int main(int argc, const char ** argv) {
for (int ndims = 3; ndims <= 4; ++ndims) { for (int ndims = 3; ndims <= 4; ++ndims) {
for (int mode = 0; mode < 4; ++mode) { for (int mode = 0; mode < 4; ++mode) {
for (int n_past = 1; n_past < ne2[2]; ++n_past) { for (int n_past = 1; n_past < ne2[2]; ++n_past) {
x[0] = get_random_tensor(ctx0, ndims, ne2, -1.0f, 1.0f); x[0] = get_random_tensor_f32(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
@ -1163,14 +1397,48 @@ int main(int argc, const char ** argv) {
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], n_past, n_rot, mode, 0)); struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], n_past, n_rot, mode, 0));
GGML_PRINT_DEBUG("rope: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode); GGML_PRINT_DEBUG("rope f32: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode);
check_gradient("rope", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY); check_gradient("rope f32", ctx0, x, f, ndims, nargs, 1e-2f, 1e-3f, INFINITY);
} }
} }
} }
} }
// flash_attn // rope f16
{
const int nargs = 1;
int64_t ne2[4];
get_random_dims(ne2, 4);
ne2[0] += ne2[0] % 2;
int n_rot = ne2[0];
for (int ndims = 3; ndims <= 4; ++ndims) {
for (int mode = 0; mode < 4; ++mode) {
for (int n_past = 1; n_past < ne2[2]; ++n_past) {
x[0] = get_random_tensor_f16(ctx0, ndims, ne2, -1.0f, 1.0f);
ggml_set_param(ctx0, x[0]);
const bool skip_past = (mode & 1);
if (skip_past) {
// we have no past, so this would have to work on uninitialized memory.
// we only test the gradients here;
// skip_past should have no influence on gradient computation.
// so when other modes work, we assume that this does as well.
continue;
}
struct ggml_tensor * f = ggml_sum(ctx0, ggml_rope(ctx0, x[0], n_past, n_rot, mode, 0));
GGML_PRINT_DEBUG("rope f16: n_past: %d n_rot: %d mode: %d\n", n_past, n_rot, mode);
check_gradient("rope f16", ctx0, x, f, ndims, nargs, 1e-1f, 1e-1f, INFINITY);
}
}
}
}
// flash_attn f32
{ {
const int nargs = 3; const int nargs = 3;
@ -1196,16 +1464,57 @@ int main(int argc, const char ** argv) {
nek[3] = 1; nek[3] = 1;
nev[3] = 1; nev[3] = 1;
} }
x[0] = get_random_tensor(ctx0, ndims, neq, -0.1250f, 0.1250f); x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
x[1] = get_random_tensor(ctx0, ndims, nek, -0.1250f, 0.1250f); x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
x[2] = get_random_tensor(ctx0, ndims, nev, -0.1250f, 0.1250f); x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
ggml_set_param(ctx0, x[0]); ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]); ggml_set_param(ctx0, x[1]);
ggml_set_param(ctx0, x[2]); ggml_set_param(ctx0, x[2]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0))); struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
check_gradient("flash_attn", ctx0, x, f, ndims, nargs, 1.5e-4f, INFINITY, 3.5f); check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, INFINITY, 3.5f);
}
}
}
// flash_attn f16, not yet fully implemented
if(0)
{
const int nargs = 3;
int64_t ne2[4];
get_random_dims(ne2, 4);
int64_t D = ne2[0];
int64_t N = ne2[1];
int64_t M = ne2[2] + N;
int64_t B = ne2[3];
for (int masked = 0; masked <= 1; ++masked) {
for (int ndims = 2; ndims <= 4; ++ndims) {
int64_t neq[4] = { D, N, B, ne[3] };
int64_t nek[4] = { D, M, B, ne[3] };
int64_t nev[4] = { M, D, B, ne[3] };
if (ndims == 2) {
neq[2] = 1; neq[3] = 1;
nek[2] = 1; nek[3] = 1;
nev[2] = 1; nev[3] = 1;
} else if (ndims == 3) {
neq[3] = 1;
nek[3] = 1;
nev[3] = 1;
}
x[0] = get_random_tensor_f16(ctx0, ndims, neq, -0.1250f, 0.1250f);
x[1] = get_random_tensor_f16(ctx0, ndims, nek, -0.1250f, 0.1250f);
x[2] = get_random_tensor_f16(ctx0, ndims, nev, -0.1250f, 0.1250f);
ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]);
ggml_set_param(ctx0, x[2]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
check_gradient("flash_attn f16", ctx0, x, f, ndims, nargs, 1.5e-4f, INFINITY, 3.5f);
} }
} }
} }

View File

@ -125,9 +125,9 @@ int main(void) {
}; };
struct ggml_context * ctx = ggml_init(params); struct ggml_context * ctx = ggml_init(params);
int64_t ne1[4] = {4, 1024, 1, 1}; int64_t ne1[4] = {4, 128, 1, 1};
int64_t ne2[4] = {4, 2048, 1, 1};; int64_t ne2[4] = {4, 256, 1, 1};;
int64_t ne3[4] = {1024, 2048, 1, 1}; int64_t ne3[4] = {128, 256, 1, 1};
struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1); struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1);
struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1); struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1);