mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-22 09:39:08 +01:00
gptneox-main.cpp : n_layer --> n_block
This commit is contained in:
parent
e606ffeaee
commit
5e58ffa1ed
135
gptneox-main.cpp
135
gptneox-main.cpp
@ -24,13 +24,13 @@ struct gpt_neox_hparams {
|
||||
uint32_t n_ctx = 0;
|
||||
uint32_t n_embd = 0;
|
||||
uint32_t n_head = 0;
|
||||
uint32_t n_layer = 0;
|
||||
uint32_t n_block = 0;
|
||||
uint32_t n_rot = 0; // rotary_pct * (n_embd / n_head)
|
||||
bool par_res = true;
|
||||
float norm_eps = 1e-5;
|
||||
};
|
||||
|
||||
struct gpt_neox_layer {
|
||||
struct gpt_neox_block {
|
||||
// pre normalization
|
||||
struct ggml_tensor * ln_1_g;
|
||||
struct ggml_tensor * ln_1_b;
|
||||
@ -65,7 +65,7 @@ struct gpt_neox_model {
|
||||
|
||||
struct ggml_tensor * lmh_g; // language model head
|
||||
|
||||
std::vector<gpt_neox_layer> layers;
|
||||
std::vector<gpt_neox_block> blocks;
|
||||
|
||||
// key + value memory
|
||||
struct ggml_tensor * memory_k;
|
||||
@ -415,7 +415,7 @@ bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2
|
||||
if (keyidx != -1) { hparams.n_head = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
|
||||
|
||||
if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.layer_count");
|
||||
if (keyidx != -1) { hparams.n_layer = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
|
||||
if (keyidx != -1) { hparams.n_block = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
|
||||
|
||||
if (ok) { keyidx = gguf_find_key(ggufctx, "gptneox.rope.dimension_count");
|
||||
if (keyidx != -1) { hparams.n_rot = gguf_get_val_u32(ggufctx, keyidx); } else { ok = false; } }
|
||||
@ -434,7 +434,7 @@ bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2
|
||||
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
||||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
printf("%s: n_block = %d\n", __func__, hparams.n_block);
|
||||
printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
|
||||
printf("%s: par_res = %d\n", __func__, hparams.par_res);
|
||||
printf("%s: norm_eps = %g\n", __func__, hparams.norm_eps);
|
||||
@ -545,9 +545,9 @@ bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2
|
||||
|
||||
// prepare memory for the weights
|
||||
{
|
||||
const int n_layer = model.hparams.n_layer;
|
||||
const int n_block = model.hparams.n_block;
|
||||
|
||||
model.layers.resize(n_layer);
|
||||
model.blocks.resize(n_block);
|
||||
|
||||
model.wte = ggml_get_tensor(ctx, "transformer.token_embd.weight");
|
||||
model.ln_f_g = ggml_get_tensor(ctx, "transformer.output_norm.weight");
|
||||
@ -560,47 +560,47 @@ bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2
|
||||
model.tensors["transformer.output_norm.bias"] = model.ln_f_b;
|
||||
model.tensors["transformer.output.weight"] = model.lmh_g;
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
auto & layer = model.layers[i];
|
||||
for (int i = 0; i < n_block; ++i) {
|
||||
auto & block = model.blocks[i];
|
||||
|
||||
std::string blocknamestart = "transformer.blocks." + std::to_string(i) + ".";
|
||||
|
||||
layer.ln_1_g = get_tensor_ex(ctx, blocknamestart + "attn_norm.weight" );
|
||||
layer.ln_1_b = get_tensor_ex(ctx, blocknamestart + "attn_norm.bias" );
|
||||
block.ln_1_g = get_tensor_ex(ctx, blocknamestart + "attn_norm.weight" );
|
||||
block.ln_1_b = get_tensor_ex(ctx, blocknamestart + "attn_norm.bias" );
|
||||
|
||||
layer.c_attn_attn_w = get_tensor_ex(ctx, blocknamestart + "attn_qkv.weight" );
|
||||
layer.c_attn_attn_b = get_tensor_ex(ctx ,blocknamestart + "attn_qkv.bias" );
|
||||
block.c_attn_attn_w = get_tensor_ex(ctx, blocknamestart + "attn_qkv.weight" );
|
||||
block.c_attn_attn_b = get_tensor_ex(ctx ,blocknamestart + "attn_qkv.bias" );
|
||||
|
||||
layer.c_attn_proj_w = get_tensor_ex(ctx, blocknamestart + "attn_output.weight" );
|
||||
layer.c_attn_proj_b = get_tensor_ex(ctx, blocknamestart + "attn_output.bias" );
|
||||
block.c_attn_proj_w = get_tensor_ex(ctx, blocknamestart + "attn_output.weight" );
|
||||
block.c_attn_proj_b = get_tensor_ex(ctx, blocknamestart + "attn_output.bias" );
