mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-23 01:49:18 +01:00
ggml : extend ggml_get_rows, ggml_repeat, ggml_concat (ggml/639)
* add more int ops * ggml_compute_forward_dup_bytes * add tests * PR comments * tests : minor indentations --------- Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
This commit is contained in:
parent
f2eb19bd8b
commit
5f66ebca9c
166
ggml.c
166
ggml.c
@ -4766,8 +4766,11 @@ struct ggml_tensor * ggml_get_rows(
|
||||
}
|
||||
|
||||
// TODO: implement non F32 return
|
||||
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
|
||||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
|
||||
enum ggml_type type = GGML_TYPE_F32;
|
||||
if (a->type == GGML_TYPE_I32) {
|
||||
type = a->type;
|
||||
}
|
||||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
|
||||
|
||||
result->op = GGML_OP_GET_ROWS;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
@ -6938,14 +6941,165 @@ static void ggml_compute_forward_dup_f32(
|
||||
}
|
||||
}
|
||||
|
||||
// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
|
||||
static void ggml_compute_forward_dup_bytes(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
|
||||
GGML_ASSERT(src0->type == dst->type);
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
|
||||
ggml_compute_forward_dup_same_cont(params, src0, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
GGML_TENSOR_UNARY_OP_LOCALS;
|
||||
|
||||
const size_t type_size = ggml_type_size(src0->type);
|
||||
const int ith = params->ith; // thread index
|
||||
const int nth = params->nth; // number of threads
|
||||
|
||||
|
||||
// parallelize by rows
|
||||
const int nr = ne01;
|
||||
// number of rows per thread
|
||||
const int dr = (nr + nth - 1) / nth;
|
||||
// row range for this thread
|
||||
const int ir0 = dr * ith;
|
||||
const int ir1 = MIN(ir0 + dr, nr);
|
||||
|
||||
if (src0->type == dst->type &&
|
||||
ne00 == ne0 &&
|
||||
nb00 == type_size && nb0 == type_size) {
|
||||
// copy by rows
|
||||
const size_t rs = ne00 * type_size;
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||||
memcpy(
|
||||
((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
|
||||
((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
|
||||
rs);
|
||||
}
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (ggml_is_contiguous(dst)) {
|
||||
size_t id = 0;
|
||||
char * dst_ptr = (char *) dst->data;
|
||||
const size_t rs = ne00 * type_size;
|
||||
|
||||
if (nb00 == type_size) {
|
||||
// src0 is contigous on first dimension, copy by rows
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
id += rs * ir0;
|
||||
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||||
const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
|
||||
memcpy(dst_ptr + id, src0_ptr, rs);
|
||||
id += rs;
|
||||
}
|
||||
id += rs * (ne01 - ir1);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
//printf("%s: this is not optimal - fix me\n", __func__);
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
id += rs * ir0;
|
||||
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
|
||||
memcpy(dst_ptr + id, src0_ptr, type_size);
|
||||
|
||||
id += type_size;
|
||||
}
|
||||
}
|
||||
id += rs * (ne01 - ir1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// dst counters
|
||||
|
||||
int64_t i10 = 0;
|
||||
int64_t i11 = 0;
|
||||
int64_t i12 = 0;
|
||||
int64_t i13 = 0;
|
||||
|
||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
||||
i10 += ne00 * ir0;
|
||||
while (i10 >= ne0) {
|
||||
i10 -= ne0;
|
||||
if (++i11 == ne1) {
|
||||
i11 = 0;
|
||||
if (++i12 == ne2) {
|
||||
i12 = 0;
|
||||
if (++i13 == ne3) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int64_t i01 = ir0; i01 < ir1; i01++) {
|
||||
for (int64_t i00 = 0; i00 < ne00; i00++) {
|
||||
const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
|
||||
char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
|
||||
|
||||
memcpy(dst_ptr, src0_ptr, type_size);
|
||||
|
||||
if (++i10 == ne0) {
|
||||
i10 = 0;
|
||||
if (++i11 == ne1) {
|
||||
i11 = 0;
|
||||
if (++i12 == ne2) {
|
||||
i12 = 0;
|
||||
if (++i13 == ne3) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
i10 += ne00 * (ne01 - ir1);
|
||||
while (i10 >= ne0) {
|
||||
i10 -= ne0;
|
||||
if (++i11 == ne1) {
|
||||
i11 = 0;
|
||||
if (++i12 == ne2) {
|
||||
i12 = 0;
|
||||
if (++i13 == ne3) {
|
||||
i13 = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ggml_compute_forward_dup(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
struct ggml_tensor * dst) {
|
||||
if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
|
||||
ggml_compute_forward_dup_same_cont(params, src0, dst);
|
||||
if (src0->type == dst->type) {
|
||||
ggml_compute_forward_dup_bytes(params, src0, dst);
|
||||
return;
|
||||
}
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
@ -8404,10 +8558,12 @@ static void ggml_compute_forward_repeat(
|
||||
struct ggml_tensor * dst) {
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F16:
|
||||
case GGML_TYPE_I16:
|
||||
{
|
||||
ggml_compute_forward_repeat_f16(params, src0, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_I32:
|
||||
{
|
||||
ggml_compute_forward_repeat_f32(params, src0, dst);
|
||||
} break;
|
||||
@ -8550,6 +8706,7 @@ static void ggml_compute_forward_concat(
|
||||
struct ggml_tensor* dst) {
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_I32:
|
||||
{
|
||||
ggml_compute_forward_concat_f32(params, src0, src1, dst);
|
||||
} break;
|
||||
@ -10674,6 +10831,7 @@ static void ggml_compute_forward_get_rows(
|
||||
ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
case GGML_TYPE_I32:
|
||||
{
|
||||
ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
|
||||
} break;
|
||||
|
@ -58,6 +58,9 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m
|
||||
int64_t hist[16];
|
||||
ggml_quantize_chunk(tensor->type, data.data(), dataq.data(), 0, size, hist);
|
||||
ggml_backend_tensor_set(tensor, dataq.data(), 0, dataq.size());
|
||||
} else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) {
|
||||
// This is going to create some weird integers though.
