mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-01-06 02:48:57 +01:00
gguf : single pass for writing tensors + refactoring writer
This commit is contained in:
parent
dce07c3121
commit
5f97a48fc1
@ -279,65 +279,6 @@ gguf_writer.write_kv_data_to_file()
|
|||||||
print("gguf: write tensors")
|
print("gguf: write tensors")
|
||||||
gguf_writer.write_tensors_to_file()
|
gguf_writer.write_tensors_to_file()
|
||||||
|
|
||||||
# tensor data
|
|
||||||
print("gguf: convert and write tensor data")
|
|
||||||
|
|
||||||
if num_parts == 0:
|
|
||||||
part_names = ("pytorch_model.bin",)
|
|
||||||
else:
|
|
||||||
part_names = (
|
|
||||||
f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
|
|
||||||
)
|
|
||||||
|
|
||||||
for part_name in part_names:
|
|
||||||
print("gguf: loading model part '" + part_name + "'")
|
|
||||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
|
||||||
|
|
||||||
for name in model_part.keys():
|
|
||||||
data = model_part[name]
|
|
||||||
|
|
||||||
old_dtype = data.dtype
|
|
||||||
|
|
||||||
# we don't need these
|
|
||||||
if name.endswith(".rotary_emb.inv_freq"):
|
|
||||||
continue
|
|
||||||
|
|
||||||
# convert any unsupported data types to float32
|
|
||||||
if data.dtype != torch.float16 and data.dtype != torch.float32:
|
|
||||||
data = data.to(torch.float32)
|
|
||||||
|
|
||||||
data = data.squeeze().numpy()
|
|
||||||
|
|
||||||
# reverse permute these
|
|
||||||
if name.endswith(".q_proj.weight") or name.endswith(".k_proj.weight"):
|
|
||||||
data = reverse_hf_permute(data, head_count, head_count_kv)
|
|
||||||
|
|
||||||
# map tensor names
|
|
||||||
if name.endswith(".weight") and name[:-7] in tensor_map:
|
|
||||||
name = tensor_map[name[:-7]] + ".weight"
|
|
||||||
elif name.endswith(".bias") and name[:-5] in tensor_map:
|
|
||||||
name = tensor_map[name[:-5]] + ".bias"
|
|
||||||
else:
|
|
||||||
print("Can not map tensor '" + name + "'")
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
|
||||||
data_dtype = data.dtype
|
|
||||||
|
|
||||||
# if f32 desired, convert any float16 to float32
|
|
||||||
if ftype == 0 and data.dtype == np.float16:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
|
|
||||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
|
||||||
if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
|
|
||||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
|
||||||
if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
|
||||||
data = data.astype(np.float16)
|
|
||||||
|
|
||||||
gguf_writer.write_tensor_to_file(data)
|
|
||||||
|
|
||||||
gguf_writer.close()
|
gguf_writer.close()
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user