|
||||
|
||||
layer.ln_2_g = get_tensor_ex(ctx, blocknamestart + "ffn_norm.weight" );
|
||||
layer.ln_2_b = get_tensor_ex(ctx, blocknamestart + "ffn_norm.bias");
|
||||
block.ln_2_g = get_tensor_ex(ctx, blocknamestart + "ffn_norm.weight" );
|
||||
block.ln_2_b = get_tensor_ex(ctx, blocknamestart + "ffn_norm.bias");
|
||||
|
||||
layer.c_mlp_fc_w = get_tensor_ex(ctx, blocknamestart + "ffn_up.weight" );
|
||||
layer.c_mlp_fc_b = get_tensor_ex(ctx, blocknamestart + "ffn_up.bias" );
|
||||
block.c_mlp_fc_w = get_tensor_ex(ctx, blocknamestart + "ffn_up.weight" );
|
||||
block.c_mlp_fc_b = get_tensor_ex(ctx, blocknamestart + "ffn_up.bias" );
|
||||
|
||||
layer.c_mlp_proj_w = get_tensor_ex(ctx, blocknamestart + "ffn_down.weight" );
|
||||
layer.c_mlp_proj_b = get_tensor_ex(ctx, blocknamestart + "ffn_down.bias" );
|
||||
block.c_mlp_proj_w = get_tensor_ex(ctx, blocknamestart + "ffn_down.weight" );
|
||||
block.c_mlp_proj_b = get_tensor_ex(ctx, blocknamestart + "ffn_down.bias" );
|
||||
|
||||
// map by name
|
||||
model.tensors[blocknamestart + "attn_norm.weight"] = layer.ln_1_g;
|
||||
model.tensors[blocknamestart + "attn_norm.bias"] = layer.ln_1_b;
|
||||
model.tensors[blocknamestart + "attn_norm.weight"] = block.ln_1_g;
|
||||
model.tensors[blocknamestart + "attn_norm.bias"] = block.ln_1_b;
|
||||
|
||||
model.tensors[blocknamestart + "attn_qkv.weight"] = layer.c_attn_attn_w;
|
||||
model.tensors[blocknamestart + "attn_qkv.bias"] = layer.c_attn_attn_b;
|
||||
model.tensors[blocknamestart + "attn_qkv.weight"] = block.c_attn_attn_w;
|
||||
model.tensors[blocknamestart + "attn_qkv.bias"] = block.c_attn_attn_b;
|
||||
|
||||
model.tensors[blocknamestart + "attn_output.weight"] = layer.c_attn_proj_w;
|
||||
model.tensors[blocknamestart + "attn_output.bias"] = layer.c_attn_proj_b;
|
||||
model.tensors[blocknamestart + "attn_output.weight"] = block.c_attn_proj_w;
|
||||
model.tensors[blocknamestart + "attn_output.bias"] = block.c_attn_proj_b;
|
||||
|
||||
model.tensors[blocknamestart + "ffn_norm.weight"] = layer.ln_2_g;
|
||||
model.tensors[blocknamestart + "ffn_norm.bias"] = layer.ln_2_b;
|
||||
model.tensors[blocknamestart + "ffn_norm.weight"] = block.ln_2_g;
|
||||
model.tensors[blocknamestart + "ffn_norm.bias"] = block.ln_2_b;
|
||||
|
||||
model.tensors[blocknamestart + "ffn_up.weight"] = layer.c_mlp_fc_w;
|
||||
model.tensors[blocknamestart + "ffn_up.bias"] = layer.c_mlp_fc_b;
|
||||
model.tensors[blocknamestart + "ffn_up.weight"] = block.c_mlp_fc_w;
|
||||
model.tensors[blocknamestart + "ffn_up.bias"] = block.c_mlp_fc_b;
|
||||
|
||||
model.tensors[blocknamestart + "ffn_down.weight"] = layer.c_mlp_proj_w;
|
||||
model.tensors[blocknamestart + "ffn_down.bias"] = layer.c_mlp_proj_b;
|
||||
model.tensors[blocknamestart + "ffn_down.weight"] = block.c_mlp_proj_w;
|
||||
model.tensors[blocknamestart + "ffn_down.bias"] = block.c_mlp_proj_b;
|
||||
}
|
||||
}
|
||||
|
||||
@ -610,10 +610,10 @@ bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_block = hparams.n_block;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
|
||||
const int64_t n_mem = n_layer*n_ctx;
|
||||
const int64_t n_mem = n_block*n_ctx;
|
||||
const int64_t n_elements = n_embd*n_mem;
|
||||
|
||||
// create the ggml context
|
||||
@ -647,37 +647,23 @@ bool gpt_neox_model_load(const std::string & fname, gpt_neox_model & model, gpt2
|
||||
|
||||
// feed-forward network
|
||||
ggml_tensor * gpt_neox_ff(
|
||||
const gpt_neox_layer &layer,
|
||||
const gpt_neox_block &block,
|
||||
ggml_context * ctx0,
|
||||
ggml_tensor * inp) {
|
||||
ggml_tensor * cur = ggml_norm(ctx0, inp);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, layer.ln_2_g, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, layer.ln_2_b, cur));
|
||||
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
layer.c_mlp_fc_w,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, layer.c_mlp_fc_b, cur),
|
||||
cur);
|
||||
cur = ggml_add(ctx0, ggml_mul(ctx0, ggml_repeat(ctx0, block.ln_2_g, cur), cur), ggml_repeat(ctx0, block.ln_2_b, cur));
|
||||
