mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-26 03:12:23 +01:00
llama : dynamic temperature sampling (#4972)
* implemented dynamic temperature sampling from koboldcpp * removed trailing whitespace * removed unused temp parameter in llama_sample_entropy * exposed exponent_val in dynamic temp sampler * added debug check for printf statements * use nullptr in llama_sample_softmax call during llama_sample_entropy this avoids counting the time taken stats twice Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> * return earlier if there is only 1 candiate (i.e. max_entropy == 0) * reformat 't' case in llama_sample_queue Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com> * check for one or zero candidates case in llama_sample_entropy --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com> Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
This commit is contained in:
parent
d292f4f204
commit
5eaf9964fc
@ -129,6 +129,8 @@ static void sampler_queue(
|
||||
const int n_vocab = llama_n_vocab(llama_get_model(ctx_main));
|
||||
|
||||
const float temp = params.temp;
|
||||
const float dynatemp_range = params.dynatemp_range;
|
||||
const float dynatemp_exponent = params.dynatemp_exponent;
|
||||
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
|
||||
const float top_p = params.top_p;
|
||||
const float min_p = params.min_p;
|
||||
@ -143,7 +145,15 @@ static void sampler_queue(
|
||||
case 'y': llama_sample_typical (ctx_main, &cur_p, typical_p, min_keep); break;
|
||||
case 'p': llama_sample_top_p (ctx_main, &cur_p, top_p, min_keep); break;
|
||||
case 'm': llama_sample_min_p (ctx_main, &cur_p, min_p, min_keep); break;
|
||||
case 't': llama_sample_temp (ctx_main, &cur_p, temp); break;
|
||||
case 't':
|
||||
if (dynatemp_range > 0) {
|
||||
float dynatemp_min = std::max(0.0f, temp - dynatemp_range);
|
||||
float dynatemp_max = std::max(0.0f, temp + dynatemp_range);
|
||||
llama_sample_entropy(ctx_main, &cur_p, dynatemp_min, dynatemp_max, dynatemp_exponent);
|
||||
} else {
|
||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||
}
|
||||
break;
|
||||
default : break;
|
||||
}
|
||||
}
|
||||
|
@ -18,6 +18,8 @@ typedef struct llama_sampling_params {
|
||||
float tfs_z = 1.00f; // 1.0 = disabled
|
||||
float typical_p = 1.00f; // 1.0 = disabled
|
||||
float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
|
||||
float dynatemp_range = 0.00f; // 0.0 = disabled
|
||||
float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
|
||||
int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
|
||||
float penalty_repeat = 1.10f; // 1.0 = disabled
|
||||
float penalty_freq = 0.00f; // 0.0 = disabled
|
||||
|
67
llama.cpp
67
llama.cpp
@ -8151,6 +8151,73 @@ void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * c
|
||||
}
|
||||
}
|
||||
|
||||
void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
// no need to do anything if there is only one (or zero) candidates
|
||||
if(candidates_p->size <= 1) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Calculate maximum possible entropy
|
||||
float max_entropy = -logf(1.0f / candidates_p->size);
|
||||
|
||||
llama_sample_softmax(nullptr, candidates_p);
|
||||
|
||||
// Calculate entropy of the softmax probabilities
|
||||
float entropy = 0.0f;
|
||||
for (size_t i = 0; i < candidates_p->size; ++i) {
|
||||
float prob = candidates_p->data[i].p;
|
||||
if (prob > 0.0f) { // Ensure no log(0)
|
||||
entropy -= prob * logf(prob);
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
|
||||
float normalized_entropy = entropy / max_entropy;
|
||||
|
||||
// Map the normalized entropy to the desired temperature range using the power function
|
||||
float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
|
||||
|
||||
#ifdef DEBUG
|
||||
LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
|
||||
LLAMA_LOG_INFO("Entropy: %f\n", entropy);
|
||||
LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
|
||||
LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
|
||||
LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
|
||||
LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
|
||||
#endif
|
||||
|
||||
// Apply the dynamically calculated temperature scaling
|
||||
for (size_t i = 0; i < candidates_p->size; ++i) {
|
||||
candidates_p->data[i].logit /= dyn_temp;
|
||||
}
|
||||
|
||||
// Re-compute softmax probabilities after scaling logits with dynamic temperature
|
||||
double max_l_double = candidates_p->data[0].logit;
|
||||
double cum_sum_double = 0.0;
|
||||
for (size_t i = 0; i < candidates_p->size; ++i) {
|
||||
double p = exp(candidates_p->data[i].logit - max_l_double);
|
||||
candidates_p->data[i].p = p; // Store the scaled probability
|
||||
cum_sum_double += p;
|
||||
}
|
||||
for (size_t i = 0; i < candidates_p->size; ++i) {
|
||||
candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
|
||||
}
|
||||
|
||||
#ifdef DEBUG
|
||||
// Print the updated top 25 probabilities after temperature scaling
|
||||
LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
|
||||
for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
|
||||
LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (ctx) {
|
||||
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
}
|
||||
}
|
||||
|
||||
void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
|
||||
const int64_t t_start_sample_us = ggml_time_us();
|
||||
|
||||
|
8
llama.h
8
llama.h
@ -775,6 +775,14 @@ extern "C" {
|
||||
float p,
|
||||
size_t min_keep);
|
||||
|
||||
/// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
|
||||
LLAMA_API void llama_sample_entropy(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates_p,
|
||||
float min_temp,
|
||||
float max_temp,
|
||||
float exponent_val);
|
||||
|
||||
LLAMA_API void llama_sample_temp(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
|
Loading…
Reference in New Issue
Block a user