mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-11 21:10:24 +01:00
common, server : surface min_keep as its own parameter (#5567)
* Feature - surface min_keep as its own parameter * Updated README with min_keep param
This commit is contained in:
parent
c145f8a132
commit
5ee99c32f5
@ -1704,6 +1704,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||||||
}
|
}
|
||||||
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
|
fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
|
||||||
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
|
||||||
|
fprintf(stream, "min_keep: %d # default: 0 (disabled)\n", sparams.min_keep);
|
||||||
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
|
fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", sparams.mirostat);
|
||||||
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
|
fprintf(stream, "mirostat_ent: %f # default: 5.0\n", sparams.mirostat_tau);
|
||||||
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
|
fprintf(stream, "mirostat_lr: %f # default: 0.1\n", sparams.mirostat_eta);
|
||||||
|
@ -248,7 +248,10 @@ static llama_token llama_sampling_sample_impl(
|
|||||||
llama_sample_temp(ctx_main, &cur_p, temp);
|
llama_sample_temp(ctx_main, &cur_p, temp);
|
||||||
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
||||||
} else {
|
} else {
|
||||||
sampler_queue(ctx_main, params, cur_p, 1);
|
// temperature sampling
|
||||||
|
size_t min_keep = std::max(1, params.min_keep);
|
||||||
|
|
||||||
|
sampler_queue(ctx_main, params, cur_p, min_keep);
|
||||||
|
|
||||||
id = llama_sample_token(ctx_main, &cur_p);
|
id = llama_sample_token(ctx_main, &cur_p);
|
||||||
|
|
||||||
|
@ -22,6 +22,7 @@ enum class llama_sampler_type : char {
|
|||||||
typedef struct llama_sampling_params {
|
typedef struct llama_sampling_params {
|
||||||
int32_t n_prev = 64; // number of previous tokens to remember
|
int32_t n_prev = 64; // number of previous tokens to remember
|
||||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||||
|
int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
|
||||||
int32_t top_k = 40; // <= 0 to use vocab size
|
int32_t top_k = 40; // <= 0 to use vocab size
|
||||||
float top_p = 0.95f; // 1.0 = disabled
|
float top_p = 0.95f; // 1.0 = disabled
|
||||||
float min_p = 0.05f; // 0.0 = disabled
|
float min_p = 0.05f; // 0.0 = disabled
|
||||||
|
@ -199,6 +199,8 @@ node index.js
|
|||||||
|
|
||||||
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
|
`n_probs`: If greater than 0, the response also contains the probabilities of top N tokens for each generated token (default: 0)
|
||||||
|
|
||||||
|
`min_keep`: If greater than 0, force samplers to return N possible tokens at minimum (default: 0)
|
||||||
|
|
||||||
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
`image_data`: An array of objects to hold base64-encoded image `data` and its `id`s to be reference in `prompt`. You can determine the place of the image in the prompt as in the following: `USER:[img-12]Describe the image in detail.\nASSISTANT:`. In this case, `[img-12]` will be replaced by the embeddings of the image with id `12` in the following `image_data` array: `{..., "image_data": [{"data": "<BASE64_STRING>", "id": 12}]}`. Use `image_data` only with multimodal models, e.g., LLaVA.
|
||||||
|
|
||||||
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
|
`slot_id`: Assign the completion task to an specific slot. If is -1 the task will be assigned to a Idle slot (default: -1)
|
||||||
|
@ -234,6 +234,7 @@
|
|||||||
mirostat_eta: 0.1, // learning rate
|
mirostat_eta: 0.1, // learning rate
|
||||||
grammar: '',
|
grammar: '',
|
||||||
n_probs: 0, // no completion_probabilities,
|
n_probs: 0, // no completion_probabilities,
|
||||||
|
min_keep: 0, // min probs from each sampler,
|
||||||
image_data: [],
|
image_data: [],
|
||||||
cache_prompt: true,
|
cache_prompt: true,
|
||||||
api_key: ''
|
api_key: ''
|
||||||
@ -791,6 +792,9 @@
|
|||||||
<fieldset>
|
<fieldset>
|
||||||
${IntField({ label: "Show Probabilities", max: 10, min: 0, name: "n_probs", value: params.value.n_probs })}
|
${IntField({ label: "Show Probabilities", max: 10, min: 0, name: "n_probs", value: params.value.n_probs })}
|
||||||
</fieldset>
|
</fieldset>
|
||||||
|
<fieldset>
|
||||||
|
${IntField({ label: "Min Probabilities from each Sampler", max: 10, min: 0, name: "min_keep", value: params.value.min_keep })}
|
||||||
|
</fieldset>
|
||||||
<fieldset>
|
<fieldset>
|
||||||
<label for="api_key">API Key</label>
|
<label for="api_key">API Key</label>
|
||||||
<input type="text" name="api_key" value="${params.value.api_key}" placeholder="Enter API key" oninput=${updateParams} />
|
<input type="text" name="api_key" value="${params.value.api_key}" placeholder="Enter API key" oninput=${updateParams} />
|
||||||
|
@ -548,6 +548,7 @@ struct llama_server_context
|
|||||||
slot->params.seed = json_value(data, "seed", default_params.seed);
|
slot->params.seed = json_value(data, "seed", default_params.seed);
|
||||||
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
|
||||||
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
|
||||||
|
slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
|
||||||
|
|
||||||
if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
|
if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
|
||||||
// Might be better to reject the request with a 400 ?
|
// Might be better to reject the request with a 400 ?
|
||||||
@ -1093,6 +1094,7 @@ struct llama_server_context
|
|||||||
{"stream", slot.params.stream},
|
{"stream", slot.params.stream},
|
||||||
{"logit_bias", slot.sparams.logit_bias},
|
{"logit_bias", slot.sparams.logit_bias},
|
||||||
{"n_probs", slot.sparams.n_probs},
|
{"n_probs", slot.sparams.n_probs},
|
||||||
|
{"min_keep", slot.sparams.min_keep},
|
||||||
{"grammar", slot.sparams.grammar},
|
{"grammar", slot.sparams.grammar},
|
||||||
{"samplers", samplers_sequence}
|
{"samplers", samplers_sequence}
|
||||||
};
|
};
|
||||||
|
Loading…
x
Reference in New Issue
Block a user