|
||||
ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor));
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
@ -87,8 +90,13 @@ static std::vector<float> tensor_to_float(const ggml_tensor * t) {
|
||||
tv.push_back(*(float *) &buf[i]);
|
||||
} else if (t->type == GGML_TYPE_I32) {
|
||||
tv.push_back((float)*(int32_t *) &buf[i]);
|
||||
} else if (t->type == GGML_TYPE_I16) {
|
||||
tv.push_back((float)*(int16_t *) &buf[i]);
|
||||
} else if (t->type == GGML_TYPE_I8) {
|
||||
tv.push_back((float)*(int8_t *) &buf[i]);
|
||||
} else if (quantized) {
|
||||
tt.to_float(&buf[i], vq.data(), bs);
|
||||
std::vector<float> vq(ggml_blck_size(t->type));
|
||||
tt.to_float(&buf[i], vq.data(), ggml_blck_size(t->type));
|
||||
tv.insert(tv.end(), vq.begin(), vq.end());
|
||||
} else {
|
||||
GGML_ASSERT(false);
|
||||
@ -661,17 +669,26 @@ struct test_repeat : public test_case {
|
||||
struct test_dup : public test_case {
|
||||
const ggml_type type;
|
||||
const std::array<int64_t, 4> ne;
|
||||
const std::array<int64_t, 4> permute;
|
||||
bool _use_permute;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR2(type, ne);
|
||||
std::string v = VARS_TO_STR2(type, ne);
|
||||
if (_use_permute) v += "," + VAR_TO_STR(permute);
|
||||
return v;
|
||||
}
|
||||
|
||||
test_dup(ggml_type type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 1})
|
||||
: type(type), ne(ne) {}
|
||||
std::array<int64_t, 4> ne = {10, 10, 10, 1},
|
||||
std::array<int64_t, 4> permute = {0, 0, 0, 0})
|
||||
: type(type), ne(ne), permute(permute),
|
||||
_use_permute(permute[0] + permute[1] + permute[2] + permute[3] > 0) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * src = ggml_new_tensor(ctx, type, 4, ne.data());
|
||||
if (_use_permute) {
|
||||
src = ggml_permute(ctx, src, permute[0], permute[1], permute[2], permute[3]);
|
||||
}
|
||||
ggml_tensor * out = ggml_dup(ctx, src);
|
||||
return out;
|
||||
}
|
||||
@ -1450,14 +1467,26 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int b : {1, 7}) {
|
||||
for (bool v : {false, true}) {
|
||||
test_cases.emplace_back(new test_get_rows(GGML_TYPE_I32, 256, 5, 4, b, v));
|
||||
}
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 2, 1}));
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 2}));
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_I32, {10, 10, 10, 10}, {2, 1, 1, 1}));
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_I16, {10, 10, 10, 10}, {1, 1, 1, 2}));
|
||||
|
||||
test_cases.emplace_back(new test_dup());
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_F32));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_F16));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_I32));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_I16));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3}));
|
||||
test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3}));
|
||||
|
||||
for (ggml_type type : all_types) {
|
||||
test_cases.emplace_back(new test_cpy(GGML_TYPE_F32, type, {256, 10, 10, 1}));
|
||||
@ -1565,7 +1594,8 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
||||
|
||||
test_cases.emplace_back(new test_alibi());
|
||||
test_cases.emplace_back(new test_im2col());
|
||||
test_cases.emplace_back(new test_concat());
|
||||
test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
|
||||
test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
|
||||
|
||||
for (ggml_sort_order order : {GGML_SORT_ASC, GGML_SORT_DESC}) {
|
||||
test_cases.emplace_back(new test_argsort(GGML_TYPE_F32, {8, 1, 1, 1}, order));
|
||||
|
Loading…
Reference in New Issue
Block a user