cur = ggml_mul_mat(ctx0, block.c_mlp_fc_w, cur);
|
||||
cur = ggml_add(ctx0, ggml_repeat(ctx0, block.c_mlp_fc_b, cur), cur);
|
||||
|
||||
// GELU activation
|
||||
cur = ggml_gelu(ctx0, cur);
|
||||
|
||||
// projection
|
||||
// cur = proj_w*cur + proj_b
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
layer.c_mlp_proj_w,
|
||||
cur);
|
||||
cur = ggml_mul_mat(ctx0, block.c_mlp_proj_w, cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, layer.c_mlp_proj_b, cur),
|
||||
cur);
|
||||
cur = ggml_add(ctx0, ggml_repeat(ctx0, block.c_mlp_proj_b, cur), cur);
|
||||
return cur;
|
||||
}
|
||||
|
||||
@ -701,7 +687,7 @@ bool gpt_neox_eval(
|
||||
const auto & hparams = model.hparams;
|
||||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_block = hparams.n_block;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_head = hparams.n_head;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
@ -747,7 +733,7 @@ bool gpt_neox_eval(
|
||||
// wte
|
||||
struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.wte, embd);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
for (int il = 0; il < n_block; ++il) {
|
||||
struct ggml_tensor * cur;
|
||||
|
||||
ggml_set_scratch(ctx0, { 0, scr0_size, scr0, });
|
||||
@ -758,22 +744,15 @@ bool gpt_neox_eval(
|
||||
cur = ggml_norm(ctx0, inpL);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_mul(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
|
||||
cur),
|
||||
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
|
||||
ggml_mul(ctx0, ggml_repeat(ctx0, model.blocks[il].ln_1_g, cur), cur),
|
||||
ggml_repeat(ctx0, model.blocks[il].ln_1_b, cur));
|
||||
}
|
||||
|
||||
// compute QKV
|
||||
{
|
||||
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_attn_attn_w,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0,
|
||||
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
|
||||
cur);
|
||||
cur = ggml_mul_mat(ctx0, model.blocks[il].c_attn_attn_w, cur);
|
||||
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.blocks[il].c_attn_attn_b, cur), cur);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd/n_head, n_head, N, cur->nb[1]/n_head, cur->nb[1], 0*sizeof(float)*n_embd/n_head));
|
||||
@ -798,10 +777,7 @@ bool gpt_neox_eval(
|
||||
}
|
||||
|
||||
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
||||
struct ggml_tensor * Q =
|
||||
ggml_permute(ctx0,
|
||||
Qcur,
|
||||
0, 2, 1, 3);
|
||||
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
|
||||
|
||||
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
||||
struct ggml_tensor * K =
|
||||
@ -842,17 +818,12 @@ bool gpt_neox_eval(
|
||||
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
||||
|
||||
// cur = KQV_merged.contiguous().view(n_embd, N)
|
||||
cur = ggml_cpy(ctx0,
|
||||
KQV_merged,
|
||||
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
||||
cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
||||
|
||||
// projection
|
||||
{
|
||||
cur = ggml_mul_mat(ctx0,
|
||||
model.layers[il].c_attn_proj_w,
|
||||
cur);
|
||||
|
||||
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur), cur);
|
||||
cur = ggml_mul_mat(ctx0, model.blocks[il].c_attn_proj_w, cur);
|
||||
cur = ggml_add(ctx0, ggml_repeat(ctx0, model.blocks[il].c_attn_proj_b, cur), cur);
|
||||
}
|
||||
}
|
||||
|
||||
@ -861,7 +832,7 @@ bool gpt_neox_eval(
|
||||
if (hparams.par_res == 0) {
|
||||
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpL);
|
||||
|
||||
cur = gpt_neox_ff(model.layers[il], ctx0, inpFF);
|
||||
cur = gpt_neox_ff(model.blocks[il], ctx0, inpFF);
|
||||
|
||||
// input for next layer
|
||||
inpL = ggml_add(ctx0, cur, inpFF);
|
||||
@ -870,7 +841,7 @@ bool gpt_neox_eval(
|
||||
|
||||
// this is independent of the self-attention result, so it could be done in parallel to the self-attention
|
||||
// note here we pass inpL instead of cur
|
||||
cur = gpt_neox_ff(model.layers[il], ctx0, inpL);
|
||||
cur = gpt_neox_ff(model.blocks[il], ctx0, inpL);
|
||||
|
||||
// layer input + FF
|
||||
cur = ggml_add(ctx0, cur, inpFF);
|
||||
|
Loading…
Reference in New Issue
Block a user